Displaying publications 21 - 40 of 307 in total

Abstract:
Sort:
  1. Selvarajah GT, Bonestroo FAS, Timmermans Sprang EPM, Kirpensteijn J, Mol JA
    BMC Vet Res, 2017 Nov 25;13(1):354.
    PMID: 29178874 DOI: 10.1186/s12917-017-1281-3
    BACKGROUND: Quantitative PCR (qPCR) is a common method for quantifying mRNA expression. Given the heterogeneity present in tumor tissues, it is crucial to normalize target mRNA expression data using appropriate reference genes that are stably expressed under a variety of pathological and experimental conditions. No studies have validated specific reference genes in canine osteosarcoma (OS). Previous gene expression studies involving canine OS have used one or two reference genes to normalize gene expression. This study aimed to validate a panel of reference genes commonly used for normalization of canine OS gene expression data using the geNorm algorithm. qPCR analysis of nine canine reference genes was performed on 40 snap-frozen primary OS tumors and seven cell lines.

    RESULTS: Tumors with a variety of clinical and pathological characteristics were selected. Gene expression stability and the optimal number of reference genes for gene expression normalization were calculated. RPS5 and HNRNPH were highly stable among OS cell lines, while RPS5 and RPS19 were the best combination for primary tumors. Pairwise variation analysis recommended four and two reference genes for optimal normalization of the expression data of canine OS tumors and cell lines, respectively.

    CONCLUSIONS: Appropriate combinations of reference genes are recommended to normalize mRNA levels in canine OS tumors and cell lines to facilitate standardized and reliable quantification of target gene expression, which is essential for investigating key genes involved in canine OS metastasis and for comparative biomarker discovery.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods; Real-Time Polymerase Chain Reaction/veterinary
  2. Kurbakov KA, Konorov EA, Minaev MY, Kuznetsova OA
    Food Technol Biotechnol, 2019 Mar;57(1):97-104.
    PMID: 31316281 DOI: 10.17113/ftb.57.01.19.5983
    Optimization of fermentation processes requires monitoring the species composition of starter cultures and their growth during fermentation. Most starter cultures contain closely related species. Nowadays, high-resolution melting (HRM) analysis is extensively used for multiplex identification of closely related species. In the present paper, we applied real-time polymerase chain reaction (PCR) with HRM analysis for the detection and differentiation of Lactobacillus sakei and L. curvatus. A primer pair was selected for the site of the rpoA gene of Lactobacillus spp. Eleven starter cultures and fifteen fermented sausages with a known bacterial composition were successfully tested using real-time PCR with HRM analysis with the developed primer pair.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  3. MyJurnal
    Malaysia, Biosafety Bill 2006 was approved by Parliament in July 2007, and labeling legislation will be implemented soon. In this study, duplex polymerase chain reaction (PCR) was carried out to detect
    endogenous soybean lectin gene and exogenous cp4-epsps (5’-enolpyruvylshikimate-3-phospate synthase) gene simultaneously. Additionally, real-time PCR utilizing SYBR Green fluorescence dye were established for the quantitative analysis of Roundup Ready soybean (RRS), which is based on the two established calibration curve from cloned fragment of cp4-epsps gene and lectin gene respectively. Approximately, 39.5% (45/114) of the samples examined in this study contain RRS, animal feeds (31), processed food (13) and raw soybean (1). Additionally, 75.6% (34/45) of the positive samples were found contained RRS above 0.9%. The sensitive GMO quantitative approach described in this study enable the analysis of various samples and this will facilitate the labeling process.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  4. Jasbeer, K., Ghazali, F.M., Cheah, Y.K., Son, R.
    MyJurnal
    The introduction of new agricultural commodities and products derived from modernbiotechnology may have an impact on human and animal health, the environment and economiesof countries. As more Genetically Modified Organisms (GMO) enter markets worldwide, themonitoring of GMOs is being preferred for obvious reasons such as determination of seed purity,verification of non-GMO status of agricultural crops and fulfilling GMO labeling provisions, tomention a few. Numerous GMO analytical methods which include screening, identification andquantification have been developed to reliably determine the presence and/or amount of GMOin agricultural commodities, in raw agricultural materials and in processed and refined ingredients.The detection of GMOs relies on the detection of transgenic DNA or protein material. For routineanalysis, a good sample preparation technique should reproducibly generate DNA/protein ofsufficient quality, purity and yield while minimizing the effects of inhibition andcontamination.
    The key sample preparation steps include homogenization, pretreatment, extraction andpurification. Due to the fact that analytical laboratories receive samples that are often processedand refined, the quality and quantity of transgenic target analyte (e.g. protein and DNA) frequentlychallenge the sensitivity of any detection method. With the development of GMO analysistechniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMOdetection, and the real-time PCR is the most effective and important method for GMOquantification. The choice of target sequence; for example a promoter, a terminator, a gene, or ajunction between two of these elements, is the single most important factor controlling the specificity of the PCR method. Recent developments include event-specific methods, particularlyuseful for identification and quantification of GM content. Although PCR technology has obvious
    limitations, the potentially high degree of sensitivity and specificity explains why PCR in its various
    formats, is currently the leading analytical technology employed in GMO analysis. Comparatively, immunoassays are becoming attractive tools for rapid field monitoring for the integrity of agricultural commodities in identity preservation systems, whereby non-specialised personnel can employ them in cost-effective manner. This review discusses various popular extraction methodologies and summarises the current status of the most widely used and easily applicable GMO analysis technologies in laboratories, namely the PCR and immunoassay technologies.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  5. Subramaniam, K.S., Wong, M.S., Woo, Y.L., Mat Adenan, N.A., Mohamed, Z., Chung, I., et al.
    JUMMEC, 2013;16(1):1-5.
    MyJurnal
    Genetic mutations in endometrial cancer (EC) have been extensively studied in the Western population but not much in Asian cohorts. This study has demonstrated that PTEN and PIK3CA mutations are commonly found in EC among Malaysian women. Following RNA extraction from 20 cancerous and 18 non-cancerous tissues, the presence of mutations in 9 exons of PTEN and 3 exons of PIK3CA genes were detected using real-time PCR, accompanied by High Resolution Melt (HRM) analysis. Sequencing confirmed specificity of each PCR product. The mutations for both genes were detected in the samples with varying frequencies. Notably, all samples expressed mutation of PTEN at exon 7 but none in exon 4. Further analysis demonstrated that strong concurrent mutations occurred between exons 7 of PTEN with exon 20 region 1 of PIK3CA gene (90%). Our data showed mutations are present in EC and not the non-cancerous tissues. Larger samples are being collected to validate this observation.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  6. Hanafy NA, Badr MS, Nasr GM
    Open Access Maced J Med Sci, 2018 Sep 25;6(9):1577-1580.
    PMID: 30337968 DOI: 10.3889/oamjms.2018.400
    BACKGROUND: Toxoplasma gondii is a common parasitic infection of humans. Infection is usually mild. Serious complications can occur in pregnant and immunocompromised patients.

