Displaying publications 21 - 40 of 85 in total

Abstract:
Sort:
  1. Ali MAH, Mailah M, Jabbar WA, Moiduddin K, Ameen W, Alkhalefah H
    Sensors (Basel), 2020 Jul 01;20(13).
    PMID: 32630340 DOI: 10.3390/s20133694
    A real-time roundabout detection and navigation system for smart vehicles and cities using laser simulator-fuzzy logic algorithms and sensor fusion in a road environment is presented in this paper. A wheeled mobile robot (WMR) is supposed to navigate autonomously on the road in real-time and reach a predefined goal while discovering and detecting the road roundabout. A complete modeling and path planning of the road's roundabout intersection was derived to enable the WMR to navigate autonomously in indoor and outdoor terrains. A new algorithm, called Laser Simulator, has been introduced to detect various entities in a road roundabout setting, which is later integrated with fuzzy logic algorithm for making the right decision about the existence of the roundabout. The sensor fusion process involving the use of a Wi-Fi camera, laser range finder, and odometry was implemented to generate the robot's path planning and localization within the road environment. The local maps were built using the extracted data from the camera and laser range finder to estimate the road parameters such as road width, side curbs, and roundabout center, all in two-dimensional space. The path generation algorithm was fully derived within the local maps and tested with a WMR platform in real-time.
    Matched MeSH terms: Robotics
  2. Ahmad NS
    Sensors (Basel), 2020 Jun 30;20(13).
    PMID: 32630046 DOI: 10.3390/s20133673
    Motion control involving DC motors requires a closed-loop system with a suitable compensator if tracking performance with high precision is desired. In the case where structural model errors of the motors are more dominating than the effects from noise disturbances, accurate system modelling will be a considerable aid in synthesizing the compensator. The focus of this paper is on enhancing the tracking performance of a wheeled mobile robot (WMR), which is driven by two DC motors that are subject to model parametric uncertainties and uncertain deadzones. For the system at hand, the uncertain nonlinear perturbations are greatly induced by the time-varying power supply, followed by behaviour of motion and speed. In this work, the system is firstly modelled, where correlations between the model parameters and different input datasets as well as voltage supply are obtained via polynomial regressions. A robust H ∞ -fuzzy logic approach is then proposed to treat the issues due to the aforementioned perturbations. Via the proposed strategy, the H ∞ controller and the fuzzy logic (FL) compensator work in tandem to ensure the control law is robust against the model uncertainties. The proposed technique was validated via several real-time experiments, which showed that the speed and path tracking performance can be considerably enhanced when compared with the results via the H ∞ controller alone, and the H ∞ with the FL compensator, but without the presence of the robust control law.
    Matched MeSH terms: Robotics
  3. A'qilah Ahmad Dahalan, Azali Saudi, Jumat Sulaiman
    MyJurnal
    Mobile robots often have to discover a path of collision-free towards a specific goal point in their environment. We are trying to resolve the mobile robot problem iteratively by means of numerical technique. It is built on a method of potential field that count on the use of Laplace’s equation in the mobile robot’s configuration space to constrain/which reduces the generation of a potential function over regions. This paper proposed an iterative approach in solving robot path finding problem known as Accelerated Over-Relaxation (AOR). The experiment shows that these suggested approach can establish a smooth path between the starting and goal points by engaging with a finite-difference technique. The simulation results also show that a more rapidly solution with smoother path than the previous work is achieved via this numerical approach.
    Matched MeSH terms: Robotics
  4. Hassan, Ahmed, Abdul Shukor Juraimi, Muhammad Saiful Ahmad Hamdani
    MyJurnal
    Agriculture is one of the latest industries that uses robotic technologies. Cultivation of crops
    with high yield and quality can be enhanced when technological sustenance is involved. Pests are
    nuisance and cannot be completely eliminated, but with effective control and management. damages
    caused by pests could be minimized below economic threshold. Automation in agriculture is stable and
    accurate and is mainly incorporated in mechanized farming system. However its numerous application in
    different agricultural practices is not well noticed. Hence this paper attempts to provide profound
    awareness on robotic technology in agriculture. Robots could have a specific or multiple functions and,
    most commonly, they are made up of five basic components; sensors, effectors, actuators, controller and
    arms. Use of automation in weeding, weed mapping, micro spraying, seeding, irrigation and harvesting
    are progressions which promote sustainable agriculture and food security. In future, solar robots with
    battery inverter may be invented.
