Displaying publications 21 - 40 of 62 in total

Abstract:
Sort:
  1. Ghiasi, Vahed, Husaini Omar
    MyJurnal
    Shotcrete is a process where concrete is projected or “shot” under pressure, using a feeder or a
    “gun” onto a surface to form structural shapes including walls, floors, and roofs. The surface can
    be wood, steel, polystyrene, or any other surfaces that concrete can be projected onto. The surface
    can be trowel led smooth while the concrete is still wet. Shotcrete has high strength, durability, low
    permeability, excellent bond, and limitless shape possibilities. These properties allow shotcrete
    to be used as a structural material in most cases. Although the hardened properties of shotcrete
    are similar to conventional cast-in-place concrete, the nature of the placement process provides
    additional benefits, such as excellent bond with most substrates and instant or rapid capabilities,
    particularly on complex forms or shapes. In addition to building homes, shotcrete can also be used
    to build pools. The practice of underground tunneling shows that the degree of stability of tunnels
    is dependent on the state of the soil, rock mass, and shotcrete around the tunnel contour. The
    development in the urban or suburban areas leads to the construction of tunnels in all kinds of soil
    and rock. Meanwhile, the construction of tunnels in shallow depth or soft soils causes the ground
    to displace. The determination of soil and rock mechanical properties to assess the stability of New
    Austrian Tunnelling Method (NATM) tunnels and design the support system is one of the most
    important steps in tunnelling. This paper provides information pertaining to the safety and increase
    the stability of NATM tunnel before, during and after the operation of the tunnel. Therefore, the
    shotcrete process is a recognized method for cemented sandy silt stabilization, with the aid of high
    pressure shot concrete to increase the stability of tunnels.
    Matched MeSH terms: Polystyrenes
  2. Tan, M. C., Liew, S. L., Wan Aida, W. M., Osman, H., Maskat, M. Y.
    MyJurnal
    Response Surface Methodology (RSM) was used in the study to optimize the production of vanillin from isoeugenol through fermentation by Aspergillus niger I-1472. Three factors were studied which include amount of isoeugenol, resin (Amberlite XAD-4) and Span 80. During fermentation, isoeugenol as substrate were vortexed with Span 80 and added into the culture on Day 4. Resin (Amberlite XAD-4) was added into the medium the following day. The predicted optimum medium combination consisted of 3.61 g/L of isoeugenol, 5.8% (g/ mL) of Amberlite XAD-4 resin and 0.37% of Span 80 with an expected vanillin production of 0.137 g/L. Verification test showed that the model produced similar predicted and experimental values.
    Matched MeSH terms: Polystyrenes
  3. Mohd Adib Mohd Aini, Mohamad Juraidi Jamal, Syed Azuan Syed Ahmad
    MyJurnal
    The purpose of this study is to compare the tensile strength between additional polystyrene into coconut meat husk reinforced fiber composite. Composite were produced by using hand layup technique. It is seen that with the additional of polystyrene into the coconut meat husk reinforced polyester composites showed the increment tensile strength value compared to the non-added polystyrene which indicates that effective stress transfer between the fiber, matrix and polystyrene.
    Matched MeSH terms: Polystyrenes
  4. Rosdi, N.H., Mohd Kanafi, N., Abdul Rahman, N.
    MyJurnal
    Cellulose acetate (CA) is an interesting material due to its wide spectrum of utilities across different domains ranging from absorbent to membrane filters. In this study, polystyrene (PS) nanofibres, and cellulose acetate/polystyrene (CA/PS) blend nanofibres with various ratios of CA: PS from 20: 80 to 80: 20 were fabricated by using electrospinning technique. The SEM images show that the nanofibres exhibited non-uniform and random orientation with the average fibre diameter in the range of 100 to 800 nm. It was found that the incorporation of PS had a great effect on the morphology of nanofibre. At high proportion of PS, no or less beaded CA/PS nanofibres were formed. Thermal properties of the composite nanofibres were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. The TGA results showed thermal stability of CA/PS nanofibres were higher than pristine CA.
    Matched MeSH terms: Polystyrenes
  5. Vasilopoulou M, Kim BS, Kim HP, da Silva WJ, Schneider FK, Mat Teridi MA, et al.
    Nano Lett., 2020 Jul 08;20(7):5081-5089.
