Displaying publications 21 - 40 of 1265 in total

Abstract:
Sort:
  1. Mohamad NV, Ima-Nirwana S, Chin KY
    Aging Male, 2020 Dec;23(5):327-334.
    PMID: 29495911 DOI: 10.1080/13685538.2018.1446075
    This study aimed to compare the skeletal effect between GnRH agonist therapy and orchidectomy in male rats assessed using serum turnover markers and bone histomorphometry. Three-month-old male Sprague-Dawley rats (n = 46) were divided into three experimental arms, baseline, buserelin, and orchidectomy. In the buserelin arm, the rats received a daily subcutaneous injection of either normal saline or buserelin acetate at 25 µg/kg or 75 µg/kg. In the orchidectomy arm, the rats were either sham-operated or orchidectomized. The rats were euthanized after the three-month treatment. Blood was collected for the evaluation of bone turnover markers. Femurs were harvested for bone histomorphometry examination. A significant increase in serum C-telopeptide of type 1 collagen was observed in the orchidectomized group compared with the sham group (p 
    Matched MeSH terms: Rats, Sprague-Dawley
  2. Lam C, Alsaeedi HA, Koh AE, Harun MHN, Hwei ANM, Mok PL, et al.
    Tissue Eng Regen Med, 2021 02;18(1):143-154.
    PMID: 33415670 DOI: 10.1007/s13770-020-00312-1
    BACKGROUND: Different methods have been used to inject stem cells into the eye for research. We previously explored the intravitreal route. Here, we investigate the efficacy of intravenous and subretinal-transplanted human dental pulp stem cells (DPSCs) in rescuing the photoreceptors of a sodium iodate-induced retinal degeneration model.

    METHODS: Three groups of Sprague Dawley rats were used: intervention, vehicle group and negative control groups (n = 6 in each). Intravenous injection of 60 mg/kg sodium iodate (day 0) induced retinal degeneration. On day 4 post-injection of sodium iodate, the rats in the intervention group received intravenous DPSC and subretinal DPSC in the right eye; rats in the vehicle group received subretinal Hank's balance salt solution and intravenous normal saline; while negative control group received nothing. Electroretinogram (ERG) was performed to assess the retinal function at day 0 (baseline), day 4, day 11, day 18, day 26, and day 32. By the end of the study at day 32, the rats were euthanized, and both their enucleated eyes were sent for histology.

    RESULTS: No significant difference in maximal ERG a-wave (p = 0.107) and b-wave, (p = 0.153) amplitude was seen amongst the experimental groups. However, photopic 30 Hz flicker amplitude of the study eye showed significant differences in the 3 groups (p = 0.032). Within the intervention group, there was an improvement in 30 Hz flicker ERG response of all 6 treated right eyes, which was injected with subretinal DPSC; while the 30 Hz flicker ERG of the non-treated left eyes remained flat. Histology showed improved outer nuclear layer thickness in intervention group; however, findings were not significant compared to the negative and vehicle groups.

    CONCLUSION: Combination of subretinal and intravenous injection of DPSCs may have potential to rescue cone function from a NaIO3-induced retinal injury model.

    Matched MeSH terms: Rats, Sprague-Dawley
  3. Looi SY, Bastion MC, Leow SN, Luu CD, Hairul NMH, Ruhaslizan R, et al.
    Indian J Ophthalmol, 2022 Jan;70(1):201-209.
    PMID: 34937239 DOI: 10.4103/ijo.IJO_473_21
    Purpose: There are no effective treatments currently available for optic nerve transection injuries. Stem cell therapy represents a feasible future treatment option. This study investigated the therapeutic potential of human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation in rats with optic nerve injury.

    Methods: Sprague-Dawley (SD) rats were divided into three groups: a no-treatment control group (n = 6), balanced salt solution (BSS) treatment group (n = 6), and hUC-MSCs treatment group (n = 6). Visual functions were assessed by flash visual evoked potential (fVEP) at baseline, Week 3, and Week 6 after optic nerve crush injury. Right eyes were enucleated after 6 weeks for histology.

    Results: The fVEP showed shortened latency delay and increased amplitude in the hUC-MSCs treated group compared with control and BSS groups. Higher cellular density was detected in the hUC-MSC treated group compared with the BSS and control groups. Co-localized expression of STEM 121 and anti-S100B antibody was observed in areas of higher nuclear density, both in the central and peripheral regions.

