Displaying publications 21 - 40 of 337 in total

Abstract:
Sort:
  1. Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS
    Environ Pollut, 2021 Sep 15;285:117490.
    PMID: 34091265 DOI: 10.1016/j.envpol.2021.117490
    The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e-) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h+) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
    Matched MeSH terms: Silicon Dioxide*
  2. Alao AR, Mohd Azhari MA
    J Mech Behav Biomed Mater, 2021 12;124:104842.
    PMID: 34555624 DOI: 10.1016/j.jmbbm.2021.104842
    Indentation size effect (ISE) and R-curve behaviour of Li2O-SiO2 and Li2O-2SiO2 glass ceramics are investigated using micro-indentation and indentation-strength (IS) techniques, respectively. Vickers micro-indentations were applied on both materials at the load of 0.10-19.6 N to determine the load influence on the measured hardness. For the IS-measured fracture toughness, the load ranged from 1.96 to 19.6 N. The hardness decreased with increasing load by 20% and 18% on Li2O-SiO2 and Li2O-2SiO2 glass ceramics, respectively, indicating the ISE behaviour on both materials. The fracture toughness increased with the load by 27% and 59% on Li2O-SiO2 and Li2O-2SiO2 glass ceramics, respectively, signifying the R-curve behaviour. The ISE behaviour of both materials was analysed using the Meyer's, Hays-Kendall (HK), proportional specimen resistance (PSR), Nix-Gao (NG), modified PSR (MPSR) and elastic plastic deformation (EPD) models while the R-curve behaviour was analysed by the fractional power law. The Meyer's index of both materials was less than 2, strongly confirming the ISE existence. The HK, PSR and NG models were only suitable to determine intrinsic Vickers hardness for Li2O-2SiO2 glass ceramic while the MPSR and EPD models were successful for both materials. The fractional power law gave higher R-curve steepness for Li2O-2SiO2 than Li2O-SiO2 glass ceramics. Also, material and brittleness indices predicted, respectively, higher quasi-plasticity and better machinability for Li2O-2SiO2 than Li2O-SiO2 glass ceramics indicating superior performance in the former to the latter. Finally, this study presents a new significant insight into the micro-mechanisms of fracture tolerance behaviour of these glass ceramics which is critical to their functional performance as structural ceramics.
    Matched MeSH terms: Silicon Dioxide*
  3. Kusin FM, Hasan SNMS, Hassim MA, Molahid VLM
    Environ Sci Pollut Res Int, 2020 Apr;27(11):12767-12780.
    PMID: 32008190 DOI: 10.1007/s11356-020-07877-3
    This study highlights the importance of mineralogical composition for potential carbon dioxide (CO2) capture and storage of mine waste materials. In particular, this study attempts to evaluate the role of mineral carbonation of sedimentary mine waste and their potential reutilization as supplementary cementitious material (SCM). Limestone and gold mine wastes were recovered from mine processing sites for their use as SCM in brick-making and for evaluation of potential carbon sequestration. Dominant minerals in the limestone mine waste were calcite and akermanite (calcium silicate) while the gold mine waste was dominated by illite (iron silicate) and chlorite-serpentine (magnesium silicate). Calcium oxide, CaO and silica, SiO2, were the highest composition in the limestone and gold mine waste, respectively, with maximum CO2 storage of between 7.17 and 61.37%. Greater potential for CO2 capture was observed for limestone mine waste as due to higher CaO content alongside magnesium oxide. Mineral carbonation of the limestone mine waste was accelerated at smaller particle size of
    Matched MeSH terms: Silicon Dioxide*
  4. Budiman A, Rusdin A, Subra L, Aulifa DL
    Int J Nanomedicine, 2023;18:5473-5493.
    PMID: 37791322 DOI: 10.2147/IJN.S426120
    In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
    Matched MeSH terms: Silicon Dioxide/chemistry
  5. Hassan NS, Jalil AA, Fei ICM, Razak MTA, Khusnun NF, Bahari MB, et al.
    Chemosphere, 2023 Oct;338:139502.