    PMID: 32492348 DOI: 10.1021/acs.nanolett.0c01270
    Here we use triple-cation metal-organic halide perovskite single crystals for the transistor channel of a flash memory device. Moreover, we design and demonstrate a 10 nm thick single-layer nanofloating gate. It consists of a ternary blend of two organic semiconductors, a p-type polyfluorene and an n-type fullerene that form a donor:acceptor interpenetrating network that serves as the charge storage unit, and of an insulating polystyrene that acts as the tunneling dielectric. Under such a framework, we realize the first non-volatile flash memory transistor based on a perovskite channel. This simplified, solution-processed perovskite flash memory displays unique performance metrics such as a large memory window of 30 V, an on/off ratio of 9 × 107, short write/erase times of 50 ms, and a satisfactory retention time exceeding 106 s. The realization of the first flash memory transistor using a single-crystal perovskite channel could be a valuable direction for perovskite electronics research.
    Matched MeSH terms: Polystyrenes
  6. Bourtsalas ACT, Yepes IM, Tian Y
    J Environ Manage, 2023 Oct 15;344:118604.
    PMID: 37459814 DOI: 10.1016/j.jenvman.2023.118604
    This study analyzes the regional implications of China's 2017 import ban on plastic waste by examining U.S. census data. A statistically significant decrease in total U.S. plastic waste exports was found, dropping from about 1.4 million tons to 0.6 million tons in the post-ban period. California remained the top exporter, throughout both pre- and post-ban periods, while South Carolina exhibited the highest per capita exports. Malaysia emerged as the largest importer of U.S. plastic waste, followed by Vietnam, Indonesia, and Thailand. The ban also led to a change in the composition of the exported plastic waste. Ethylene polymers increased from 32.6% of total exports in the pre-ban period to 46.9% in the post-ban period. Other plastics (vinyl chloride polymers, styrene polymers, and for plastics not elsewhere specified or included) decreased from 67.4% of total exports in the pre-ban period to 53.1% in the post-ban period. Moreover, we found that exporting plastic waste has significant environmental and human health impacts. For example, the Global Warming Potential (GWP) decreased from 20 million tons CO2-eq in the scenario where 100% of plastics are exported, or 25 million tons exported from the U.S. since 2002, to -11.1 million tons CO2-eq in the scenario where 100% of plastics are treated domestically. Transportation exacerbates these impacts for exported waste scenarios, increasing to 5.4 million tons CO2-eq when plastics are exported by ship while decreasing to 0.9 million tons CO2-eq for domestic treatment. Although exporting plastic waste is initially cost-effective, our study highlights that investing in domestic waste management can yield significant long-term benefits, considering the environmental and public health impacts. Therefore, it is crucial to prioritize context-specific solutions to address the challenges of the evolving global plastic waste landscape.
    Matched MeSH terms: Polystyrenes
  7. Li Y, Ye Y, Yuan H, Rihan N, Han M, Liu X, et al.
    Sci Total Environ, 2024 Apr 01;919:170924.
    PMID: 38360329 DOI: 10.1016/j.scitotenv.2024.170924
    Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.
    Matched MeSH terms: Polystyrenes
  8. Dewi WN, Zhou Q, Mollah M, Yang S, Ilankoon IMSK, Chaffee A, et al.
    Waste Manag, 2024 Apr 30;179:99-109.
    PMID: 38471253 DOI: 10.1016/j.wasman.2024.03.007
    Fast co-pyrolysis offers a sustainable solution for upcycling polymer waste, including scrap tyre and plastics. Previous studies primarily focused on slow heating rates, neglecting synergistic mechanisms and sulphur transformation in co-pyrolysis with tyre. This research explored fast co-pyrolysis of scrap tyre with polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS) to understand synergistic effects and sulphur transformation mechanisms. A pronounced synergy was observed between scrap tyre and plastics, with the nature of the synergy being plastic-type dependent. Remarkably, blending 75 wt% PS or LDPE with tyre effectively eliminated sulphur-bearing compounds in the liquid product. This reduction in sulphur content can substantially mitigate the release of hazardous materials into the environment, emphasizing the environmental significance of co-pyrolysis. The synergy between PP or LDPE and tyre amplified the production of lighter hydrocarbons, while PS's interaction led to the creation of monocyclic aromatics. These findings offer insights into the intricate chemistry of scrap tyre and plastic interactions and highlight the potential of co-pyrolysis in waste management. By converting potential pollutants into valuable products, this method can significantly reduce the release of hazardous materials into the environment.