    AIM: The present study aims to investigate the performance of 2 different PCR protocols; real-time quantitative molecular assays (qPCR) and conventional molecular assays (cPCR), using 2 different sets of primers and by using cloned purified Toxoplasma genomic substances to be evaluated as reference samples.

    METHODS: The target DNA was provided in 8 different quantities.

    RESULTS: Amplification failure was reported only with the cPCR in samples of low concentrations using both primer sets. Quantitative PCR detected the 8 different dilutions of the purified Toxoplasma gondii using the 2 sets of primers while cPCR was sensitive to detect only 6 different dilutions.

    CONCLUSION: Generally real-time quantitative molecular assays, is easy to use method compared to conventional PCR assay and produces more reliable results within only one hour time but still the possible application of qPCRs in routine diagnosis necessitates analysis of a large number of clinical samples in further studies to make the proper choice.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  7. Che Engku Noramalina Che-Engku-Chik, Siti Sarah Othman, Helmi Wasoh, Nor Azah Yusof, Jaafar Abdullah, Mohd Hazani Mat Zaid
    MyJurnal
    Despite the continued effort globally made to control the growing case of Tuberculosis (TB), it
    continues to be regarded as the second deadliest disease after the HIV. There are various
    methods developed to diagnose TB, most of which having the criteria of sensitive, selective,
    cheap and portable to be used in robust applications. Even with the advancement in medication,
    the important keys including early stage diagnosis is yet to be considered. In diagnosing TB, the
    only technique remained as the gold standard method is the culturing method, which is the Acid
    Fast Bacilli (AFB) staining. On the other hand, molecular technique utilising Polymerase Chain
    Reaction (PCR) assay is preferred as a non-culturing method. Additionally, as molecular
    techniques become advanced, real-time PCR or quantitative PCR (qPCR) using multiple probes
    in one shot has raised interest among researchers, because it can skip the process of gel
    electrophoresis. Recently, researchers have been working on electrochemical DNA sensors
    which are sensitive, selective, rapid, cheap and can meet with point of care (POC) testing
    requirements to diagnose TB.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  8. Gunasegar S, Himratul-Aznita WH
    FEMS Yeast Res., 2019 Mar 01;19(2).
    PMID: 30476044 DOI: 10.1093/femsyr/foy123
    Candida albicans ATCC 14053 and Candida parapsilosis ATCC 22019 hyphal-wall protein 1 (HWP1) are involved in hyphae formation and pathogenesis. The transcriptional agglutinin-like sequence 3 (ALS3) genes in both species are responsible for the development of biofilm and colonization on tooth surfaces. Therefore, we investigated the expression of HWP1 and ALS3 quantitatively in C. albicans and C. parapsilosis and examined the biofilm structure upon exposure to various nicotine concentrations. In vitro, biofilms of Candida species were developed directly on slides using the Lab-Tek Chamber Slide System and visualized by confocal laser scanning microscopy. Quantitative real-time polymerase chain reaction was used to measure HWP1 and ALS3 expression in C. albicans ATCC 14053 and C. parapsilosis ATCC 22019. The results indicated that nicotine multiplied the number of yeast cells and increased the extracellular polysaccharides of Candida species. We also found that 1-2 mg/mL nicotine could enhance the formation of biofilm. The findings also revealed that the expression of HWP1 and ALS3 in Candida species were increased as the nicotine concentration increased. Therefore, nicotine influences the biofilm development of oral-associated C. albicans ATCC 14053 and C. parapsilosis ATCC 22019.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  9. Azlina Ahmad-Annuar, Ai Sze Ching
    Sains Malaysiana, 2015;44:1481-1488.
    As researchers seek to determine the cellular mechanisms underlying biological processes, they have turned to analyze the functional role of microRNAs to understand this process in details. Here, we investigated the expression pattern of two microRNAs, miR-124 and -134 in maturing neurons and found that the choice of endogenous controls influenced the observed expression levels of these microRNAs. We have cultured rat hippocampal neurons and performed quantitative PCR on the microRNAs using Taqman gene expression assays. The expression of miRNAs was normalised with selected endogenous controls. Using BestKeeper and NormFinder software, we found that 18S rRNA and 5S rRNA to be unsuitable as endogenous controls in this system, while normalising to U6 snRNA produced more consistent results. Our study would like to highlight the importance of empirically testing proposed endogenous controls in any model system before data interpretation is carried out.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  10. Rashidah Iberahim, Norefrina Shafinaz Md. Nor, Wan Ahmad Yaacob, Nazlina Ibrahim
