Displaying publications 21 - 40 of 78 in total

Abstract:
Sort:
  1. Sim KS, Kamel NS
    Scanning, 2004 7 31;26(3):135-9.
    PMID: 15283250
    In the last two decades, a variety of techniques for signal-to-noise ratio (SNR) estimation in scanning electron microscope (SEM) images have been proposed. However, these techniques can be divided into two groups: first, SNR estimators of good accuracy, but based on impractical assumptions; second, estimators based on realistic assumptions but of poor accuracy. In this paper we propose the implementation of autoregressive (AR)-model interpolation as a solution to the problem. Unlike others, the proposed technique is based on a single SEM image and offers the required accuracy and robustness in estimating SNR values.
    Matched MeSH terms: Signal-To-Noise Ratio
  2. Yakno M, Mohamad-Saleh J, Ibrahim MZ
    Sensors (Basel), 2021 Sep 27;21(19).
    PMID: 34640769 DOI: 10.3390/s21196445
    Enhancement of captured hand vein images is essential for a number of purposes, such as accurate biometric identification and ease of medical intravenous access. This paper presents an improved hand vein image enhancement technique based on weighted average fusion of contrast limited adaptive histogram equalization (CLAHE) and fuzzy adaptive gamma (FAG). The proposed technique is applied using three stages. Firstly, grey level intensities with CLAHE are locally applied to image pixels for contrast enhancement. Secondly, the grey level intensities are then globally transformed into membership planes and modified with FAG operator for the same purposes. Finally, the resultant images from CLAHE and FAG are fused using improved weighted averaging methods for clearer vein patterns. Then, matched filter with first-order derivative Gaussian (MF-FODG) is employed to segment vein patterns. The proposed technique was tested on self-acquired dorsal hand vein images as well as images from the SUAS databases. The performance of the proposed technique is compared with various other image enhancement techniques based on mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measurement (SSIM). The proposed enhancement technique's impact on the segmentation process has also been evaluated using sensitivity, accuracy, and dice coefficient. The experimental results show that the proposed enhancement technique can significantly enhance the hand vein patterns and improve the detection of dorsal hand veins.
    Matched MeSH terms: Signal-To-Noise Ratio
  3. Kulathilake KASH, Abdullah NA, Bandara AMRR, Lai KW
    J Healthc Eng, 2021;2021:9975762.
    PMID: 34552709 DOI: 10.1155/2021/9975762
    Low-dose Computed Tomography (LDCT) has gained a great deal of attention in clinical procedures due to its ability to reduce the patient's risk of exposure to the X-ray radiation. However, reducing the X-ray dose increases the quantum noise and artifacts in the acquired LDCT images. As a result, it produces visually low-quality LDCT images that adversely affect the disease diagnosing and treatment planning in clinical procedures. Deep Learning (DL) has recently become the cutting-edge technology of LDCT denoising due to its high performance and data-driven execution compared to conventional denoising approaches. Although the DL-based models perform fairly well in LDCT noise reduction, some noise components are still retained in denoised LDCT images. One reason for this noise retention is the direct transmission of feature maps through the skip connections of contraction and extraction path-based DL modes. Therefore, in this study, we propose a Generative Adversarial Network with Inception network modules (InNetGAN) as a solution for filtering the noise transmission through skip connections and preserving the texture and fine structure of LDCT images. The proposed Generator is modeled based on the U-net architecture. The skip connections in the U-net architecture are modified with three different inception network modules to filter out the noise in the feature maps passing over them. The quantitative and qualitative experimental results have shown the performance of the InNetGAN model in reducing noise and preserving the subtle structures and texture details in LDCT images compared to the other state-of-the-art denoising algorithms.
    Matched MeSH terms: Signal-To-Noise Ratio
  4. Yahya N, Kamel NS, Malik AS
    Biomed Eng Online, 2014;13(1):154.
    PMID: 25421914 DOI: 10.1186/1475-925X-13-154
    Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images.