    Matched MeSH terms: Polystyrenes
  9. Ahmad M, Hamzah H, Sufliza Marsom E
    Talanta, 1998 Oct;47(2):275-83.
    PMID: 18967326
    An optical sensor for Hg(II) monitoring using a complex of zinc dithizonate immobilised on XAD 7 which is based on reflectance spectrophotometry has been developed in this study. Measurements were made using a kinetic approach whereby the reflectance signal is measured at a fixed time of 5 min. The sensor could be regenerated using a saturated solution of KCl in 1 M sulphuric acid. The sensor was found to have an optimum response at pH 3.0 with respective measurement repeatability and probe-to-probe reproducibility of 1.53% and 5.26%. A linear response was observed in the Hg(II) concentration range of 0.0-180.0 ppm with a calculated limit of detection (LOD) of 0.05 ppm. The results obtained for aqueous Hg(II) determination using this probe were found to be comparable with the well-established method of atomic absorption spectrometry.
    Matched MeSH terms: Polystyrenes
  10. Yusof NA, Zakaria ND, Maamor NA, Abdullah AH, Haron MJ
    Int J Mol Sci, 2013;14(2):3993-4004.
    PMID: 23429189 DOI: 10.3390/ijms14023993
    Molecularly imprinted polymers (MIPs) were prepared by bulk polymerization in acetonitrile using 2,4-dinitrophenol, acrylamide, ethylene glycol dimethacrylate, and benzoyl peroxide, as the template, functional monomer, cross-linker, and initiator, respectively. The MIP membrane was prepared by hybridization of MIP particles with cellulose acetate (CA) and polystyrene (PS) after being ground and sieved. The prepared MIP membrane was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters studied for the removal of 2,4-dinitrophenol included the effect of pH, sorption kinetics, and the selectivity of the MIP membrane. Maximum sorption of 2,4-nitrophenol by the fabricated CA membrane with MIP (CA-MIP) and the PS membrane with MIP (PS-MIP) was observed at pH 7.0 and pH 5.0, respectively. The sorption of 2,4-dinitrophenol by CA-MIP and PS-MIP followed a pseudo-second-order kinetic model. For a selectivity study, 2,4-dichlorophenol, 3-chlorophenol, and phenol were selected as potential interferences. The sorption capability of CA-MIP and PS-MIP towards 2,4-dinitrophenol was observed to be higher than that of 2,4-dichlorophenol, 3-chlorophenol, or phenol.
    Matched MeSH terms: Polystyrenes
  11. Peng IC, Yeh CC, Lu YT, Muduli S, Ling QD, Alarfaj AA, et al.
    Biomaterials, 2016 Jan;76:76-86.
    PMID: 26519650 DOI: 10.1016/j.biomaterials.2015.10.039
    Stem cell culture is typically based on batch-type culture, which is laborious and expensive. Here, we propose a continuous harvest method for stem cells cultured on thermoresponsive nanobrush surfaces. In this method, stem cells are partially detached from the nanobrush surface by reducing the temperature of the culture medium below the critical solution temperature needed for thermoresponse. The detached stem cells are harvested by exchange into fresh culture medium. Following this, the remaining cells are continuously cultured by expansion in fresh culture medium at 37 °C. Thermoresponsive nanobrush surfaces were prepared by coating block copolymers containing polystyrene (for hydrophobic anchoring onto culture dishes) with three types of polymers: (a) polyacrylic acid with cell-binding oligopeptides, (b) thermoresponsive poly-N-isopropylacrylamide, and (c) hydrophilic poly(ethyleneglycol)methacrylate. The optimal coating durations and compositions for these copolymers to facilitate adequate attachment and detachment of human adipose-derived stem cells (hADSCs) and embryonic stem cells (hESCs) were determined. hADSCs and hESCs were continuously harvested for 5 and 3 cycles, respectively, via the partial detachment of cells from thermoresponsive nanobrush surfaces.
    Matched MeSH terms: Polystyrenes
  12. Yeh CC, Muduli S, Peng IC, Lu YT, Ling QD, Alarfaj AA, et al.
    Data Brief, 2016 Mar;6:603-8.