    Sains Malaysiana, 2018;47:1431-1438.
    The present study was aimed at determining the compounds available in Eleusine indica methanol extract and the effects on
    herpes simplex virus type 1 (HHV1) replication cycle and progeny infectivity. Twelve compounds mostly from the flavonoid
    and phenolic groups were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis. The
    effect on replication phases of HHV1 was determined by time-of-addition, time-removal and virus yield reduction assays
    with expression of selected genes analysed by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The extract
    inhibited plaque formation the most during the first 2 h and at 24 h of infection. Plaque formation inhibition was also
    noted at all other time points but at lesser percentage. Treatment with E. indica reduced progeny infectivity when treated
    for 10 h and was dose-dependent. E. indica methanol extract inhibited immediate early, early and late phases of HHV1
    replication cycle by modifying the expression of UL
    54, UL
    27 and UL
    30 genes during the infection. Immunostaining of
    infected cells confirmed that E. indica inhibited mainly Glycoproteins B but not Glycoprotein C and D. Thus, the methanol
    extract of E. indica has the ability to alter HHV1 replication cycle at almost all stages and reduce progeny infectivity.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  11. Tan SC
    Gynecol. Obstet. Invest., 2019;84(5):519-520.
    PMID: 31269498 DOI: 10.1159/000501684
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  12. Liam CK, Wong CK, Tan JL
    J Thorac Oncol, 2014 Sep;9(9):e71-2.
    PMID: 25122442 DOI: 10.1097/JTO.0000000000000261
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  13. Wong FL, Hamidah NH, Hawa AA, Nurul AN, Leong CF, Saw F, et al.
    Malays J Pathol, 2011 Dec;33(2):107-12.
    PMID: 22299211
    Molecular pathogenesis of chronic myeloid leukemia (CML) is well established and molecular monitoring for patients with CML has become an important practice in the management of patients on imatinib therapy. In the present study, we report the use of RQ-PCR method for detection of BCR-ABL fusion gene for our CML cases. We performed a two-step RQ-PCR on bone marrow aspirates or peripheral blood of 37 CML patients. Quantitative expression of BCR-ABL fusion gene was carried out relative to the expression of a housekeeping gene as endogenous control to compensate for uneven cell numbers, RNA quality, or variations in reverse transcription efficiencies. Twenty-four of these patients were pre-treated with hydroxyurea or alpha interferon prior to the imatinib therapy. Their BCR-ABL fusion gene levels were monitored for 18 months. All samples processed were evaluable. The PCR amplification efficiency of the ABL gene is 90.5% (0.2158) and the BCR-ABL gene, 93.4% (0.1573).
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  14. Rahman MM, Hamid SB, Basirun WJ, Bhassu S, Rashid NR, Mustafa S, et al.
    PMID: 26458055 DOI: 10.1080/19440049.2015.1104558
    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  15. Ali ME, Hashim U, Mustafa S, Che Man YB, Dhahi TS, Kashif M, et al.
    Meat Sci, 2012 Aug;91(4):454-9.
    PMID: 22444666 DOI: 10.1016/j.meatsci.2012.02.031
    A test for assessing pork adulteration in meatballs, using TaqMan probe real-time polymerase chain reaction, was developed. The assay combined porcine-specific primers and TaqMan probe for the detection of a 109 bp fragment of porcine cytochrome b gene. Specificity test with 10 ng DNA of eleven different species yielded a threshold cycle (Ct) of 15.5 ± 0.20 for the pork and negative results for the others. Analysis of beef meatballs with spiked pork showed the assay can determine 100-0.01% contaminated pork with 102% PCR efficiency, high linear regression (r(2) = 0.994) and ≤ 6% relative errors. Residuals analysis revealed a high precision in all determinations. Random analysis of commercial meatballs from pork, beef, chicken, mutton and goat, yielded a Ct between 15.89 ± 0.16 and 16.37 ± 0.22 from pork meatballs and negative results from the others, showing the suitability of the assay to determine pork in commercial meatballs with a high accuracy and precision.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  16. Cowley JA, Rao M, Coman GJ
    Dis Aquat Organ, 2018 Jul 04;129(2):145-158.
    PMID: 29972375 DOI: 10.3354/dao03243
