Displaying publications 21 - 40 of 359 in total

Abstract:
Sort:
  1. Thong KL, Lai KS, Ganeswrie R, Puthucheary SD
    Jpn J Infect Dis, 2004 Oct;57(5):206-9.
    PMID: 15507777
    Over a period of 6 months from January to June 2002, an unusual increase in the isolation of highly resistant Pseudomonas aeruginosa strains was observed in the various wards and intensive care units of a large general hospital in Johor Bahru, Malaysia. An equal number of multidrug resistant (MDR) and drug-susceptible strains were collected randomly from swabs, respiratory specimens, urine, blood, cerebral spinal fluid, and central venous catheters to determine the clonality and genetic variation of the strains. Macrorestriction analysis by pulsed-field gel electrophoresis showed that the 19 MDR strains were genetically very homogenous; the majority showed the dominant profile S1 (n = 10), the rest very closely related profiles S1a (n = 1), S2 (n = 4), and S2a (n = 3), indicating the endemicity of these strains. In contrast, the 19 drug-sensitive strains isolated during the same time period were genetically more diverse, showing 17 pulsed-field profiles (F = 0.50-1.00), and probably derived from the patients themselves. The presence of the MDR clone poses serious therapeutic problems as it may become endemic in the hospital and give rise to future clonal outbreaks. There is also the potential for wider geographical spread.
    Matched MeSH terms: Pseudomonas aeruginosa/genetics*; Pseudomonas Infections/drug therapy; Pseudomonas Infections/microbiology*; Pseudomonas Infections/epidemiology*
  2. Chiong F, Wasef MS, Liew KC, Cowan R, Tsai D, Lee YP, et al.
    BMC Infect Dis, 2021 Jul 09;21(1):671.
    PMID: 34243714 DOI: 10.1186/s12879-021-06372-5
    BACKGROUND: Pseudomonas aeruginosa bacteraemia (PAB) is associated with high mortality. The benefits of infectious diseases consultation (IDC) has been demonstrated in Staphylococcal aureus bacteraemia and other complex infections. Impact of IDC in PAB is unclear. This study aimed to evaluate the impact of IDC on the management and outcomes in patients with PAB.

    METHODS: This is a retrospective cohort single-centre study from 1 November 2006 to 29 May 2019, in all adult patients admitted with first episode of PAB. Data collected included demographics, clinical management and outcomes for PAB and whether IDC occurred. In addition, 29 Pseudomonas aeruginosa (PA) stored isolates were available for Illumina whole genome sequencing to investigate if pathogen factors contributed to the mortality.

    RESULTS: A total of 128 cases of PAB were identified, 71% received IDC. Patients who received IDC were less likely to receive inappropriate duration of antibiotic therapy (4.4%; vs 67.6%; p 

    Matched MeSH terms: Pseudomonas aeruginosa*; Pseudomonas Infections/drug therapy*; Pseudomonas Infections/mortality; Pseudomonas Infections/surgery
  3. Ramanathan B, Jindal HM, Le CF, Gudimella R, Anwar A, Razali R, et al.
    PLoS One, 2017;12(8):e0182524.
    PMID: 28797043 DOI: 10.1371/journal.pone.0182524
    Rapid progress in next generation sequencing and allied computational tools have aided in identification of single nucleotide variants in genomes of several organisms. In the present study, we have investigated single nucleotide polymorphism (SNP) in ten multi-antibiotic resistant Pseudomonas aeruginosa clinical isolates. All the draft genomes were submitted to Rapid Annotations using Subsystems Technology (RAST) web server and the predicted protein sequences were used for comparison. Non-synonymous single nucleotide polymorphism (nsSNP) found in the clinical isolates compared to the reference genome (PAO1), and the comparison of nsSNPs between antibiotic resistant and susceptible clinical isolates revealed insights into the genome variation. These nsSNPs identified in the multi-drug resistant clinical isolates were found to be altering a single amino acid in several antibiotic resistant genes. We found mutations in genes encoding efflux pump systems, cell wall, DNA replication and genes involved in repair mechanism. In addition, nucleotide deletions in the genome and mutations leading to generation of stop codons were also observed in the antibiotic resistant clinical isolates. Next generation sequencing is a powerful tool to compare the whole genomes and analyse the single base pair variations found within the antibiotic resistant genes. We identified specific mutations within antibiotic resistant genes compared to the susceptible strain of the same bacterial species and these findings may provide insights to understand the role of single nucleotide variants in antibiotic resistance.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects; Pseudomonas aeruginosa/genetics*; Pseudomonas Infections/drug therapy; Pseudomonas Infections/microbiology
  4. Ali MS, Said ZS, Rahman RN, Chor AL, Basri M, Salleh AB
    Int J Mol Sci, 2013 Aug 28;14(9):17608-17.