    PMID: 37453521 DOI: 10.1016/j.chemosphere.2023.139502
    Vanadia (V2O5)-incorporated fibrous silica-titania (V/FST) catalysts, which were successfully synthesized using a hydrothermal method followed by the impregnation of V2O5. The catalysts were then characterized using numerous techniques, including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption analyses, ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared, X-ray photoelectron spectroscopy, and photoluminescence (PL) analyses. The study found that varying the amount of V2O5 (1-10 wt%) had a significant impact on the physicochemical properties of the FST, which in turn improved the photodegradation efficiency of two organic compounds, ciprofloxacin (CIP) and congo red (CR). 5V/FST demonstrated the best performance in degrading 10 mg L-1 of CIP (83%) and CR (100%) at pH 3 using 0.375 g L-1 catalyst under visible light irradiation within 180 min. The highest photoactivity of 5V/FST is mainly due to higher crystallinity and the highest number of V2O5-FST interactions. Furthermore, as demonstrated by PL analysis, the 5V/FST catalyst has the most significant impact on interfacial charge transfer and reduces electron-hole recombination. The photodegradation of both contaminants follows the Langmuir-Hinshelwood pseudo-first-order model, according to the kinetic study. The scavenger investigation demonstrated that hydroxyl radicals and holes dominated species in the system, indicating that the catalyst effectively generated reactive species for pollutant degradation. A possible mechanism was also identified for FST and 5V/FST. Interestingly, V2O5 acts as an electron-hole recombination inhibitor on FST for selective hole oxidation of ciprofloxacin and congo red photodegradation. Finally, the degradation efficiency of the catalyst remained relatively stable even after five cyclic experiments, indicating its potential for long-term use in environmental remediation.
    Matched MeSH terms: Silicon Dioxide/chemistry
  6. Wu R, Abdulhameed AS, Yong SK, Li H, ALOthman ZA, Wilson LD, et al.
    Int J Biol Macromol, 2023 Aug 30;247:125806.
    PMID: 37453635 DOI: 10.1016/j.ijbiomac.2023.125806
    An effective hydrothermally prepared chitosan-benzaldehyde/SiO2 adsorbent (CTA-BZA/SiO2) employed functionalization of a CTA biopolymer with SiO2 nanoparticles and BZA. CTA-BZA/SiO2 is an adsorbent that was utilized for the adsorption of an acidic dye (acid red 88, AR88) from synthetic wastewater. The fundamental adsorption variables (A: CTA-BZA/SiO2 dosage (0.02-0.1 g); B: pH (4-10); and C: duration (10-60)) were optimized via the Box-Behnken design (BBD). The Langmuir and Freundlich isotherms (coefficients of determination R2 = 0.99) agreed well with empirical data of AR88 adsorption by CTA-BZA/SiO2. The pseudo-first-order model showed reasonable agreement with the kinetic data of AR88 adsorption by CTA-BZA/SiO2. The maximal AR88 adsorption capacity (qmax) for CTA-BZA/SiO2 was identified to be 252.4 mg/g. The electrostatic attractions between both the positively charged CTA-BZA/SiO2 adsorbent and the AR88 anions, plus the n-π, π-π, and H-bond interactions contribute to the favourable adsorption process. This study reveals that CTA-BZA/SiO2 has the capacity to be a suitable adsorbent for the removal of a wider range of organic dyes from industrial effluents.
    Matched MeSH terms: Silicon Dioxide/chemistry
  7. Sohu S, Bheel N, Jhatial AA, Ansari AA, Shar IA
    Environ Sci Pollut Res Int, 2022 Aug;29(39):58685-58697.