    Conclusion: Peribulbar transplantation of hUC-MSCs demonstrated cellular integration that can potentially preserve the optic nerve function with a significant shorter latency delay in fVEP and higher nuclear density on histology, and immunohistochemical studies observed cell migration particularly to the peripheral regions of the optic nerve.

    Matched MeSH terms: Rats, Sprague-Dawley
  4. Syamimi Zaini N, Karim R, Abdull Razis AF, Saulol Hamid NF, Zawawi N
    Food Res Int, 2022 Dec;162(Pt A):111988.
    PMID: 36461229 DOI: 10.1016/j.foodres.2022.111988
    Kenaf (Hibiscus cannabinus L.) seed is a non-conventional edible oilseed that can be valorized into various food products. There is a recent discovery of kenaf seed beverage (KSB) potential as a novel plant-based beverage. KSB had less crude protein than soybean (SB)but more carbohydrate, magnesium, and phosphorus contents.Levels of crude fat, phytates, oxalates, total saponins, and lipid peroxidability in KSB were lower than SB. Sugar content between KSB and SB were comparable, while antioxidant properties of KSB were superior. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis detected gluconic acid, citric acid, palmitic acid, oleic acid, and 13-hydroxyoctadecadienoic acid in both KSB and SB. Considering its novelty, acute and subacute oral toxicity assessments in male Sprague Dawley rats were conducted. The acute toxicity assessment was performed at a single dose of 9.2 ml/kg body weight of KSB. In the following subacute toxicity assessment, different groups of rats consumed different doses of KSB (3.1, 6.1, and 9.2 ml/kg body weight) daily for 28 days. Rats presented normal behavioral and physiological states in both toxicity studies. Growth, food and water intakes, organ weight, and hematological parameters were unaffected. No mortality was reported. Several alterations in serum biochemical parameters were within the normal range, and unassociated with histopathological changes. The oral lethal dose (LD50) and the no-observed-adverse-effect-level (NOAEL) of KSB in rats was greater than 9.2 ml/kg (=1533 mg/kg) body weight. Interestingly, KSB exhibited comparable effects with soybean beverage (SB) on high-density lipoprotein cholesterol and triglycerides which worth further research Follow-up toxicity assessments in animals and human trials are also recommended to ascertain its long term safety.
    Matched MeSH terms: Rats, Sprague-Dawley
  5. Rusli RNM, Naomi R, Yazid MD, Embong H, Perumal K, Othman F, et al.
    Toxins (Basel), 2023 Feb 03;15(2).
    PMID: 36828439 DOI: 10.3390/toxins15020125
    The Bouea macrophylla fruit is native to Malaysia and is known for its many beneficial effects on one's health. Probiotics are well-known for their roles as anti-inflammatory, antioxidant, and anti-tumour properties due to their widespread use. As a result, the purpose of this study was to incorporate the ethanolic extract of Bouea macrophylla into yoghurt and then assess the rodents for any toxicological effects. According to the findings of the nutritional analysis, each 100 mL serving of the newly formulated yoghurt contains 3.29 g of fat, 5.79 g of carbohydrates, 2.92 g of total protein, and 2.72 g of sugar. The ability of the newly developed yoghurt to stimulate the growth of Lactobacilli was demonstrated by the fact that the peak intensity of Lactobacillus species was measured at 1.2 × 106 CFU/g while the titratable acidity of the lactic acid was measured at 0.599 CFU/g. In order to carry out the toxicological evaluation, forty-eight male Sprague Dawley (SD) rats were utilized. Oral administration of single doses of 2000 mg/kg over the course of 14 days was used for the study of acute toxicity. Subacute toxicity was studied by giving animals Bouea macrophylla yoghurt (BMY) at repeated doses of 50, 250, 500, and 1000 mg/kg/day over a period of 28 days, while the control group was given normal saline. The results of the acute toxicity test revealed that rats treated with increasing doses up to a maximum of 2000 mg/kg exhibited no signs of toxicity. After an additional 14 days without treatment, acute toxicity of a single dose (2000 mg/kg) of BMY did not show any treatment-related toxicity in any of the rats that were observed. According to the data from the subacute toxicity study, there were no differences between the treated groups and the control groups in terms of food and water intake, body weight, plasma biochemistry (AST, ALT, ALP, and creatinine), haematological products, or organ weights. The architecture of the liver, heart, and kidney were all found to be normal upon histological examination. This indicates that oral consumption of BMY did not result in any negative effects being manifested in the rodents.
    Matched MeSH terms: Rats, Sprague-Dawley
  6. Effendy MA, Yunusa S, Mat NH, Has ATC, Müller CP, Hassan Z
    Behav Brain Res, 2023 Feb 13;438:114169.
    PMID: 36273648 DOI: 10.1016/j.bbr.2022.114169
    Mitragynine, an indole alkaloid from the plant Mitragyna speciosa (Kratom), has been reported to modify hippocampal synaptic transmission. However, the role of glutamatergic neurotransmission modulating synaptic plasticity in mitragynine-induced synaptic changes is still unknown. Here, we determined the role of AMPA- and NMDA glutamate receptors in mitragynine-induced synaptic plasticity in the hippocampus. Male Sprague Dawley rats received either vehicle or mitragynine (10 mg/kg), with or without the AMPA receptor antagonist, NBQX (3 mg/kg), or the NMDA receptor antagonist, MK-801 (0.2 mg/kg). Field excitatory postsynaptic potentials (fEPSP) during baseline, paired-pulse facilitation (PPF) and long-term potentiation (LTP) were recorded in-vivo in the hippocampal CA1 area of anaesthetised rats. Basal synaptic transmission and LTP were significantly impaired after mitragynine, NBQX, and MK-801 alone, without an effect on PPF. Combined effects suggest a weak functional AMPA- as well as NMDA receptor antagonist action of mitragynine.
    Matched MeSH terms: Rats, Sprague-Dawley
  7. You CY, Hassan Z, Müller CP, Suhaimi FW
    Psychopharmacology (Berl), 2022 Jan;239(1):313-325.
    PMID: 34693456 DOI: 10.1007/s00213-021-05996-4
    RATIONALE: The treatment of opiate addiction is an unmet medical need. Repeated exposure to opiates disrupts cognitive performance. Opioid substitution therapy, with, e.g., methadone, may further exacerbate the cognitive deficits. Growing evidence suggests that mitragynine, the primary alkaloid from the Kratom (Mitragyna speciosa) leaves, may serve as a promising alternative therapy for opiate addiction. However, the knowledge of its health consequences is still limited.