    Matched MeSH terms: Robotics
  5. Tang, S.H., Khaksar, W., Ismail, N.B., Ariffin, M.K.A.
    MyJurnal
    The ability of a robot to plan its own motion seems pivotal to its autonomy, and that is why the motion planning has become part and parcel of modern intelligent robotics. In this paper, about 100 research are reviewed and briefly described to identify and classify the amount of the existing work for each motion planning approach. Meanwhile, around 200 research were used to determine the percentage of the application of each approach. The paper includes comparative tables and charts showing the application frequency of each approach in the last 30 years. Finally, some open areas and challenging topics are presented based on the reviewed papers.
    Matched MeSH terms: Robotics
  6. Ahmed M. M. ALmassri, Chikamune Wada, Wan Hasan, W.Z., Ahmad, S.A.
    MyJurnal
    This paper presents an auto grasping algorithm of a proposed robotic gripper. The purpose is to enhance the grasping mechanism of the gripper. Earlier studies have introduced various methods to enhance the grasping mechanism, but most of the works have not looked at the weight measurement method. Thus, with this algorithm, the weight of the object is calculated based on modified Wheatstone Bridge Circuit (WBC) which is controlled by programmable interface controller (PIC) method. Having this approach introduces and improves the grasping mechanism through an auto grasping algorithm. Experimental results show that an auto grasping algorithm based on pressure sensor measurements leads to a more precise grasping measurement and consequently enhance the sensitivity measurement as well as accurate movement calibration. Furthermore, several different grasping objects based on the proposed method are examined to demonstrate the performance and robustness of our approach.
    Matched MeSH terms: Robotics
  7. Muhamad Khuzaifah Ismail, Meng Cheng Lau, Mohammad Faidzul Nasrudin, Haslina Arsha
    MyJurnal
    The walking of a humanoid robot needs to be robust enough in order to maintain balance in a dynamic environment especially on uneven terrain. A walking model based on multi-sensor is proposed for a Robotis DARwIn-OP robot named as Leman. Two force sensitive resistor (FSRs) on both feet equipped to Leman to estimate the zero moment point (ZMP) alongside with accelerometer and gyrosensor embedded in the body for body state estimation. The results show that the FSRs can successfully detect the unbalanced walking event if the protuberance exists on the floor surface and the accelerometer and gyrosensor (Inertial Measurement Unit, IMU) data are recorded to tune the balancing parameter in the model.
    Matched MeSH terms: Robotics
  8. Hamzah Ahmad, Nur Aqilah Othman
    MyJurnal
    This paper deals with the analysis of different Fuzzy membership type performance for Extended Kalman Filter (EKF) based mobile robot navigation. EKF is known to be incompetent in non-Gaussian noise condition and therefore the technique alone is not sufficient to provide solution. Motivated by this shortcoming, a Fuzzy based EKF is proposed in this paper. Three membership types are considered which includes the triangular, trapezoidal and Gaussian membership types to determine the best estimation results for mobile robot and landmarks locations. Minimal rule design and configuration are also other aspects being considered for analysis purposes. The simulation results suggest that the Gaussian memberships surpassed other membership type in providing the best solution in mobile robot navigation.
    Matched MeSH terms: Robotics
  9. Farah Kamil, Tang, S.H., Zulkifli, N., Ahmad, S.A., Khaksar, W.
    MyJurnal
    Robotic navigation has remained an open issue through the last two decades. Mobile robot
    is required to navigate safely to goal location in presence of obstacles. Recently the use of mobile
    robot in unknown dynamic environment has significantly increased. The aim of this paper is to offer a
    comprehensive review over different approaches to mobile robots in dynamic environments,
    particularly on how they solve many issues that face the researchers recently. This paper also explains
    the advantages and drawbacks of each reviewed paper. The authors decide to categorize these articles
    based on the entire content of each paper into ten common challenges which have been discussed in
    this paper, including: traveling distance, traveling time, safety, motion control, smooth path, future
    prediction, stabilization, competence, precision, and low computation cost. Finally, some open areas
    and challenging topics are offered according to the articles mentioned.