    PMID: 35366210 DOI: 10.1007/s11356-022-19894-5
    Cement production emits a significant carbon dioxide (CO2) gas, dramatically influencing the environment. Furthermore, a large amount of energy is consumed during the cement manufacturing process; since Pakistan is already facing an energy crisis, this high energy consumption by the cement industry puts further stress on Pakistan's energy sector. Hence, the price of cement is rising day by day. Furthermore, waste disposals and concrete ingredients' restoration after demolition have adversative effects on the environment. Therefore, using these wastes decreases cement manufacturing, thereby reducing energy consumption, but it also aids in safeguarding the environment. The study aimed to determine the concrete properties by partially replacing cement with only eggshell powder (ESP) and combining ESP and silica fume (SF) in a ternary binder system in the mixture. However, workability, water absorption, compressive strength, split tensile strength, and flexural strength were all investigated in this study. In this experimental study, cement was replaced as 5, 8, 11, 15, and 20% of ESP, along with 5, 10, and 15% of silica by weight of cement in concrete. Approximately 21 mixes were prepared, from which 01 control mix, 05 mixes of ESP alone, and 15 mixes designed with a blend of ESP and SF with a 1:1.25:3 mix ratio and 0.5 water-cement ratios. Study parameters advocate the substitution of 11% ESP and 10% SF as the optimal option for maximum strength. Furthermore, combining ESP and SF diminishes the composite concrete mixture's workability and dry density greatly.
    Matched MeSH terms: Silicon Dioxide*
  8. Hussin H, Soin N, Bukhori MF, Hatta SW, Wahab YA
    ScientificWorldJournal, 2014;2014:490829.
    PMID: 25221784 DOI: 10.1155/2014/490829
    We present a simulation study on negative bias temperature instability (NBTI) induced hole trapping in E' center defects, which leads to depassivation of interface trap precursor in different geometrical structures of high-k PMOSFET gate stacks using the two-stage NBTI model. The resulting degradation is characterized based on the time evolution of the interface and hole trap densities, as well as the resulting threshold voltage shift. By varying the physical thicknesses of the interface silicon dioxide (SiO2) and hafnium oxide (HfO2) layers, we investigate how the variation in thickness affects hole trapping/detrapping at different stress temperatures. The results suggest that the degradations are highly dependent on the physical gate stack parameters for a given stress voltage and temperature. The degradation is more pronounced by 5% when the thicknesses of HfO2 are increased but is reduced by 11% when the SiO2 interface layer thickness is increased during lower stress voltage. However, at higher stress voltage, greater degradation is observed for a thicker SiO2 interface layer. In addition, the existence of different stress temperatures at which the degradation behavior differs implies that the hole trapping/detrapping event is thermally activated.
    Matched MeSH terms: Silicon Dioxide
  9. Lim KS, Jasim AA, Damanhuri SS, Harun SW, Rahman BM, Ahmad H
    Appl Opt, 2011 Oct 20;50(30):5912-6.
    PMID: 22015420 DOI: 10.1364/AO.50.005912
    Effects of immersing a microfiber knot resonator (MKR) in liquid solutions that have refractive indices close to that of silica are experimentally demonstrated and theoretically analyzed. Significant improvement in resonance extinction ratio within 2 to 10 dB was observed. To achieve a better understanding, a qualitative analysis of the coupling ratio and round-trip attenuation of the MKR is performed by using a curve-fitting method. It was observed that the coupling coefficient at the knot region increased when immersed in liquids. However, depending on the initial state of the coupling and the quantity of the increment in the coupling coefficient when immersed in a liquid, it is possible that the MKR may experience a deficit in the coupling parameter due to the sinusoidal relationship with the coupling coefficient.
    Matched MeSH terms: Silicon Dioxide
  10. Abdul Ghani Rafek, Azimah Hussin, Lee KE, Ailie Sofyiana Serasa, Goh TL
    Sains Malaysiana, 2016;45:185-193.