    Matched MeSH terms: Signal-To-Noise Ratio*
  5. Al-Gumaei YA, Noordin KA, Reza AW, Dimyati K
    PLoS One, 2014;9(10):e109077.
    PMID: 25286044 DOI: 10.1371/journal.pone.0109077
    Interference resulting from Cognitive Radios (CRs) is the most important aspect of cognitive radio networks that leads to degradation in Quality of Service (QoS) in both primary and CR systems. Power control is one of the efficient techniques that can be used to reduce interference and satisfy the Signal-to-Interference Ratio (SIR) constraint among CRs. This paper proposes a new distributed power control algorithm based on game theory approach in cognitive radio networks. The proposal focuses on the channel status of cognitive radio users to improve system performance. A new cost function for SIR-based power control via a sigmoid weighting factor is introduced. The existence of Nash Equilibrium and convergence of the algorithm are also proved. The advantage of the proposed algorithm is the possibility to utilize and implement it in a distributed manner. Simulation results show considerable savings on Nash Equilibrium power compared to relevant algorithms while reduction in achieved SIR is insignificant.
    Matched MeSH terms: Signal-To-Noise Ratio*
  6. Gandam A, Sidhu JS, Verma S, Jhanjhi NZ, Nayyar A, Abouhawwash M, et al.
    PLoS One, 2021;16(5):e0250959.
    PMID: 33970949 DOI: 10.1371/journal.pone.0250959
    Compression at a very low bit rate(≤0.5bpp) causes degradation in video frames with standard decoding algorithms like H.261, H.262, H.264, and MPEG-1 and MPEG-4, which itself produces lots of artifacts. This paper focuses on an efficient pre-and post-processing technique (PP-AFT) to address and rectify the problems of quantization error, ringing, blocking artifact, and flickering effect, which significantly degrade the visual quality of video frames. The PP-AFT method differentiates the blocked images or frames using activity function into different regions and developed adaptive filters as per the classified region. The designed process also introduces an adaptive flicker extraction and removal method and a 2-D filter to remove ringing effects in edge regions. The PP-AFT technique is implemented on various videos, and results are compared with different existing techniques using performance metrics like PSNR-B, MSSIM, and GBIM. Simulation results show significant improvement in the subjective quality of different video frames. The proposed method outperforms state-of-the-art de-blocking methods in terms of PSNR-B with average value lying between (0.7-1.9db) while (35.83-47.7%) reduced average GBIM keeping MSSIM values very close to the original sequence statistically 0.978.
    Matched MeSH terms: Signal-To-Noise Ratio*
  7. Priyadarshani N, Marsland S, Castro I, Punchihewa A
    PLoS One, 2016;11(1):e0146790.
    PMID: 26812391 DOI: 10.1371/journal.pone.0146790
    Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings.
    Matched MeSH terms: Signal-To-Noise Ratio
  8. Masroor K, Jeoti V, Drieberg M, Cheab S, Rajbhandari S
    Sensors (Basel), 2021 Apr 22;21(9).
    PMID: 33922288 DOI: 10.3390/s21092943
    The bi-directional information transfer in optical body area networks (OBANs) is crucial at all the three tiers of communication, i.e., intra-, inter-, and beyond-BAN communication, which correspond to tier-I, tier-II, and tier-III, respectively. However, the provision of uninterrupted uplink (UL) and downlink (DL) connections at tier II (inter-BAN) are extremely critical, since these links serve as a bridge between tier-I (intra-BAN) and tier-III (beyond-BAN) communication. Any negligence at this level could be life-threatening; therefore, enabling quality-of-service (QoS) remains a fundamental design issue at tier-II. Consequently, to provide QoS, a key parameter is to ensure link reliability and communication quality by maintaining a nearly uniform signal-to-noise ratio (SNR) within the coverage area. Several studies have reported the effects of transceiver related parameters on OBAN link performance, nevertheless the implications of changing transmitter locations on the SNR uniformity and communication quality have not been addressed. In this work, we undertake a DL scenario and analyze how the placement of light-emitting diode (LED) lamps can improve the SNR uniformity, regardless of the receiver position. Subsequently, we show that using the principle of reciprocity (POR) and with transmitter-receiver positions switched, the analysis is also applicable to UL, provided that the optical channel remains linear. Moreover, we propose a generalized optimal placement scheme along with a heuristic design formula to achieve uniform SNR and illuminance for DL using a fixed number of transmitters and compare it with an existing technique. The study reveals that the proposed placement technique reduces the fluctuations in SNR by 54% and improves the illuminance uniformity up to 102% as compared to the traditional approach. Finally, we show that, for very low luminous intensity, the SNR values remain sufficient to maintain a minimum bit error rate (BER) of 10-9 with on-off keying non-return-to-zero (OOK-NRZ) modulation format.