    OBJECTIVES: We aimed to examine the cognitive effects of mitragynine substitution in morphine-withdrawn rats. Furthermore, we asked whether neuronal addiction markers like the brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent kinase II alpha (αCaMKII) might mediate the observed effects.

    METHODS: Male Sprague-Dawley rats were given morphine at escalating doses before treatment was discontinued to induce a spontaneous morphine withdrawal. Then, vehicle or mitragynine (5 mg/kg, 15 mg/kg, or 30 mg/kg) substitution was given for 3 days. A vehicle-treated group was used as a control. Withdrawal signs were scored after 24 h, 48 h, and 72 h, while novel object recognition (NOR) and attentional set-shifting (ASST) were tested during the substitution period.

    RESULTS: Discontinuation of morphine significantly induced morphine withdrawal signs and cognitive deficit in the ASST. The substitution with mitragynine was able to alleviate the withdrawal signs. Mitragynine did not affect the recognition memory in the NOR but significantly improved the reversal learning deficit in the morphine-withdrawn rats.

    CONCLUSIONS: These data support the idea that mitragynine could be used as safe medication therapy to treat opiate addiction with beneficial effects on cognitive deficits.

    Matched MeSH terms: Rats, Sprague-Dawley
  8. Yunusa S, Hassan Z, Müller CP
    Pharmacol Rep, 2023 Dec;75(6):1488-1501.
    PMID: 37924443 DOI: 10.1007/s43440-023-00541-w
    BACKGROUND: Mitragynine (MIT), the primary indole alkaloid of kratom (Mitragyna speciosa), has been associated with addictive and cognitive decline potentials. In acute studies, MIT decreases spatial memory and inhibits hippocampal synaptic transmission in long-term potentiation (LTP). This study investigated the impacts of 14-day MIT treatment on hippocampus synaptic transmission and its possible underlying mechanisms.

    METHODS: Under urethane anesthesia, field excitatory post-synaptic potentials (fEPSP) of the hippocampal CA1 region were recorded in the Sprague Dawley (SD) rats that received MIT (1, 5, and 10 mg/kg), morphine (MOR) 5 mg/kg, or vehicle (ip). The effects of the treatments on basal synaptic transmission, paired-pulse facilitation (PPF), and LTP were assessed in the CA1 region. Analysis of the brain's protein expression linked to neuroplasticity was then performed using a western blot.