    The uniaxial compressive strength (UCS) is one of the most common mechanical parameters required in geotechnical engineering to characterize the compressive strength of rock material. Measurements of UCS are expensive, time consuming, destructive and thus, not favorable in the presence of limited samples. Therefore, a simple yet practical application is needed for the estimation of UCS. This research presents two correlations to predict UCS values for granite and schist by using ultrasonic velocity travel time (tp) from ultrasonic tests. The validity of the practical approach presented in this research is confirmed based on the strong correlations developed from the experimental tests conducted. For the entire data set, the correlation between UCS and ultrasonic velocity travel time was expressed as UCS = 217.2 e-0.016(tp) for granite and UCS = 1110.6 e-0.037(tp) for schist and the coefficient of determination (R2) value for both granite and schist is 0.93. These correlations may be useful for applications related to geotechnical engineering designs.
    Matched MeSH terms: Silicon Dioxide
  11. WAN HANNA MELINI WAN MOHTAR, SITI AMINAH BASSA, MOJTABA PORHEMMAT
    Sains Malaysiana, 2017;46:685-693.
    Grain size spectrum and textural parameters for the fluvial sediment bed in seven tropical rivers of Kelantan, Malaysia are presented in this article. The samples were collected from six tributaries to the main Sungai Kelantan spanning approximately 248 km stretch of water streams. Sand or gravel dominated river was identified for each river using the sediment composition analysis. Textural pattern shows complicated profiles of mean size and no consistent decreasing grain size and gradation parameter were observed towards the downstream flow. Most of the samples fall under the category of either very poorly sorted or poorly sorted and has very platykurtic kurtosis distributions. CM diagram (C=one percentile in microns and M = median grain size in microns) suggested that the deposition of fine-grained sediment for samples with median grain size d50 <1 mm are either by rolling, rolling and saltation or saltation and suspension.
    Matched MeSH terms: Silicon Dioxide
  12. Mahmoudi E, Azizkhani S, Mohammad AW, Ng LY, Benamor A, Ang WL, et al.
    J Environ Sci (China), 2020 Dec;98:151-160.
    PMID: 33097147 DOI: 10.1016/j.jes.2020.05.013
    Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.
    Matched MeSH terms: Silicon Dioxide
  13. Dahshaini Nadarajan, Sharifah Mastura Syed Mohd Daud, Nadiah Syariani Md Shariff
    MyJurnal
    Introduction: Broken glass exhibits unique fracture patterns depend upon the nature of the impact. The fracture patterns provide information like point and angle of impact, direction of force and sequence of firing. Recent studies have shown that the use of shotgun in Malaysia is increasing, yet, the relationship existing among the fracture pattern and the projectile impact factors are not well documented. The objective was to analyse the fracture characteristics on different glass types of variable thickness and distance made by shotgun ammunition. Methods: Soda lime and tempered glass panel with dimension of 12’x 12’ with 3 or 4 mm thickness were shot from various distances of 4, 6 and 8 m from the muzzle end of the shotgun. Samples were analysed under fixed parameters and observations were recorded. Results: It is found that the bullet hole diameter of 4 mm tempered glass were larger compared to 4 mm soda lime glass ranged from 14.33 to 24.17 cm as distance increased. Tempered glass surface also exhibited dicing fragments unlike soda lime glass where only radial fracture patterns are evident. This can be attributed to high inherent strength and ductility that makes the tempered glass remarkably resistant to external force. Conclusion: The findings from this study can lead to distinguish the type of glass through examination of fracture patterns, whether it is soda lime silica or tempered glass. The type of glass and the source of impact can be determined using the fragments, no reconstruction necessary.
    Matched MeSH terms: Silicon Dioxide
  14. Li HY, Lin HC, Huang BJ, Kai Lo AZ, Saidin S, Lai CH
    Langmuir, 2020 09 29;36(38):11374-11382.