    PMID: 26909373 DOI: 10.1016/j.dib.2015.12.056
    This data article contains two figures and one table supporting the research article entitled: "Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surface" [1]. The table shows coating conditions of three copolymers, poly(styrene-co-acrylic acid) grafted with oligovitronectin, poly(styrene-co-N-isopropylacrylamide) and poly(styrene-co-polyethylene glycol methacrylate) to prepare thermoresponsive surface. XPS spectra show the nitrogen peak of the polystyrene surface coated with poly(styrene-co-acrylic acid) grafted with oligovitronectin. The surface coating density analyzed from sorption of poly(styrene-co-acrylic acid) grafted with oligovitronectin by UV-vis spectroscopy is also presented.
    Matched MeSH terms: Polystyrenes
  13. Mitsuwan W, Sangkanu S, Romyasamit C, Kaewjai C, Jimoh TO, de Lourdes Pereira M, et al.
    PMID: 33238231 DOI: 10.1016/j.ijpddr.2020.11.001
    Curcuma longa and Curcumin have been documented to have a wide spectrum of pharmacological effects, including anti-Acanthamoeba activity. Hence, this study sought to explore the anti-adhesion activity of C. longa extract and Curcumin against Acanthamoeba triangularis trophozoites and cysts in plastic and contact lenses. Our results showed that C. longa extract and Curcumin significantly inhibited the adhesion of A. triangularis trophozoites and cysts to the plastic surface, as investigated by the crystal violet assay (P 
    Matched MeSH terms: Polystyrenes
  14. Siregar, J.P., Sapuan, S.M., Rahman, M.Z.A., Zaman, H.M.D.K.
    MyJurnal
    A study on the effects of alkali treatment and compatibilising agent on the tensile properties of pineappleleaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite is presented in this paper. Thetensile properties of natural fibre reinforced polymer composites are mainly influenced by the interfacialadhesion between the matrix and the fibres. In this study, several chemical modifications were employedto improve the interfacial matrix-fibre bonding and this resulted in the enhancement of tensile propertiesof the composites. In this study, the surface modification of pineapple fibre with alkali treatments andcompatibilizer were used to improve the adhesion between hydrophilic pineapple fibre and hydrophobicpolymer matrix. There are two concentrations of NaOH treatments and compatibilizer used in this study,namely, 2 and 4 wt. %. The results show that the alkali treated fibre and the addition of compatibilisingagent in PALF/HIPS composites have improved the tensile strength and tensile modulus of the composites.
    Matched MeSH terms: Polystyrenes
  15. Siregar, Januar Parlaungan, Mohd. Sapuan Salit, Mohd. Zaki Ab. Rahman, Khairul Zaman Hj. Mohd. Dahlan
    MyJurnal
    This paper studied the thermal behaviour of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite. Thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC) analysis were used to measure the thermal characteristic of HIPS/PALF composites. In particular, the TGA analysis was utilized to measure the degradation and decomposition of materials in neat polystyrene, pineapple fibre, and the composites. The measurements were carried out in the temperature of 25°C – 800°C, at a heating rate of 20°C min-1 and the nitrogen gas flow was 50 mL min-1. The temperature of the DSC analysis was programmed to be between 25°C – 300°C. The results from TGA analysis show that the addition of pineapple fibre has improved the thermal stability of the composites as compared to neat HIPS. In addition, the effects of compatibilising agent and surface modification of PALF with alkali treated were also determined and compared.
    Matched MeSH terms: Polystyrenes
  16. Nor Nasriah Zaini, Mardiana Saaid, Hafizan Juahir, Rozita Osman
    MyJurnal
    Tongkat Ali (Eurycoma longifolia) is one of the most popular tropical herbal plants as it is believed to enhance virility and sexual prowess. This study looked examined chromatographic fingerprint of Tongkat Ali roots and its products generated using online solid phase-extraction liquid chromatography (SPE-LC) combined with chemometric approaches. The aim was to determine its quality. Pressurised liquid extraction (PLE) technique was used prior to online SPE-LC using polystyrene divinyl benzene (PSDVB) and C18 columns. Seventeen Tongkat Ali roots and 10 products (capsules) were analysed. Chromatographic dataset was subjected to chemometric techniques, namely cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) using 37 selected peaks. The samples were grouped into three clusters based on their quality. The PCA resulted in 11 latent factors describing 90.8% of the whole variance. Pattern matching analysis showed no significant difference (p>0.05) between the roots and products within the same CA grouping. The findings showed the combination of chromatographic fingerprint and chemometric techniques provided comprehensive evaluation for efficient quality control of Tongkat Ali formulation.