    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) can cause mass mortalities in western blue shrimp Penaeus stylirostris, runt deformity syndrome in Pacific white shrimp P. vannamei and scalloped abdominal shell deformities in black tiger shrimp P. monodon. In P. monodon, however, PCR-based diagnosis of IHHNV can be complicated by the presence of a chromosome-integrated, non-replicating endogenous viral element (EVE). To facilitate high-throughput screening of P. monodon for IHHNV infection and/or EVE sequences, here we report real-time PCR tests designed to specifically detect IHHNV Lineage I, II and III but not EVE Type A sequences and vice versa. Using 108 dsDNA copies of plasmid (p)DNA controls containing either IHHNV or EVE-Type A sequences, both tests displayed absolute specificity. The IHHNV-q309 PCR reliably detected down to ≤10 copies of pDNA, at which levels a 309F/R PCR amplicon was just detectable, and the presence of an IHHNV-EVE sequence did not significantly impact its sensitivity. The IHHNV-qEVE PCR was similarly sensitive. Testing of batches of P. monodon clinical samples from Vietnam/Malaysia and Australia identified good diagnostic concordance between the IHHNV-q309 and 309F/R PCR tests. As expected for a sequence integrated into host chromosomal DNA, IHHNV-qEVE PCR Ct values were highly uniform among samples from shrimp in which an EVE was present. The highly specific and sensitive IHHNV-q309 and IHHNV-qEVE real-time PCR tests described here should prove useful for selecting broodstock free of IHHNV infection and in maintaining breeding populations of P. monodon specific pathogen free for IHHNV, and if desired, also free of IHHNV-EVE sequences.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  17. Lim KL, Johari NA, Wong ST, Khaw LT, Tan BK, Chan KK, et al.
    PLoS One, 2020;15(8):e0238417.
    PMID: 32857823 DOI: 10.1371/journal.pone.0238417
    The rapid global spread of the coronavirus disease (COVID-19) has inflicted significant health and socioeconomic burden on affected countries. As positive cases continued to rise in Malaysia, public health laboratories experienced an overwhelming demand for COVID-19 screening. The confirmation of positive cases of COVID-19 has solely been based on the detection of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) using real-time reverse transcription polymerase chain reaction (qRT-PCR). In efforts to increase the cost-effectiveness and efficiency of COVID-19 screening, we evaluated the feasibility of pooling clinical Nasopharyngeal/Oropharyngeal (NP/OP) swab specimens during nucleic acid extraction without a reduction in sensitivity of qRT-PCR. Pools of 10 specimens were extracted and subsequently tested by qRT-PCR according to the WHO-Charité protocol. We demonstrated that the sample pooling method showed no loss of sensitivity. The effectiveness of the pooled testing strategy was evaluated on both retrospective and prospective samples, and the results showed a similar detection sensitivity compared to testing individual sample alone. This study demonstrates the feasibility of using a pooled testing strategy to increase testing capacity and conserve resources, especially when there is a high demand for disease testing.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction*
  18. Tan GW, Tan LP
    Methods Mol Biol, 2017;1580:7-19.
    PMID: 28439823 DOI: 10.1007/978-1-4939-6866-4_2
    Reverse transcription followed by real-time or quantitative polymerase chain reaction (RT-qPCR) is the gold standard for validation of results from transcriptomic profiling studies such as microarray and RNA sequencing. The current need for most studies, especially biomarker studies, is to evaluate the expression levels or fold changes of many transcripts in a large number of samples. With conventional low to medium throughput qPCR platforms, many qPCR plates would have to be run and a significant amount of RNA input per sample will be required to complete the experiments. This is particularly challenging when the size of study material (small biopsy, laser capture microdissected cells, biofluid, etc.), time, and resources are limited. A sensitive and high-throughput qPCR platform is therefore optimal for the evaluation of many transcripts in a large number of samples because the time needed to complete the entire experiment is shortened and the usage of lab consumables as well as RNA input per sample are low. Here, the methods of high-throughput RT-qPCR for the analysis of circulating microRNAs are described. Two distinctive qPCR chemistries (probe-based and intercalating dye-based) can be applied using the methods described here.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  19. Sultan S, Nasir MI, Rafiq S, Baig MA, Akbani S, Irfan SM
    Malays J Pathol, 2017 Aug;39(2):149-154.
    PMID: 28866696
    BACKGROUND: Blood transfusion safety commences with healthy donor recruitment. The threat of transfusion transmitted infections is greatly minimized by serological tools but not entirely eliminated. Recently, nucleic-acid testing for blood donor screening has virtually eliminated this jeopardy.