    Matched MeSH terms: Signal-To-Noise Ratio
  9. Rashid, A.S., Khatun, S., Ali, B.M., Khazani, A.M.
    ASM Science Journal, 2008;2(1):13-22.
    MyJurnal
    An analysis of the power spectral density of ultra-wideband (UWB) signals is presented in order to evaluate the effects of cumulative interference from multiple UWB devices on victim narrowband systems in their overlay bands like WiFi (i.e. IEEE802.11a) and 3rdG systems (Universal mobile telecommunications system/wideband code division multiple access). In this paper, the performances are studied through the bit-error-rate as a function of signal-to-noise ratio as well as signal-to-interference power ratio using computer simulation and exploiting the realistic channel model (i.e. modified Saleh-Valenzuela model). Several modifications of a generic Gaussian pulse waveform with lengths in the order of nanoseconds were used to generate UWB spectra. Different kinds of pulse modulation (i.e. antipodal and orthogonal) schemes were also taken into account.
    Matched MeSH terms: Signal-To-Noise Ratio
  10. Nor'aida Khairuddin, Norriza Mohd Isa, Wan Muhamad Saridan Wan Hassan
    MyJurnal
    The recognition of microcalcifications and masses from digital mammographic images are important to aid the detection of breast cancer. In this paper, we applied morphological techniques to extract the embedded structures from the images for subsequent analysis. A mammographic phantom was created with embedded structures such as micronodules, nodules and fibrils. For the preprocessing techniques, intensity transformation of gray scale was applied to the image. The structures of the image were enhanced and segmented using dilation for a morphological operation with morphological closing. Next, low pass Gaussian filter was applied to the image to smooth and reduce noises. It was found that our method improved the detection of microcalcifications and masses with high Peak Signal To Noise Ratio (PSNR).
    Matched MeSH terms: Signal-To-Noise Ratio
  11. Jebril AH, Sali A, Ismail A, Rasid MFA
    Sensors (Basel), 2018 Sep 27;18(10).
    PMID: 30262793 DOI: 10.3390/s18103257
    As a possible implementation of a low-power wide-area network (LPWAN), Long Range (LoRa) technology is considered to be the future wireless communication standard for the Internet of Things (IoT) as it offers competitive features, such as a long communication range, low cost, and reduced power consumption, which make it an optimum alternative to the current wireless sensor networks and conventional cellular technologies. However, the limited bandwidth available for physical layer modulation in LoRa makes it unsuitable for high bit rate data transfer from devices like image sensors. In this paper, we propose a new method for mangrove forest monitoring in Malaysia, wherein we transfer image sensor data over the LoRa physical layer (PHY) in a node-to-node network model. In implementing this method, we produce a novel scheme for overcoming the bandwidth limitation of LoRa. With this scheme the images, which requires high data rate to transfer, collected by the sensor are encrypted as hexadecimal data and then split into packets for transfer via the LoRa physical layer (PHY). To assess the quality of images transferred using this scheme, we measured the packet loss rate, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) index of each image. These measurements verify the proposed scheme for image transmission, and support the industrial and academic trend which promotes LoRa as the future solution for IoT infrastructure.