    RESULTS: The baseline synaptic transmission's amplitude was drastically decreased by MIT at 5 and 10 mg/kg doses, although the PPF ratio before TBS remained unchanged, the PPF ratio after TBS was significantly reduced by MIT (10 mg/kg). Strong and persistent inhibition of LTP was generated in the CA1 region by MIT (5 and 10 mg/kg) doses; this effect was not seen in MIT (1 mg/kg) treated rats. In contrast to MIT (1 mg/kg), MIT (5 and 10 mg/kg) significantly raised the extracellular glutamate levels. After exposure to MIT, GluR-1 receptor expression remained unaltered. However, NMDAε2 receptor expression was markedly downregulated. The expression of pCaMKII, pERK, pCREB, BDNF, synaptophysin, PSD-95, Delta fosB, and CDK-5 was significantly downregulated in response to MIT (5 and 10 mg/kg) exposure, while MOR (5 mg/kg) significantly raised synaptophysin and Delta fosB expression.

    CONCLUSION: Findings from this work reveal that a smaller dose of MIT (1 mg/kg) poses no risk to hippocampal synaptic transmission. Alteration in neuroplasticity-associated proteins may be a molecular mechanism for MIT (5 and 10 mg/kg)-induced LTP disruption and cognitive impairments. Data from this work posit that MIT acted differently from MOR on neuroplasticity and its underlying mechanisms.

    Matched MeSH terms: Rats, Sprague-Dawley
  9. Sharma M, Chan HK, Lavilla CA, Uy MM, Froemming GRA, Okechukwu PN
    Fundam Clin Pharmacol, 2023 Aug;37(4):769-778.
    PMID: 36905079 DOI: 10.1111/fcp.12892
    Streptozotocin (STZ) is a broad-spectrum antibiotic that is toxic to the insulin-producing beta cells of the pancreatic islets. STZ is currently used clinically for the treatment of metastatic islet cell carcinoma of the pancreas and the induction of diabetes mellitus (DM) in rodents. So far, there has been no previous research to show that STZ injection in rodents causes insulin resistance in type 2 diabetes mellitus (T2DM). The purpose of this study was to determine if rats (Sprague-Dawley) developed type 2 diabetes mellitus (insulin resistance) after 72 h of intraperitoneal administration of 50 mg/kg STZ. Rats with fasting blood glucose levels above 11.0 mM, 72 h post-STZ induction, were used. The body weight and plasma glucose levels were measured every week throughout the 60-day treatment period. The plasma, liver, kidney, pancreas, and smooth muscle cells were harvested for antioxidant, biochemical analysis, histology, and gene expression studies. The results revealed that STZ was able to destroy the pancreatic insulin-producing beta cell, as evidenced by an increase in plasma glucose level, insulin resistance, and oxidative stress. Biochemical investigation indicates that STZ can generate diabetes complications through hepatocellular damage, elevated HbA1c, kidney damage, hyperlipidemia, cardiovascular damage, and impairment of the insulin-signaling pathway.
    Matched MeSH terms: Rats, Sprague-Dawley
  10. Abd Ghapor AA, Abdul Nasir NA, Iezhitsa I, Agarwal R, Razali N
    Neurosci Res, 2023 Aug;193:1-12.
    PMID: 36796452 DOI: 10.1016/j.neures.2023.02.004
    Adenosine A1 receptors (AA1R) have been shown to counteract N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitotoxicity. In the present study, we investigated the role of AA1R in neuroprotection by trans-resveratrol (TR) against NMDA-induced retinal injury. In total, 48 rats were divided into the following four groups: normal rats pretreated with vehicle; rats that received NMDA (NMDA group); rats that received NMDA after pretreatment with TR; and rats that received NMDA after pretreatment with TR and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an AA1R antagonist. Assessment of general and visual behaviour was performed using the open field test and two-chamber mirror test, respectively, on Days 5 and 6 post NMDA injection. Seven days after NMDA injection, animals were euthanized, and eyeballs and optic nerves were harvested for histological parameters, whereas retinae were isolated to determine the redox status and expression of pro- and anti-apoptotic proteins. In the present study, the retinal and optic nerve morphology in the TR group was protected from NMDA-induced excitotoxic damage. These effects were correlated with the lower retinal expression of proapoptotic markers, lipid peroxidation, and markers of nitrosative/oxidative stress. The general and visual behavioural parameters in the TR group showed less anxiety-related behaviour and better visual function than those in the NMDA group. All the findings observed in the TR group were abolished by administration of DPCPX.
    Matched MeSH terms: Rats, Sprague-Dawley
  11. Sadikan MZ, Abdul Nasir NA, Bakar NS, Iezhitsa I, Agarwal R
    BMC Complement Med Ther, 2023 Jun 02;23(1):179.
    PMID: 37268913 DOI: 10.1186/s12906-023-04005-9
    BACKGROUND: Diabetic retinopathy (DR) is the second commonest microvascular complication of diabetes mellitus. It is characterized by chronic inflammation and angiogenesis. Palm oil-derived tocotrienol-rich fraction (TRF), a substance with anti-inflammatory and anti-angiogenic properties, may provide protection against DR development. Therefore, in this study, we investigated the effect of TRF on retinal vascular and morphological changes in diabetic rats. The effects of TRF on the retinal expression of inflammatory and angiogenic markers were also studied in the streptozotocin (STZ)-induced diabetic rats.