    METHODS: This prospective study was conducted from February 2015 to February 2016. Samples from seronegative donors were run on multiplex assay (Cobas, S-201 system platform, Roche) in a batch of six [MP-NAT]. In case of reactive pool, tests were run on every individual sample [IDNAT].

    RESULTS: Of 16957 donors, 16836 (99.2%) were replacement donors and the remaining 121 (0.7%) were voluntary donors, with a mean age of 29.09 ± 7.04 years. After serologic screening of all 16957 donors, 955 (5.6%) were found to be reactive; 291(1.71%) were reactive for hepatitis-B surface antigen, 361 (2.12%) for antibody to hepatitis C virus (anti-HCV), 14 (0.08%) for antibody to human immunodeficiency virus, 287 (1.69%) for syphilis and 2 (0.01%) for malaria. 14 (0.08%) NAT reactive donors were identified after testing the 16002 seronegative donors, with an overall NAT yield of one reactivity out of 1143 blood donations; 10 donors for HBV-DNA (HBV NAT yield-1:1600) and remaining 4 for HCV-RNA (HCV-NAT yield-1:4000). None were HIV positive.

    CONCLUSION: NAT has improved the safety attributes in blood products. Although the positivity rate for NAT testing is low but in view of the high prevalence of transfusion transmitted infections in our country, we recommend the parallel use of both serology and NAT screening of all donated blood.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  20. Ahmad Nizar NN, Hossain M, Sultana S, Ahamad MN, Johan MR, Ali ME
    PMID: 30945985 DOI: 10.1080/19440049.2019.1584407
    Consumption and exploitation of crocodiles have been rampant for their exotic, nutritive and medicinal attributes. These depredations are alarming and although they have continued to be monitored by wildlife and conservation agencies, unlawful trading of crocodiles shows an increasing trend worldwide. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays for crocodile have been documented but they are only suitable for identification and cannot quantify adulterations. We described here a quantitative duplex real-time PCR assay with probes to quantify contributions from Crocodylus porosus materials simultaneously. A very short amplicon size of 127bp was used because longer targets could have been broken down in samples, bringing considerable uncertainty in molecular analysis. We have validated a TaqMan probe-based duplex real-time PCR (qPCR) assay for the detection of 0.004 ng DNA in pure state and 0.1% target meat in model chicken meatball. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 12 model chicken meatballs adulterated with C. porosus reflected 96.3-120.2% target recovery at 0.1-10% adulterations. A validation test of 21 commercial food and traditional medicine (TM) crocodile-based products showed 100% effectiveness. Short amplicon sizes, alternative complementary target, exceptional stability and superior sensitivity suggested the assay could be used for the identification and quantitative determination of C. porosus in any food or TM samples even under degraded conditions.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links