    Matched MeSH terms: Robotics
  10. Mousavi M, Yap HJ, Musa SN, Tahriri F, Md Dawal SZ
    PLoS One, 2017;12(3):e0169817.
    PMID: 28263994 DOI: 10.1371/journal.pone.0169817
    Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
    Matched MeSH terms: Robotics
  11. Zayer, Iman, Aris, I.B., Marhaban, M.H, Ishak, A.J
    MyJurnal
    The new millennium witnessed increasing attention to the field of robotics, especially the development of humanoid bipedal robot. Attention is noticed from the increasing number of publications as a result of a multitude of humanoid projects for commercial and academic goals. This paper briefly visits the recent activities in this field, highlighting the importance and motivation behind adopting bipedal humanoid projects, particularly underlining biologically inspired design concept, bipedal locomotion and communication. Ultimately, emphasising on power-efficient design. The problem of endurance and effective duty cycle were presented. Finally, potential future application for the humanoid robot was briefly listed.
    Matched MeSH terms: Robotics
  12. Mohd Romlay MR, Mohd Ibrahim A, Toha SF, De Wilde P, Venkat I
    PLoS One, 2021;16(8):e0256665.
    PMID: 34432855 DOI: 10.1371/journal.pone.0256665
    Low-end LiDAR sensor provides an alternative for depth measurement and object recognition for lightweight devices. However due to low computing capacity, complicated algorithms are incompatible to be performed on the device, with sparse information further limits the feature available for extraction. Therefore, a classification method which could receive sparse input, while providing ample leverage for the classification process to accurately differentiate objects within limited computing capability is required. To achieve reliable feature extraction from a sparse LiDAR point cloud, this paper proposes a novel Clustered Extraction and Centroid Based Clustered Extraction Method (CE-CBCE) method for feature extraction followed by a convolutional neural network (CNN) object classifier. The integration of the CE-CBCE and CNN methods enable us to utilize lightweight actuated LiDAR input and provides low computing means of classification while maintaining accurate detection. Based on genuine LiDAR data, the final result shows reliable accuracy of 97% through the method proposed.
    Matched MeSH terms: Robotics
  13. Pirouzi G, Abu Osman NA, Oshkour AA, Ali S, Gholizadeh H, Abas WA
    Sensors (Basel), 2014;14(9):16754-65.
    PMID: 25207872 DOI: 10.3390/s140916754
    The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.
    Matched MeSH terms: Robotics/instrumentation*
  14. Khalid YM, Gouwanda D, Parasuraman S
    Proc Inst Mech Eng H, 2015 Jun;229(6):452-63.
    PMID: 25979442 DOI: 10.1177/0954411915585597
    Ankle rehabilitation robots are developed to enhance ankle strength, flexibility and proprioception after injury and to promote motor learning and ankle plasticity in patients with drop foot. This article reviews the design elements that have been incorporated into the existing robots, for example, backdrivability, safety measures and type of actuation. It also discusses numerous challenges faced by engineers in designing this robot, including robot stability and its dynamic characteristics, universal evaluation criteria to assess end-user comfort, safety and training performance and the scientific basis on the optimal rehabilitation strategies to improve ankle condition. This article can serve as a reference to design robot with better stability and dynamic characteristics and good safety measures against internal and external events. It can also serve as a guideline for the engineers to report their designs and findings.
    Matched MeSH terms: Robotics/instrumentation*
  15. Yahaya MR, Hj Razali MH, Abu Bakar CA, Ismail WI, Muda WM, Mat N, et al.
    Pak J Biol Sci, 2014 Jan 01;17(1):141-5.