    METHODS: Male Sprague Dawley rats weighing 200-250 g were grouped into normal rats (N) and diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg body weight) whereas N similarly received citrate buffer. STZ-injected rats with blood glucose of more than 20 mmol/L were considered diabetic and were divided into vehicle-treated (DV) and TRF-treated (DT) groups. N and DV received vehicle, whereas DT received TRF (100 mg/kg body weight) via oral gavage once daily for 12 weeks. Fundus images were captured at week 0 (baseline), week 6 and week 12 post-STZ induction to estimate vascular diameters. At the end of experimental period, rats were euthanized, and retinal tissues were collected for morphometric analysis and measurement of NFκB, phospho-NFκB (Ser536), HIF-1α using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Retinal inflammatory and angiogenic cytokines expression were measured by ELISA and real-time quantitative PCR.

    RESULTS: TRF preserved the retinal layer thickness (GCL, IPL, INL and OR; p 

    Matched MeSH terms: Rats, Sprague-Dawley
  12. Hao H, Ramli R, Wang C, Liu C, Shah S, Mullen P, et al.
    PLoS Biol, 2023 Jan;21(1):e3001958.
    PMID: 36603052 DOI: 10.1371/journal.pbio.3001958
    Accumulating observations suggest that peripheral somatosensory ganglia may regulate nociceptive transmission, yet direct evidence is sparse. Here, in experiments on rats and mice, we show that the peripheral afferent nociceptive information undergoes dynamic filtering within the dorsal root ganglion (DRG) and suggest that this filtering occurs at the axonal bifurcations (t-junctions). Using synchronous in vivo electrophysiological recordings from the peripheral and central processes of sensory neurons (in the spinal nerve and dorsal root), ganglionic transplantation of GABAergic progenitor cells, and optogenetics, we demonstrate existence of tonic and dynamic filtering of action potentials traveling through the DRG. Filtering induced by focal application of GABA or optogenetic GABA release from the DRG-transplanted GABAergic progenitor cells was specific to nociceptive fibers. Light-sheet imaging and computer modeling demonstrated that, compared to other somatosensory fiber types, nociceptors have shorter stem axons, making somatic control over t-junctional filtering more efficient. Optogenetically induced GABA release within DRG from the transplanted GABAergic cells enhanced filtering and alleviated hypersensitivity to noxious stimulation produced by chronic inflammation and neuropathic injury in vivo. These findings support "gating" of pain information by DRGs and suggest new therapeutic approaches for pain relief.
    Matched MeSH terms: Rats, Sprague-Dawley
  13. Hassan Z, Singh D, Suhaimi FW, Chear NJ, Harun N, See CP, et al.
    Regul Toxicol Pharmacol, 2023 Sep;143:105466.
    PMID: 37536550 DOI: 10.1016/j.yrtph.2023.105466
    Mitragyna speciosa Korth also known as kratom, is an herbal drug preparation for its therapeutic properties and opioid-replacement therapy. Kratom is consumed in a brewed decoction form in Malaysia and to date, no studies have characterized its chemical and toxicity profile. Thus, this study aims to evaluate kratom decoction's safety and toxicity profile after 28 days of treatment. Mitragynine content was quantified in kratom decoction and used as a marker to determine the concentration. Male and female Sprague Dawley rats were orally treated with vehicle or kratom decoction (10, 50 or 150 mg/kg) and two satellite groups were treated with vehicle and kratom decoction (150 mg/kg). Blood and organs were collected for hematology, biochemical and histopathology analysis at the end of treatment. No mortality was found after 28 days of treatment and no significant changes in body weight and hematology profile, except for low platelet count. High amounts of uric acid, AST, ALT and alkaline phosphatase were found in the biochemical analysis. Histological investigation of the heart and lungs detected no alterations except for the kidney, liver and brain tissues. In conclusion, repeated administration of kratom decoction provided some evidence of toxicity in the kidney and liver with no occurrence of mortality.
    Matched MeSH terms: Rats, Sprague-Dawley
  14. Ang HP, Makpol S, Nasaruddin ML, Ahmad NS, Tan JK, Wan Zaidi WA, et al.