    Matched MeSH terms: Polystyrenes
  17. Hashim H, Maruyama H, Akita Y, Arai F
    Sensors (Basel), 2019 Nov 29;19(23).
    PMID: 31795304 DOI: 10.3390/s19235247
    This work describes a hydrogel fluorescence microsensor for prolonged stable temperature measurements. Temperature measurement using microsensors has the potential to provide information about cells, tissues, and the culture environment, with optical measurement using a fluorescent dye being a promising microsensing approach. However, it is challenging to achieve stable measurements over prolonged periods with conventional measurement methods based on the fluorescence intensity of fluorescent dye because the excited fluorescent dye molecules are bleached by the exposure to light. The decrease in fluorescence intensity induced by photobleaching causes measurement errors. In this work, a photobleaching compensation method based on the diffusion of fluorescent dye inside a hydrogel microsensor is proposed. The factors that influence compensation in the hydrogel microsensor system are the interval time between measurements, material, concentration of photo initiator, and the composition of the fluorescence microsensor. These factors were evaluated by comparing a polystyrene fluorescence microsensor and a hydrogel fluorescence microsensor, both with diameters of 20 µm. The hydrogel fluorescence microsensor made from 9% poly (ethylene glycol) diacrylate (PEGDA) 575 and 2% photo initiator showed excellent fluorescence intensity stability after exposure (standard deviation of difference from initial fluorescence after 100 measurement repetitions: within 1%). The effect of microsensor size on the stability of the fluorescence intensity was also evaluated. The hydrogel fluorescence microsensors, with sizes greater than the measurement area determined by the axial resolution of the confocal microscope, showed a small decrease in fluorescence intensity, within 3%, after 900 measurement repetitions. The temperature of deionized water in a microchamber was measured for 5400 s using both a thermopile and the hydrogel fluorescence microsensor. The results showed that the maximum error and standard deviation of error between these two sensors were 0.5 °C and 0.3 °C, respectively, confirming the effectiveness of the proposed method.
    Matched MeSH terms: Polystyrenes
  18. Fouladynezhad, N., Afsah-Hejri, L., Rukayadi, Y., Abdulkarim, S.M., Son, R., Marian, M.N.
    MyJurnal
    Listeria monocytogenes (L. monocytogenes) is a serious food-borne pathogen for immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments. The biofilm transfers contamination to food products and impose risk to public health. Transfers contamination to food products, and impose risk hazard to public health. The aim of this study was to investigate biofilm producing ability of L. monocytogenes isolates. Microtitre assay was used to measure the amount of biofilm production by ten L. monocytogenes isolates from minced chicken / meat, sausages and burgers. Results showed that all 10 L. monocytogenes isolates were able to form biofilm after 24 h at 20˚C on polystyrene surface (the common surface in food industries). Some strains were capable of forming biofilm more than the others. All strains showed a slight raise in the quantities of attached cells over 48 and 72 h. L. monocytogenes strains isolated from minced chicken, minced meat and burgers were better biofilm-producers comparing to the strains isolated from sausages.
    Matched MeSH terms: Polystyrenes
  19. Abu Naim A, Umar A, Sanagi MM, Basaruddin N
    Carbohydr Polym, 2013 Nov 6;98(2):1618-23.
    PMID: 24053848 DOI: 10.1016/j.carbpol.2013.07.054
    Chitin was successfully grafted with polystyrene by free radical mechanism using ammonium persulfate (APS) initiator. The reaction was carried out in aqueous medium. The effect of pH, chitin:monomer weight ratio, APS, reaction time and reaction temperature were investigated. The results showed that the optimum conditions for grafting of polystyrene were found as follows: pH 7, chitin:monomer weight ratio of 1:3, 0.4 g of APS, reaction temperature of 60 °C and reaction time 2 h. The graft copolymer was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and differential scanning electron microscopy (DSC). Gel permeation chromatography (GPC) analysis carried out on the hydrolyzed graft copolymer showed that the Mn and Mw were 6.3395×10(4) g/mol and 1.69283×10(5) g/mol, respectively, with polydispersity index of 2.7.
    Matched MeSH terms: Polystyrenes/chemistry*
  20. Ramli RA, Hashim S, Laftah WA
    J Colloid Interface Sci, 2013 Feb 1;391:86-94.
    PMID: 23123033 DOI: 10.1016/j.jcis.2012.09.047
    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm.
    Matched MeSH terms: Polystyrenes/chemical synthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links