    PMID: 23989606 DOI: 10.3390/ijms140917608
    Seeding is a versatile method for optimizing crystal growth. Coupling this technique with capillary counter diffusion crystallization enhances the size and diffraction quality of the crystals. In this article, crystals for organic solvent-tolerant recombinant elastase strain K were successfully produced through microseeding with capillary counter-diffusion crystallization. This technique improved the nucleation success rate with a low protein concentration (3.00 mg/mL). The crystal was grown in 1 M ammonium phosphate monobasic and 0.1 M sodium citrate tribasic dihydrate pH 5.6. The optimized crystal size was 1 × 0.1 × 0.05 mm³. Elastase strain K successfully diffracted up to 1.39 Å at SPring-8, Japan, using synchrotron radiation for preliminary data diffraction analysis. The space group was determined to be monoclinic space group P12(1)1 with unit cell parameters of a = 38.99 Ǻ, b = 90.173 Å and c = 40.60 Å.
    Matched MeSH terms: Pseudomonas aeruginosa/enzymology*
  5. Bert F, Vanjak D, Leflon-Guibout V, Mrejen S, Delpierre S, Redondo A, et al.
    Clin Infect Dis, 2007 Mar 1;44(5):764-5.
    PMID: 17278079
    Matched MeSH terms: Pseudomonas aeruginosa/enzymology*; Pseudomonas aeruginosa/genetics; Pseudomonas aeruginosa/isolation & purification; Pseudomonas Infections/diagnosis; Pseudomonas Infections/microbiology; Pseudomonas Infections/prevention & control*
  6. Strauss JM, Ellison DW, Gan E, Jason S, Marcarelli JL, Rapmund G
    Med J Malaya, 1969 Dec;24(2):94-100.
    PMID: 4244150
    Matched MeSH terms: Pseudomonas/isolation & purification*
  7. Abbas SZ, Yong YC, Ali Khan M, Siddiqui MR, Hakami AAH, Alshareef SA, et al.
    Polymers (Basel), 2020 Jul 13;12(7).
    PMID: 32668712 DOI: 10.3390/polym12071545
    Four strains of bioflocculant-producing bacteria were isolated from a palm oil mill effluent (POME). The four bacterial strains were identified as Pseudomonas alcaliphila (B1), Pseudomonas oleovorans (B2), Pseudomonas chengduensis (B3), and Bacillus nitratireducens (B4) by molecular identification. Among the four bacterial strains, Bacillus nitratireducens (B4) achieved the highest flocculating activity (49.15%) towards kaolin clay suspension after eight hours of cultivation time and was selected for further studies. The optimum conditions for Eriochrome Black T (EBT) flocculation regarding initial pH, type of cation, and B4 dosage were determined to be pH 2, Ca2⁺ cations, and a dosage of 250 mL/L of nutrient broth containing B4. Under these conditions, above 90% of EBT dye removal was attained. Fourier transform infrared spectroscopic (FT-IR) analysis of the bioflocculant revealed the presence of hydroxyl, alkyl, carboxyl, and amino groups. This bioflocculant was demonstrated to possess a good flocculating activity, being a promissory, low-cost, harmless, and environmentally friendly alternative for the treatment of effluents contaminated with dyes.
    Matched MeSH terms: Pseudomonas; Pseudomonas oleovorans
  8. Rahimnejad Yazdi A, Torkan L, Stone W, Towler MR
    J Biomed Mater Res B Appl Biomater, 2018 Jan;106(1):367-376.