    Int J Mol Sci, 2023 Jul 31;24(15).
    PMID: 37569622 DOI: 10.3390/ijms241512248
    Indoleamine 2,3-dioxygenase (IDO) and the tryptophan-kynurenine pathway (TRP-KP) are upregulated in ageing and could be implicated in the pathogenesis of delirium. This study evaluated the role of IDO/KP in lipopolysaccharide (LPS)-induced delirium in an animal model of chronic cerebral hypoperfusion (CCH), a proposed model for delirium. CCH was induced by a permanent bilateral common carotid artery ligation (BCCAL) in Sprague Dawley rats to trigger chronic neuroinflammation-induced neurodegeneration. Eight weeks after permanent BCCAL, the rats were treated with a single systemic LPS. The rats were divided into three groups: (1) post-BCCAL rats treated with intraperitoneal (i.p.) saline, (2) post-BCCAL rats treated with i.p. LPS 100 μg/kg, and (3) sham-operated rats treated with i.p. LPS 100 μg/kg. Each group consisted of 10 male rats. To elucidate the LPS-induced delirium-like behaviour, natural and learned behaviour changes were assessed by a buried food test (BFT), open field test (OFT), and Y-maze test at 0, 24-, 48-, and 72 h after LPS treatment. Serum was collected after each session of behavioural assessment. The rats were euthanised after the last serum collection, and the hippocampi and cerebral cortex were collected. The TRP-KP neuroactive metabolites were measured in both serum and brain tissues using ELISA. Our data show that LPS treatment in CCH rats was associated with acute, transient, and fluctuated deficits in natural and learned behaviour, consistent with features of delirium. These behaviour deficits were mild compared to the sham-operated rats, which exhibited robust behaviour impairments. Additionally, heightened hippocampal IDO expression in the LPS-treated CCH rats was associated with reduced serum KP activity together with a decrease in the hippocampal quinolinic acid (QA) expression compared to the sham-operated rats, suggested for the presence of endotoxin tolerance through the immunomodulatory activity of IDO in the brain. These data provide new insight into the underlying mechanisms of delirium, and future studies should further explore the role of IDO modulation and its therapeutic potential in delirium.
    Matched MeSH terms: Rats, Sprague-Dawley
  15. Japarin RA, Harun N, Hassan Z, Shoaib M
    Behav Pharmacol, 2023 Apr 01;34(2-3):123-130.
    PMID: 36752325 DOI: 10.1097/FBP.0000000000000715
    Mitragynine (MG) is a pharmacologically active alkaloid derived from the leaves of Mitragyna speciosa Korth (Kratom). This plant has sparked significant interest as a potential alternative treatment for managing opioid dependence and withdrawal due to its opioid-like pharmacological effects. However, whether MG exposure would trigger opioid-seeking behaviour following abstinence has not been investigated. The present study examined the effects of MG priming on morphine-seeking behaviour in rats. Male Sprague-Dawley rats were initially trained to intravenously self-administer morphine (0.5 mg/kg/infusion) under a fixed ratio-3 schedule of reinforcement. Removal of both morphine infusions and drug-associated cues led to the subsequent extinction of the drug-seeking behaviour. Tests of reinstatement were made following exposure to a randomised order of intraperitoneal injections of MG (3, 10 and 30 mg/kg), morphine (5 mg/kg) and vehicle. Significant levels of drug-seeking behaviour were observed following extended access to morphine self-administration, which was extinguished following removal of morphine and cues indicative of morphine-seeking behaviour, supporting the relapse model. The present finding demonstrated that MG priming in a dose of 10 mg/kg resulted in the reinstatement of morphine-seeking behaviour, whereas the higher MG dose (30 mg/kg) tested suppressed the seeking response. This study indicated that exposure to a low MG dose may increase the likelihood of relapsing to opioids, suggesting that the potential of MG as a treatment for opioid management merits further scientific assessment of its ability to trigger relapse to opioid abuse.
    Matched MeSH terms: Rats, Sprague-Dawley
  16. Al Qabbani A, Rani KGA, AlKawas S, Sheikh Abdul Hamid S, Yap Abdullah A, Samsudin AR, et al.
    PLoS One, 2023;18(12):e0294291.
    PMID: 38127838 DOI: 10.1371/journal.pone.0294291