    PMID: 32902993 DOI: 10.1021/acs.langmuir.0c02297
    Recently, studies on the development and investigation of carbohydrate-functionalized silica nanoparticles (NPs) and their biomedicine applications such as cell-specific targeting and bioimaging has been carried out extensively. Since the number of breast cancer patients has been growing in recent years, potential NPs were being studied in this project for targeting breast cancer cells. Mannose receptors can be found on the surface of MDA-MB-231, which is a kind of human breast cancer cell line. Therefore, we decorated a cyanine 3 fluorescent dye (Cy3) and mannosides on the surface of silica NPs for the purpose of imaging and targeting. Galactoside was also introduced onto the surface of silica NPs acting as a control sample. Various sizes of silica NPs were synthesized by using different amounts of ammonium to investigate the effect of the size of NPs on the cellular uptake rate. The physical properties of these NPs were characterized by scanning electron microscope, dynamic light scattering, and their zeta potential. Cellular experiments demonstrated that mannoside-modified NPs can be uptaken by MDA-MB-231. From the experiment, we found out that the best cellular uptake rate of nanoparticle size is about 250 nm. The MTT assay showed that Man@Cy3SiO2NPs are not cytotoxic, indicating they may have the potential for biomedical applications.
    Matched MeSH terms: Silicon Dioxide
  15. Fatema KN, Jung CH, Liu Y, Sagadevan S, Cho KY, Oh WC
    ACS Biomater Sci Eng, 2020 12 14;6(12):6981-6994.
    PMID: 33320627 DOI: 10.1021/acsbiomaterials.0c00423
    In the present study, electrochemical sensing for urea was proposed utilizing graphene-based quaternary nanocomposites YInWO4-G-SiO2 (YIWGS). These YIWGS nanocomposites were utilized due to their exceptionally delicate determination of urea with the lowest detection limit (0.01 mM). These YIWGS composites were developed through a simple self-assembly method. From physical characterization, we found that the YIWGS composites are crystalline in nature (powdered X-ray diffraction), and Fourier transform infrared (FTIR) spectroscopy analysis provided the surface functionality and bonding. Scanning electron microscopy (SEM) studies indicated the morphology characteristics of the as-synthesized composites and the high-resolution transmission electron microscopy (HRTEM) image supported the formation of cubic or hexagonal morphology of the YIW nanocomposites. The YIWGS sensor showed a great electroanalytical sensing performance of 0.07 mM urea with a sensitivity of 0.06 mA cm-2, an expansive linear range of 0.7-1.5 mM with a linear response (R2 1/4 0.99), and an eminent reaction time of around 2 s. It also displayed a good linear response toward urea with negligible interferences from normal coinciding species in urine samples.
    Matched MeSH terms: Silicon Dioxide
  16. Banjuraizah Johar, Hasmaliza Mohamad, Zainal Arifin Ahmad
    MyJurnal
    α Cordierite is very important phase in MgO-Al2O3-SiO2 system because of their very outstanding thermal, chemical and electrical properties. In this presents study nonstoichiometry cordierite (MgO:Al2O3:SiO2 = 3:1.5:5) using 2 different initial raw materials ( (i)mixture of pure oxide, and ii) mainly mixture of minerals) were fabricated and compared in terms of phase transformation and physical properties. Cordierite was prepared by glass method at low melting temperature (1350°C). Low melting temperature has resulted in partly crystalline glass which has possesses higher hardness, required longer milling time and result in contamination from grinding media. However, α-cordierite has successfully crystallized and fully densified at 850°C/2h. Activation energy for densification was investigated from thermal expansion coefficient (TCE) results. Other properties that were discussed included thermal properties using DTA/TGA.
    Matched MeSH terms: Silicon Dioxide
  17. Bakar Ghazali, Othman Mohammed, S.M., Ahmed Yousef Tanakkur, Nor Pa'iza M. Hasan
    MyJurnal
    This article presents an upgraded LUDLUM Scaler Ratemeter Model 2200 into a nucleonic thickness and level gauge. A vertical pipe scanning, consisting mediums such as SS-316, sand, wax, polyethylene, oil, water and air (empty) was done at Malaysian Nuclear Agency, Bangi, Selangor in order to obtain a shielding data as well as the corresponding voltage signals at the ratemeter. A simple comparator circuit with reference potentiometers and LED indicators was then designed and fabricated to work as a thickness or level gauge. The reference can be adjusted in accordance to type and thickness of the pipe/ container, the source intensity of X or Gamma ray, diameter of the pipe and also the distance between source and the NaI(Tl) detector.