    PMID: 28152268 DOI: 10.1002/jbm.b.33856
    Zinc borate glasses with increasing gallium content (0, 2.5, 5, 10, and 15 Wt % Ga) were synthesized and their degradation, bioactivity in simulated body fluid (SBF), and antibacterial properties were investigated. ICP measurements showed that increased gallium content in the glass resulted in increased gallium ion release and decreased release of other ions. Degradability declined with the addition of gallium, indicating the formation of more symmetric BO3 units with three bridging oxygens and asymmetric BO3 units with two bridging oxygens in the glass network as the gallium content in the series increased. The formation of amorphous CaP on the glass surface after 24 h of incubation in SBF was confirmed by SEM, XRD, and FTIR analyses. Finally, antibacterial evaluation of the glasses using the agar disc-diffusion method demonstrated that the addition of gallium increased the antibacterial potency of the glasses against P. aeruginosa (Gram-negative) while decreasing it against S. epidermidis (Gram-positive); considering the ion release trends, this indicates that the gallium ion is responsible for the glasses' antibacterial behavior against P. aeruginosa while the zinc ion controls the antibacterial activity against S. epidermidis. The statistical significance of the observed trends in the measurements were confirmed by applying the Kruskal-Wallis H Test. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 367-376, 2018.
    Matched MeSH terms: Pseudomonas aeruginosa/growth & development*
  9. Liu Y, Marshall NM, Yu SS, Kim W, Gao YG, Robinson H, et al.
    Inorg Chem, 2023 Jul 24;62(29):11618-11625.
    PMID: 37424080 DOI: 10.1021/acs.inorgchem.3c01365
    In order to investigate the effects of the secondary coordination sphere in fine-tuning redox potentials (E°') of type 1 blue copper (T1Cu) in cupredoxins, we have introduced M13F, M44F, and G116F mutations both individually and in combination in the secondary coordination sphere of the T1Cu center of azurin (Az) from Pseudomonas aeruginosa. These variants were found to differentially influence the E°' of T1Cu, with M13F Az decreasing E°', M44F Az increasing E°', and G116F Az showing a negligible effect. In addition, combining the M13F and M44F mutations increases E°' by 26 mV relative to WT-Az, which is very close to the combined effect of E°' by each mutation. Furthermore, combining G116F with either M13F or M44F mutation resulted in negative and positive cooperative effects, respectively. Crystal structures of M13F/M44F-Az, M13F/G116F-Az, and M44F/G116F-Az combined with that of G116F-Az reveal these changes arise from steric effects and fine-tuning of hydrogen bond networks around the copper-binding His117 residue. The insights gained from this study would provide another step toward the development of redox-active proteins with tunable redox properties for many biological and biotechnological applications.
    Matched MeSH terms: Pseudomonas aeruginosa/chemistry
  10. Javadi Nobandegani MB, Saud HM, Yun WM
    Biomed Res Int, 2014;2014:496562.
    PMID: 25580434 DOI: 10.1155/2014/496562
    Primers corresponding to conserved bacterial repetitive of BOX elements were used to show that BOX-DNA sequences are widely distributed in phosphate solubilizing Pseudomonas strains. Phosphate solubilizing Pseudomonas was isolated from oil palm fields (tropical soil) in Malaysia. BOX elements were used to generate genomic fingerprints of a variety of Pseudomonas isolates to identify strains that were not distinguishable by other classification methods. BOX-PCR, that derived genomic fingerprints, was generated from whole purified genomic DNA by liquid culture of phosphate solubilizing Pseudomonas. BOX-PCR generated the phosphate solubilizing Pseudomonas specific fingerprints to identify the relationship between these strains. This suggests that distribution of BOX elements' sequences in phosphate solubilizing Pseudomonas strains is the mirror image of their genomic structure. Therefore, this method appears to be a rapid, simple, and reproducible method to identify and classify phosphate solubilizing Pseudomonas strains and it may be useful tool for fast identification of potential biofertilizer strains.
    Matched MeSH terms: Pseudomonas/classification; Pseudomonas/genetics*; Pseudomonas/metabolism
  11. Mohd Razaif-Mazinah MR, Mohamad Annuar MS, Sharifuddin Y
    Biotechnol Appl Biochem, 2016 Jan-Feb;63(1):92-100.
    PMID: 25643814 DOI: 10.1002/bab.1354
    The biosynthesis of medium-chain-length poly-3-hydroxyalkanoates by Pseudomonas putida Bet001 cultivated on mixed carbon sources was investigated. The mixed carbon sources consisted of heptanoic acid (HA) and oleic acid (OA). A relatively low PHA content at 1.2% (w/w) and 11.4% (w/w) was obtained when HA or OA was used as the sole carbon source. When these fatty acids were supplied as a mixture, PHA content increased threefold. Interestingly, the mixture-derived PHA composed of both odd and even monomer units, namely. 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate and no unsaturated monomer was detected. It is hypothesized that the even-numbered monomers were derived primarily from OA, whereas the odd-numbered monomer was derived from HA. This also points out to an efficient and yet distinct fatty acids metabolism that fed the PHA biosynthesis machinery of this particular microorganism. PHA obtained was elastomeric because melting temperature (Tm ) and crystallinity were absent. It showed good thermal stability with degradation temperature (Td ) ranging from 275.96 to 283.05 °C.