    The aim of this study was to compare the ability of demineralized (DMB) and decellularized (DCC) bovine bone granules to support bone regeneration in rat calvaria critical-size defects. DMB and DCC were prepared using a previously published method. The granule size used ranged between 500 and 750 μm. A total of forty-eight Sprague-Dawley rats were divided into two groups (n = 24). A pair of 5 mm diameter defects were created on the calvaria of the rats in the right and left parietal bone in both groups. Group A animals received DMB granules and Group B received DCC granules in the right parietal defect side while the left parietal untreated defect acted as sham surgery for both groups. Four animals per group were euthanized in a CO2 chamber at day 7, 14 and 21 post-surgery and the calvaria implantation site biopsy harvested was subjected to osteogenic gene expression analysis. Another four animals per group were euthanized at days 15, 30 and 60 post surgery and the calvaria implantation site biopsy harvested was subjected to histological, immunohistochemistry, RAMAN spectroscopy and Micro-CT analysis at the mentioned time points. Statistical analysis was conducted using t-tests and ANOVA. Histomorphometry showed significantly higher new bone formation in the DCC sites (p<0.05) compared to DMB. Both DMB and DCC implantation sites showed distinct staining for osteocalcin and osteopontin proteins compared to their respective sham sites. By day 21 after implantation, DCC sites demonstrated significantly elevated mRNA levels of osteonectin (p<0.001), osteopontin (p<0.001), osteocalcin (p<0.0001), ALP (p<0.01), and BMP-2 (p<0.001) compared to DMB. However, VEGF expression showed no significant differences at this time point between the two groups. Micro-CT analysis also showed enhanced defect closure and higher bone density in DCC implanted sites while RAMAN spectra demonstrated increased abundance of collagen and bone minerals, especially, PO43- ions than DMB. In conclusion, both DMB and DCC granules demonstrated favorable osteogenic potential in critical-sized defects, with DCC exhibited superior osteoconductive, osteoinductive and osteogenesis properties.
    Matched MeSH terms: Rats, Sprague-Dawley
  17. Albaayit SF, Abba Y, Abdullah R, Abdullah N
    PMID: 25610488 DOI: 10.1155/2014/975450
    Clausena excavata (Lour.), locally known as "Kemantu hitam," is a common plant in Malaysian folklore medicine. This study evaluated the antioxidant properties of the solvent extracts of C. excavata leaves and determined the acute toxicity of methanolic extract C. excavata (MECE) leaves in Sprague-Dawley rats. Harvested leaves were dried and subjected to solvent extraction using petroleum ether, chloroform, ethyl acetate and methanol in succession. The antioxidant activity of each extract was determined using the ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl dihydrazyl (DPPH) radical scavenging activity. The total phenolic content (TPC) and total flavonoids content (TFC) were estimated by Folin-Ciocalteu and ethanolic aluminium chloride method, respectively. The chloroform extract was found to be highest in flavonoid content, while the methanolic extract showed the highest TPC and antioxidant activity. There was no mortality in rats treated with MECE leaves even at a high dose of 5000 mg/kg body weight. However, the MECE leaves produced mild to moderate pathological changes in the liver and kidneys, shown by mild degenerative changes and leucocyte infiltration. The extract did not affect the haematological parameters or relative weights of the liver or kidneys. Overall, the MECE leaves have potent antioxidant activity and are presumed safe to be used orally as health-promoting product at low to moderate doses.
    Matched MeSH terms: Rats, Sprague-Dawley
  18. Tajul Ariff AS, Soelaiman IN, Pramanik J, Shuid AN
    PMID: 22966245 DOI: 10.1155/2012/818072