    Matched MeSH terms: Signal-To-Noise Ratio
  12. Mohamed Moubark A, Ali SH
    ScientificWorldJournal, 2014;2014:107831.
    PMID: 25197687 DOI: 10.1155/2014/107831
    This paper presents a new practical QPSK receiver that uses digitized samples of incoming QPSK analog signal to determine the phase of the QPSK symbol. The proposed technique is more robust to phase noise and consumes up to 89.6% less power for signal detection in demodulation operation. On the contrary, the conventional QPSK demodulation process where it uses coherent detection technique requires the exact incoming signal frequency; thus, any variation in the frequency of the local oscillator or incoming signal will cause phase noise. A software simulation of the proposed design was successfully carried out using MATLAB Simulink software platform. In the conventional system, at least 10 dB signal to noise ratio (SNR) is required to achieve the bit error rate (BER) of 10(-6), whereas, in the proposed technique, the same BER value can be achieved with only 5 dB SNR. Since some of the power consuming elements such as voltage control oscillator (VCO), mixer, and low pass filter (LPF) are no longer needed, the proposed QPSK demodulator will consume almost 68.8% to 99.6% less operational power compared to conventional QPSK demodulator.
    Matched MeSH terms: Signal-To-Noise Ratio
  13. Lubis LE, Bayuadi I, Pawiro SA, Ng KH, Bosmans H, Soejoko DS
    Phys Med, 2015 Nov;31(7):659-68.
    PMID: 26050060 DOI: 10.1016/j.ejmp.2015.05.011
    The purpose of this study is to quantify the quality of the available imaging modes for various iodine-based contrast agent concentration in paediatric cardiology. The figure of merit (FOM) was defined as the squared signal to noise ratio divided by a patient dose related parameter. An in house constructed phantom simulated a series of vessel segments with iodine concentrations from 10% or 30 mg/cc to 16% or 48 mg/cc of iodine in a blood plasma solution, all within the dimensional constraints of a paediatric patient. The phantom also used test inserts of tin (Sn). Measurements of Entrance Surface Air Kerma (ESAK) and exit dose rate were performed along with calculations of the signal-to-noise ratio (SNR) of all the objects. A first result showed that it was favourable to employ low dose fluoroscopy mode and lower frame rate modes in cine acquisition if dynamic information is not critical. Normal fluoroscopy dose mode provided a considerably higher dose level (in comparison to low dose mode) with only a slight improvement in SNR. Higher frame rate cine modes should be used however when the clinical situation dictates so. This work also found that tin should not be intended as iodine replacement material for research purposes due to the mismatching SNR, particularly on small vessel sizes.
    Matched MeSH terms: Signal-To-Noise Ratio
  14. Ahmad H, Albaqawi HS, Yusoff N, Yi CW
    Sci Rep, 2020 Jun 17;10(1):9860.
    PMID: 32555280 DOI: 10.1038/s41598-020-66664-9
    A wide-band and tunable Q-switched erbium-doped fiber (EDF) laser operating at 1560.5 nm with a tungsten ditelluride (WTe2) saturable absorber (SA) is demonstrated. The semi-metallic nature of WTe2 as well as its small band gap and excellent nonlinear optical properties make it an excellent SA material. The laser cavity uses an 89.5 cm long EDF, pumped by a 980 nm laser diode as the linear gain while the WTe2 based SA generates the pulsed output. The WTe2 based SA has a modulation depth, non-saturable loss and saturation intensity of about 21.4%, 78.6%, and 0.35 kW/cm2 respectively. Stable pulses with a maximum repetition rate of 55.56 kHz, narrowest pulse width of 1.77 µs and highest pulse energy of 18.09 nJ are obtained at the maximum pump power of 244.5 mW. A 56 nm tuning range is obtained in the laser cavity, and the output is observed having a signal to noise ratio (SNR) of 48.5 dB. The demonstrated laser has potential for use in a large number of photonics applications.