    Matched MeSH terms: Pseudomonas putida/growth & development; Pseudomonas putida/metabolism*; Pseudomonas putida/chemistry
  12. Gumel AM, Annuar MS, Heidelberg T
    Braz J Microbiol, 2014;45(2):427-38.
    PMID: 25242925
    Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L(-1) to 15.45 g L(-1), respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (T m) of 42.0 (± 0.2) °C, glass transition temperature (T g) of -1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g(-1). The molecular weight (M w) range of the polymer was relatively narrow between 55 to 77 kDa.
    Matched MeSH terms: Pseudomonas putida/growth & development*; Pseudomonas putida/isolation & purification; Pseudomonas putida/metabolism*
  13. Chan KG, Wong CS, Yin WF, Chan XY
    Genome Announc, 2014;2(2).
    PMID: 24744329 DOI: 10.1128/genomeA.00258-14
    Pseudomonas aeruginosa has a broad range of habitation, from aquatic environments to human lungs. The coexistence of quorum-sensing and quorum-quenching activities occurs in P. aeruginosa strain MW3a. In this work, we present the draft genome sequence of P. aeruginosa MW3a, an interesting bacterium isolated from a marine environment.
    Matched MeSH terms: Pseudomonas aeruginosa
  14. Halmi MI, Hussin WS, Aqlima A, Syed MA, Ruberto L, MacCormack WP, et al.
    J Environ Biol, 2013 Nov;34(6):1077-82.
    PMID: 24555340
    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.
    Matched MeSH terms: Pseudomonas/growth & development; Pseudomonas/isolation & purification; Pseudomonas/metabolism*
  15. Chen JW, Chin S, Tee KK, Yin WF, Choo YM, Chan KG
    Sensors (Basel), 2013;13(10):13192-203.
    PMID: 24084113 DOI: 10.3390/s131013192
    Bacterial cell-to-cell communication (quorum sensing) refers to the regulation of bacterial gene expression in response to changes in microbial population density. Quorum sensing bacteria produce, release and respond to chemical signal molecules called autoinducers. Bacteria use two types of autoinducers, namely autoinducer-1 (AI-1) and autoinducer-2 (AI-2) where the former are N-acylhomoserine lactones and the latter is a product of the luxS gene. Most of the reported literatures show that the majority of oral bacteria use AI-2 for quorum sensing but rarely the AI-1 system. Here we report the isolation of Pseudomonas putida strain T2-2 from the oral cavity. Using high resolution mass spectrometry, it is shown that this isolate produced N-octanoylhomoserine lactone (C8-HSL) and N-dodecanoylhomoserine lactone (C12-HSL) molecules. This is the first report of the finding of quorum sensing of P. putida strain T2-2 isolated from the human tongue surface and their quorum sensing molecules were identified.
    Matched MeSH terms: Pseudomonas putida/classification; Pseudomonas putida/isolation & purification*; Pseudomonas putida/physiology*
  16. Krishnan T, Yin WF, Chan KG
    Sensors (Basel), 2012;12(4):4016-30.
    PMID: 22666015 DOI: 10.3390/s120404016
    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N-hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects; Pseudomonas aeruginosa/metabolism*; Pseudomonas aeruginosa/physiology
  17. Wong CS, Yin WF, Sam CK, Koh CL, Chan KG
    New Microbiol., 2012 Jan;35(1):43-51.