    Testosterone replacement is the choice of treatment in androgen-deficient osteoporosis. However, long-term use of testosterone is potentially carcinogenic. Eurycoma longifolia (EL) has been reported to enhance testosterone level and prevent bone calcium loss but there is a paucity of research regarding its effect on the bone structural parameters. This study was conducted to explore the bone structural changes following EL treatment in normal and androgen-deficient osteoporosis rat model. Thirty-six male Sprague-Dawley rats aged 12 months were divided into normal control, normal rat supplemented with EL, sham-operated, orchidectomised-control, orchidectomised with testosterone replacement, and orchidectomised with EL supplementation groups. Testosterone serum was measured both before and after the completion of the treatment. After 6 weeks of the treatment, the femora were processed for bone histomorphometry. Testosterone replacement was able to raise the testosterone level and restore the bone volume of orchidectomised rats. EL supplementation failed to emulate both these testosterone actions. The inability of EL to do so may be related to the absence of testes in the androgen deficient osteoporosis model for EL to stimulate testosterone production.
    Matched MeSH terms: Rats, Sprague-Dawley
  19. Mohd Salleh H, Ablat A, Chong SL, Hazni H, Tohar N, Fauzi N, et al.
    Naturwissenschaften, 2024 Apr 01;111(2):20.
    PMID: 38558027 DOI: 10.1007/s00114-024-01907-7
    The Zingiber zerumbet rhizomes are traditionally used to treat fever, and the in vitro inhibitory effect of ethyl acetate extract from Zingiber zerumbet rhizomes (EAEZZR) against DENV2 NS2B/NS3 (two non-structural proteins, NS2 and NS3 of dengue virus type 2) has been reported earlier. This study was carried out to establish an acute toxicity profile and evaluate the anti-fever (anti-pyretic) activities of EAEZZR in yeast-induced fever in rats. The major compound of EAEZZR, zerumbone, was isolated using chromatographic methods including column chromatography (CC) and preparative thin-layer chromatography (PTLC). Additionally, the structure of zerumbone was elucidated using nuclear magnetic resonance (NMR), liquid chromatography mass spectrometer-ion trap-time of flight (LCMS-IT-TOF), infrared (IR), and ultraviolet (UV) spectroscopy. The toxicity of EAEZZR was evaluated using Organization for Economic Cooperation and Development Test Guideline 425 (OECD tg-425) with minor modifications at concentrations EAEZZR of 2000 mg/kg, 3000 mg/kg, and 5000 mg/kg. Anti-fever effect was determined by yeast-induced fever (pyrexia) in rats. The acute toxicity study showed that EAEZZR is safe at the highest 5000 mg/kg body weight dose in Sprague Dawley rats. Rats treated with EAEZZR at doses of 125, 250, and 500 mg/kg exhibited a significant reduction in rectal temperature (TR) in the first 1 h. EAEZZR at the lower dose of 125 mg/kg showed substantial potency against yeast-induced fever for up to 2 h compared to 0 h in controls. A significant reduction of TR was observed in rats treated with standard drug aspirin in the third through fourth hours. Based on the present findings, ethyl acetate extract of Zingiber zerumbet rhizomes could be considered safe up to the dose of 5000 mg/kg, and the identification of active ingredients of Zingiber zerumbet rhizomes may allow their use in the treatment of fever with dengue virus infection.
    Matched MeSH terms: Rats, Sprague-Dawley
  20. Ang HH, Sim MK
    Exp Anim, 1997 Oct;46(4):287-90.
    PMID: 9353636 DOI: 10.1538/expanim.46.287
    The effects of Eurycoma longifolia Jack were studied on the libido of sexually experienced male rats after dosing them with 200, 400 and 800 mg/kg body weight twice daily of different fractions of E. longifolia Jack for 10 days. Results showed that E. longifolia Jack produced a dose-dependent increase in mounting frequency of the treated animals with 400 mg/kg of chloroform, methanol, water and butanol fractions resulting in mounting frequencies of 5.3 +/- 1.2, 4.9 +/- 0.7, 4.8 +/- 0.7 and 5.2 +/- 0.1, and 800 mg/kg further increased them to 5.4 +/- 0.8, 5.4 +/- 0.8, 5.2 +/- 0.6 and 5.3 +/- 0.2 respectively but there were no erections, intromissions, ejaculations or seminal emissions during the 20-min observation period which allowed for the measurement of sexual arousal reflected by mounting frequency uninfluenced by other behavioural components. This study provides evidence that E. longifolia Jack is a potent stimulator of sexual arousal in sexually vigorous male rats in the absence of feedback from genital sensation.
    Matched MeSH terms: Rats, Sprague-Dawley/psychology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links