    Matched MeSH terms: Signal-To-Noise Ratio
  15. Masoud F, Sapuan SM, Ariffin MKAM, Nukman Y, Bayraktar E
    Polymers (Basel), 2021 Feb 26;13(5).
    PMID: 33652612 DOI: 10.3390/polym13050706
    In this paper, the influence of processing input parameters on the heat-affected zone (HAZ) of three different material thicknesses of sugar palm fiber reinforced unsaturated polyester (SPF-UPE) composites cut with a CO2 laser was investigated. Laser power, traverse speed, and gas pressure were selected as the most influential input parameters on the HAZ to optimize the HAZ response with fixing all of the other input parameters. Taguchi's method was used to determine the levels of parameters that give the best response to the HAZ. The significance of input parameters was also determined by calculating the max-min variance of the average of the signal-to-noise ratio (S/N) ratio for each parameter. Analysis of variation (ANOVA) was used to determine each input parameter's contribution to the influence on HAZ depth. The general results show that the minimum levels of laser power and the highest levels of traverse speed and gas pressure gave the optimum response to the HAZ. Gas pressure had the most significant effect on the HAZ, with contribution decreases as the material thickness increased, followed by the traverse speed with contribution increases with the increase in material thickness. Laser power came third, with a minimal contribution to the effect on the HAZ, and it did not show a clear relationship with the change in material thickness. By applying the optimum parameters, the desired HAZ depth could be obtained at relatively low values.
    Matched MeSH terms: Signal-To-Noise Ratio
  16. Azhar, N. A. A., Tee, H. S., Yee, Y. Y., Awang, M. N. A., Abdul Manan, H., Yusoff, A. N.
    MyJurnal
    Many studies have been carried out to produce magnetic resonance imaging (MRI) phantoms as alternative to water phantom. Among the important properties of a phantom are the T1 and T2 relaxation times. The objective of this study is to investigate the T1 and T2 characteristics of the agarose gel phantoms with different relaxation modifier (gadolinium (III) oxide, Gd2O3) concentrations or [Gd2O3]. Six agarose gel phantoms were prepared with different [Gd2O3]. The T1 (fixed echo time (TE) and different repetition time (TR)) and T2 (fixed TR and different TE) measurements on all phantoms were conducted using the 3-T MRI system via spin echo (SE) and turbo spin echo (TSE) sequences, respectively. The signal-to-noise ratio (SNR) of all phantoms was calculated using Image-J software by implementing the region of interest (ROI) analysis. The SNR against TR and SNR against TE curves were fitted to the exponential equations for saturation, T1 and T2 determination. For every phantom, T1 curve demonstrated that the SNR increased exponentially with increasing TR, while T2 curves showed that the SNR decreased exponentially with increasing TE. Gd2O3 was found to successfully act as the relaxation modifier for the T1 but not the T2 curves. The T1 curve started to show saturated SNR (SNRo) and increasing SNRo for TR > 1000 ms and [Gd2O3] = 0.005 g/ml or higher. These behaviours are explained based on the dipole-dipole interaction that increases in phantoms with higher [Gd2O3], thus shortening the T1 relaxation. However, a systematic change in the T2 parameters with increasing [Gd2O3] was not observed. While Gd2O3 has significant effects on T1 relaxation parameters, the T2 relaxation parameters were minimally affected. With a shorter T1, the Gd2O3 added agarose gel can potentially be used as test phantom in fast imaging sequence, e.g. gradient echo pulse sequences.