    Matched MeSH terms: Silicon Dioxide
  18. Nik Anisah Nik Ngah, Mohamad Awang, Kartini Kamaruddin
    MyJurnal
    This aim of this study is to study the effects of various contents of Automotive Windscreen Glass Waste Powder (WGWP) as a cement replacement. Mortar incorporating several compositions of WGWP (0%, 5%, 10%, 15% and 20%) by weight of cement was prepared. Three batching systems of cement to sand (C:S) ratios of 1:2.5 superplasticizers (SP), 1:3.0 SP and 1:3.5 SP was also employed. Fixed water to cement (w/c) ratio of 0.5 was used. The samples were water cured and the assessment of the strength performance of mortar cubes carried out at 7 and 28 days. Studies conducted have shown that WGWP has good pozzolanic properties. In term of compressive strength, it was observed that employing C:S ratio of 1:3.5 SP is better than 1:2.5 SP and 1:3.0 SP.
    Matched MeSH terms: Silicon Dioxide
  19. Resdiansyah, Amidah Mohd Ujang, Zarinah Zaini
    MyJurnal
    Malaysia has over 5 million hectares of land planted with palm oil, divided almost equally between peninsula Malaysia and East Malaysia. This paper presents a laboratory evaluation of the performance of the waste product palm kernel shell (PKS) in creating plant-based asphalt concrete (bio-asphalt concrete). PKS aggregate partially replaced granite aggregate in preparing the mixes (10%, 30%, and 100%) in the range of 5mm-14mm in ACW 14 mixed with 5% to 7% of bitumen content. 35 blows and 50 blows compaction of mixes was used to evaluate the potential of palm kernel shells in the preparation of bitumen to deal with light to medium traffic. Results showed that PKS aggregate can be used up to 30% PKS replacement for the light traffic design and only 10% PKS replacement was potential to be used in medium traffic design.
    Matched MeSH terms: Silicon Dioxide
  20. Fauzi AA, Jalil AA, Mohamed M, Triwahyono S, Jusoh NWC, Rahman AFA, et al.
    J Environ Manage, 2018 Dec 01;227:34-43.
    PMID: 30172157 DOI: 10.1016/j.jenvman.2018.08.073
    Fibrous silica-titania (FST) catalysts were synthesized by microemulsion followed by silica seed-crystal crystallization methods under various molar ratios of toluene to water (T/W). The catalysts were characterized by XRD, UV-DRS, FESEM, TEM, AFM, N2 adsorption-desorption, FTIR, and ESR. The results revealed that altering the T/W ratio affected the growth of the silica and titania and led to different size, fiber density, silica-titania structure, and number of hydroxyl groups, as well as oxygen vacancies in the FSTs, which altered their behavior toward subsequent application. Photodegradation of ibuprofen (IBP) are in the following order: FST(6:1) (90%) > FST(5:1) (84%) > FST(7:1) (79%) > commercial TiO2 (67%). A kinetics study using Langmuir-Hinshelwood model illustrated that the photodegradation followed the pseudo-first-order and adsorption was the rate-limiting step. Optimization by response surface methodology (RSM) showed that the pH, initial concentration, and catalyst dosage were the remarkable parameters in photodegradation of IBP. The FST (6:1) maintained its photocatalytic activities for up to five cycles reaction without serious catalyst deactivation, and was also able to degrade other endocrine-disrupting chemicals, indicating its potential use for the treatment of those chemicals in wastewater.
    Matched MeSH terms: Silicon Dioxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links