    PMID: 24783795
    This alkaloid automated removal machine was developed at Instrumentation Laboratory, Universiti Sultan Zainal Abidin Malaysia that purposely for removing the alkaloid toxicity from Dioscorea hispida (DH) tuber. It is a poisonous plant where scientific study has shown that its tubers contain toxic alkaloid constituents, dioscorine. The tubers can only be consumed after it poisonous is removed. In this experiment, the tubers are needed to blend as powder form before inserting into machine basket. The user is need to push the START button on machine controller for switching the water pump ON by then creating turbulence wave of water in machine tank. The water will stop automatically by triggering the outlet solenoid valve. The powders of tubers are washed for 10 minutes while 1 liter of contaminated water due toxin mixture is flowing out. At this time, the controller will automatically triggered inlet solenoid valve and the new water will flow in machine tank until achieve the desire level that which determined by ultra sonic sensor. This process will repeated for 7 h and the positive result is achieved and shows it significant according to the several parameters of biological character ofpH, temperature, dissolve oxygen, turbidity, conductivity and fish survival rate or time. From that parameter, it also shows the positive result which is near or same with control water and assuming was made that the toxin is fully removed when the pH of DH powder is near with control water. For control water, the pH is about 5.3 while water from this experiment process is 6.0 and before run the machine the pH of contaminated water is about 3.8 which are too acid. This automated machine can save time for removing toxicity from DH compared with a traditional method while less observation of the user.
    Matched MeSH terms: Robotics/instrumentation*
  16. Khataee HR, Ibrahim MY
    IET Nanobiotechnol, 2012 Sep;6(3):87-92.
    PMID: 22894532 DOI: 10.1049/iet-nbt.2011.0062
    Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.
    Matched MeSH terms: Robotics*
  17. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

    Matched MeSH terms: Robotics/instrumentation*
  18. Yahya S, Moghavvemi M, Almurib HA
    Sensors (Basel), 2012;12(6):6869-92.
    PMID: 22969326 DOI: 10.3390/s120606869
    Research on joint torque reduction in robot manipulators has received considerable attention in recent years. Minimizing the computational complexity of torque optimization and the ability to calculate the magnitude of the joint torque accurately will result in a safe operation without overloading the joint actuators. This paper presents a mechanical design for a three dimensional planar redundant manipulator with the advantage of the reduction in the number of motors needed to control the joint angle, leading to a decrease in the weight of the manipulator. Many efforts have been focused on decreasing the weight of manipulators, such as using lightweight joints design or setting the actuators at the base of the manipulator and using tendons for the transmission of power to these joints. By using the design of this paper, only three motors are needed to control any n degrees of freedom in a three dimensional planar redundant manipulator instead of n motors. Therefore this design is very effective to decrease the weight of the manipulator as well as the number of motors needed to control the manipulator. In this paper, the torque of all the joints are calculated for the proposed manipulator (with three motors) and the conventional three dimensional planar manipulator (with one motor for each degree of freedom) to show the effectiveness of the proposed manipulator for decreasing the weight of the manipulator and minimizing driving joint torques.
    Matched MeSH terms: Robotics
  19. Pai YS, Yap HJ, Md Dawal SZ, Ramesh S, Phoon SY
    Sci Rep, 2016 06 07;6:27380.
    PMID: 27271840 DOI: 10.1038/srep27380
    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
    Matched MeSH terms: Robotics
  20. Wan Ishak, W.I., Kit, W.H., Awwal, M. A.
    MyJurnal
    This paper describes the design and development of harvesting system for the gantry system to harvest eggplants. For this purpose, the harvesting robot was successfully designed and fabricated for the gantry system to harvest eggplants. The operation of the harvester was controlled by Programmable Logic Controller (PLC). Basically, the limit switches, DC motor, and relay are connected to the PLC. Meanwhile, a PLC ladder diagram was designed and developed to control the operation of the eggplant harvester. A visual basic programme was developed to interface the harvester with a greenhouse gantry control system. A videogrammetry method was employed to calculate the distance between the stems of eggplants and the cutter of robot end effector. The end effector used electric as its power source and it was controlled via Programmable Logic Controller (PLC). Visual Basic Programme was developed to interface the harvester with the gantry control system. The accuracy of the videogrammetry was tested to be 67.2% for X-axis, 88.2% for Y-axis and 84.7% for Z-axis. Meanwhile, the speed of the end effector for harvester is 2.4 km/h and it could lift up to 55 cm. In order to determine detachment force of eggplant, 16 samples of mature eggplants were tested in a greenhouse, and as a result, more than 22.76 N force was needed to detach a mature eggplant inside the gantry system.
    Matched MeSH terms: Robotics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links