    Matched MeSH terms: Signal-To-Noise Ratio
  17. Ismail, N., Bashah, F. A. A., Zakaria, F.
    MyJurnal
    Many recent studies focused on the patient’s safety from the administration of gadolinium-based contrast agents (GBCAs), their concentration, the dose of administration and their effects on the image quality. The present study was aimed at evaluating the effects of reduced GBCAs (gadobutrol and gadoterate meglumine) volume on the image quality by using phantoms. Eight (8) human brain mimicking phantom made of nickel chloride (NiCl2) doped agarose gel were added with 0.00500 ml (100% volume), 0.00350 ml (75% volume), 0.00250 ml (50% volume) and 0.00125 ml (25% volume) of gadobutrol, 0.0100 ml (100% volume), 0.0075 ml (75% volume), 0.0050 ml (50% volume) and 0.0025 ml (25% volume) of gadoterate meglumine. The phantoms were scanned using a 1.5-T and a 3 T-MRI system. Signal-to-noise ratio (SNR) and the contrast agents enhancement were evaluated quantitatively and qualitatively. The 50% volume of gadobutrol and gadoterate meglumine at 3 T showed greater enhancement when compared with 50% and 100% volumes of gadobutrol and gadoterate meglumine at 1.5 T. It can be concluded that the volume of gadobutrol and gadoterate meglumine contrast agents can be reduced when using a higher field system
    Matched MeSH terms: Signal-To-Noise Ratio
  18. Shoaib MA, Hossain MB, Hum YC, Chuah JH, Mohd Salim MI, Lai KW
    Curr Med Imaging, 2020;16(6):739-751.
    PMID: 32723246 DOI: 10.2174/1573405615666190903143330
    BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise.

    AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.

    METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.

    RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.

    CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.

    Matched MeSH terms: Signal-To-Noise Ratio
  19. Sayed IS, Ismail SS
    Int J Biomed Imaging, 2020;2020:9239753.
    PMID: 32308670 DOI: 10.1155/2020/9239753
    In single photon emission computed tomography (SPECT) imaging, the choice of a suitable filter and its parameters for noise reduction purposes is a big challenge. Adverse effects on image quality arise if an improper filter is selected. Filtered back projection (FBP) is the most popular technique for image reconstruction in SPECT. With this technique, different types of reconstruction filters are used, such as the Butterworth and the Hamming. In this study, the effects on the quality of reconstructed images of the Butterworth filter were compared with the ones of the Hamming filter. A Philips ADAC forte gamma camera was used. A low-energy, high-resolution collimator was installed on the gamma camera. SPECT data were acquired by scanning a phantom with an insert composed of hot and cold regions. A Technetium-99m radioactive solution was homogenously mixed into the phantom. Furthermore, a symmetrical energy window (20%) centered at 140 keV was adjusted. Images were reconstructed by the FBP method. Various cutoff frequency values, namely, 0.35, 0.40, 0.45, and 0.50 cycles/cm, were selected for both filters, whereas for the Butterworth filter, the order was set at 7. Images of hot and cold regions were analyzed in terms of detectability, contrast, and signal-to-noise ratio (SNR). The findings of our study indicate that the Butterworth filter was able to expose more hot and cold regions in reconstructed images. In addition, higher contrast values were recorded, as compared to the Hamming filter. However, with the Butterworth filter, the decrease in SNR for both types of regions with the increase in cutoff frequency as compared to the Hamming filter was obtained. Overall, the Butterworth filter under investigation provided superior results than the Hamming filter. Effects of both filters on the quality of hot and cold region images varied with the change in cutoff frequency.
    Matched MeSH terms: Signal-To-Noise Ratio
  20. Bilal M, Shah JA, Qureshi IM, Kadir K
    Int J Biomed Imaging, 2018;2018:7803067.
    PMID: 29610569 DOI: 10.1155/2018/7803067
    Transformed domain sparsity of Magnetic Resonance Imaging (MRI) has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS) theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm. TheL1-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS), is exploited to estimate and correct respiratory motion among the recovered images. The framework is tested for free breathing simulated andin vivo2D cardiac cine MRI data. Simulation results show improved structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean square error (MSE) with different acceleration factors for the proposed method. Experimental results also provide a comparison betweenk-tFOCUSS with MEMC and the proposed method.
    Matched MeSH terms: Signal-To-Noise Ratio
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links