    PMID: 22378552
    Most Proteobacteria produce N-acylhomoserine lactones for bacterial cell-to-cell communication, a process called quorum sensing. Interference of quorum sensing, commonly known as quorum quenching, represents an important way to control quorum sensing. This work reports the isolation of quorum quenching bacterium strain 2WS8 from Malaysia tropical wetland water (2°11'8"N, 102°15'2"E, in 2007) by using a modified version of a previously reported KG medium. Strain 2WS8 was isolated based on its ability to utilize N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) as the sole source of energy. This bacterium clustered closely to Pseudomonas aeruginosa PAO1. Strain 2SW8 possesses both quiP and pvdQ homologue acylase genes. Rapid Resolution Liquid Chromatography analysis confirmed that strain 2SW8 preferentially degraded N-acylhomoserine lactones with 3-oxo group substitution but not those with unsubstituted groups at C3 position in the acyl side chain. Strain 2SW8 also showed 2-heptyl-3-hydroxy-4-quinolone production.
    Matched MeSH terms: Pseudomonas aeruginosa/genetics*; Pseudomonas aeruginosa/isolation & purification; Pseudomonas aeruginosa/metabolism*
  18. Wong CS, Yin WF, Choo YM, Sam CK, Koh CL, Chan KG
    World J Microbiol Biotechnol, 2012 Feb;28(2):453-61.
    PMID: 22806840 DOI: 10.1007/s11274-011-0836-x
    A chemically defined medium called KGm medium was used to isolate from a sample of sea water a bacterial strain, MW3A, capable of using N-3-oxohexanoyl-L: -homoserine lactone as the sole carbon source. MW3A was clustered closely to Pseudomonas aeruginosa by 16S ribosomal DNA sequence analysis. It degraded both N-acylhomoserine lactones (AHLs) with a 3-oxo group substitution and, less preferably, AHLs with unsubstituted groups at C3 position in the acyl side chain, as determined by Rapid Resolution Liquid Chromatography. Its quiP and pvdQ homologue gene sequences showed high similarities to those of known acylases. Spent supernatant of MW3A harvested at 8-h post inoculation was shown to contain long-chain AHLs when assayed with the biosensor Escherichia coli [pSB1075], and specifically N-dodecanoyl-L: -homoserine lactone and N-3-oxotetradecanoyl-L: -homoserine lactone by high resolution mass spectrometry. Hence, we report here a novel marine P. aeruginosa strain MW3A possessing both quorum-quenching and quorum-sensing properties.
    Matched MeSH terms: Pseudomonas aeruginosa/classification; Pseudomonas aeruginosa/genetics; Pseudomonas aeruginosa/metabolism*
  19. Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA
    J Environ Biol, 2009 Jan;30(1):107-12.
    PMID: 20112871
    The presence of acrylamide in the environment poses a threat due to its well known neurotoxic, carcinogenic and teratogenic properties. Human activities in various geographical areas are the main anthropogenic source of acrylamide pollution. In this work, an acrylamide-degrading bacterium was isolated from Antarctic soil. The physiological characteristics and optimum growth conditions of the acrylamide-degrading bacteria were investigated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ7 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. The results showed that the best carbon sources for growth was glucose and sucrose with no significant difference in terms of cellular growth between the two carbon sources (p>0.05). This was followed by fructose and maltose with fructose giving significantly higher cellular growth compared to maltose (p<0.05). Lactose and citric acid did not support growth. The optimum acrylamide concentration as a nitrogen source for cellular growth was at 500 mgl(-1). At this concentration, bacterial growth showed a 2-day lag phase before degradation took place concomitant with an increase in cellular growth. The isolate exhibited optimum growth in between pH 7.5 and 8.5. The effect of incubation temperature on the growth of this isolate showed an optimum growth at 15 degrees C. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
    Matched MeSH terms: Pseudomonas/genetics; Pseudomonas/isolation & purification; Pseudomonas/metabolism*
  20. Shukor MY, Hassan NA, Jusoh AZ, Perumal N, Shamaan NA, MacCormack WP, et al.
    J Environ Biol, 2009 Jan;30(1):1-6.
    PMID: 20112855
    A diesel-degrading bacterium from Antarctica has been isolated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ3 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Growth on diesel was supported optimally by ammonium sulphate, nitrate and nitrite. The bacterium grew optimally in between 10 and 15 degrees C, pH 7.0 and 3.5% (v/v) diesel. The biodegradation of diesel oil by the strain increased in efficiency from the second to the sixth day of incubation from 1.4 to 18.8% before levelling off on the eighth day n-alkane oxidizing and aldehyde reductase activities were detected in the crude enzyme preparation suggesting the existence of terminal n-alkane oxidizing activity in this bacterium.
    Matched MeSH terms: Pseudomonas/genetics; Pseudomonas/isolation & purification; Pseudomonas/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links