Displaying publications 21 - 40 of 242 in total

Abstract:
Sort:
  1. Goh JJ, Ong HT, Lee BS, Teoh HK
    Malays J Pathol, 2023 Aug;45(2):247-259.
    PMID: 37658534
    INTRODUCTION: Mesenchymal stromal cells (MSCs) are promising vehicles for cancer therapy due to their homing ability and potency to be genetically manipulated through either viral or non-viral methods. Interleukin-12 (IL-12) is one of the key immunomodulatory cytokines which has anti-tumour effect. However, systemic administration of the cytokine at therapeutic dosage can cause serious toxicity in the host system due to the high systemic level of interferon-γ (IFN-γ) induced.

    OBJECTIVES: This study aimed to investigate the in vitro growth inhibition of genetically engineered human umbilical cord-derived mesenchymal stromal cells (hUCMSC) expressing IL-12 on H1975 human lung adenocarcinoma cells.

    MATERIALS AND METHODS: Both adenoviral method and electroporation which used to generate hUCMSC-IL12 were compared. The method with better outcome was selected to generate hUCMSC-IL12 for the co-culture experiment with H1975 or MRC-5 cells. Characterisation of hUCMSC and hUCMSC-IL12 was performed.

    RESULTS: Adenoviral method showed superior results in transfection efficiency (63.6%), post-transfection cell viability (82.6%) and hIL-12 protein expression (1.2 x 107 pg/ml) and thus was selected for the downstream experiments. Subsequently, hUCMSC-IL12 showed significant inhibition effect on H1975 cells after 5 days of co-culture. No significant difference was observed for all other co-culture groups, indicating that the inhibition effect was because of hIL-12. Lastly, the integrity of hUCMSC-IL12 remained unaffected by the transduction through examination of their surface markers and differentiation properties.

    CONCLUSION: This study provided proof of concept that hUCMSC can be genetically engineered to express hIL-12 which exerts direct growth inhibition effect on human lung adenocarcinoma cells.

    Matched MeSH terms: Mesenchymal Stromal Cells*
  2. Li Z, Lin Z, Liu S, Yagi H, Zhang X, Yocum L, et al.
    Adv Sci (Weinh), 2022 Jul;9(21):e2105909.
    PMID: 35436042 DOI: 10.1002/advs.202105909
    Diseases of the knee joint such as osteoarthritis (OA) affect all joint elements. An in vitro human cell-derived microphysiological system capable of simulating intraarticular tissue crosstalk is desirable for studying etiologies/pathogenesis of joint diseases and testing potential therapeutics. Herein, a human mesenchymal stem cell-derived miniature joint system (miniJoint) is generated, in which engineered osteochondral complex, synovial-like fibrous tissue, and adipose tissue are integrated into a microfluidics-enabled bioreactor. This novel design facilitates different tissues communicating while still maintaining their respective phenotypes. The miniJoint exhibits physiologically relevant changes when exposed to interleukin-1β mediated inflammation, which are similar to observations in joint diseases in humans. The potential of the miniJoint in predicting in vivo efficacy of drug treatment is confirmed by testing the "therapeutic effect" of the nonsteroidal anti-inflammatory drug, naproxen, as well as four other potential disease-modifying OA drugs. The data demonstrate that the miniJoint recapitulates complex tissue interactions, thus providing a robust organ chip model for the study of joint pathology and the development of novel therapeutic interventions.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  3. Sababathy M, Ramanathan G, Abd Rahaman NY, Ramasamy R, Biau FJ, Qi Hao DL, et al.
    Regen Med, 2023 Dec;18(12):913-934.
    PMID: 38111999 DOI: 10.2217/rme-2023-0193
    This review explores the intricate relationship between acute respiratory distress syndrome (ARDS) and Type II diabetes mellitus (T2DM). It covers ARDS epidemiology, etiology and pathophysiology, along with current treatment trends and challenges. The lipopolysaccharides (LPS) role in ARDS and its association between non-communicable diseases and COVID-19 are discussed. The review highlights the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) for ARDS and T2DM, emphasizing their immunomodulatory effects. This review also underlines how T2DM exacerbates ARDS pathophysiology and discusses the potential of hUC-MSCs in modulating immune responses. In conclusion, the review highlights the multidisciplinary approach to managing ARDS and T2DM, focusing on inflammation, oxidative stress and potential therapy of hUC-MSCs in the future.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  4. Hiew VV, Teoh PL
    Mol Biol Rep, 2024 Mar 03;51(1):383.
    PMID: 38433142 DOI: 10.1007/s11033-024-09324-9
    BACKGROUND: Graphene oxide (GO) is widespread in scaffold engineering owing to its extraordinary properties such as multiple oxygen functional groups, high hydrophilicity ability and biocompatibility. It is known to promote differentiation in mesenchymal stem cells, but concomitant comparison of its modulation on the expression profiles of Wharton's jelly (WJ)-MSC surface markers, lineage differentiation, and epigenetic regulatory genes in basal and induced condition are still lacking. Unraveling the fundamental mechanisms is essential for the effective utilization of WJ-MSCs incorporated with GO in therapy. This study aims to explore the unique gene expression profiles and epigenetic characteristics of WJ-MSCs influenced by GO.

    METHODS AND RESULTS: The characterized GO-coated coverslip served as a substrate for culturing WJ-MSCs. In addition to investigating the impact of GO on cell proliferation and differentiation, we conducted a gene expression study using PCR array, while epigenetic control was assessed through bisulfite sequencing and Western blot analysis. Our findings indicate that the presence of GO maintained the proliferation and survival of WJ-MSCs. In the absence of induction, GO led to minor lipid and glycosaminoglycan deposition in WJ-MSCs. This was evidenced by the sustained expression of pluripotency and lineage-specific genes, demethylation at the OCT4 promoter, and a decrease in H3K9 methylation. In osteo-induced condition, the occurrence of osteogenesis appeared to be guided by BMP/TGF and ERK pathway activation, accompanied by the upregulation of osteogenic-related genes and downregulation of DNMT3b.

    CONCLUSIONS: GO in osteo-induced condition create a favorable microenvironment that promotes the osteogenesis of WJ-MSCs by influencing genetic and epigenetic controls. This helps in advancing our knowledge on the use of GO as priming platform and WJ-MSCs an alternate source for bone repair and regeneration.

    Matched MeSH terms: Mesenchymal Stromal Cells*
  5. Noor Azlan NAB, Vitus V, Nor Rashid N, Nordin F, Tye GJ, Wan Kamarul Zaman WS
    Cell Tissue Res, 2024 Mar;395(3):227-250.
    PMID: 38244032 DOI: 10.1007/s00441-023-03857-4
    The promising field of regenerative medicine is thrilling as it can repair and restore organs for various debilitating diseases. Mesenchymal stem cells are one of the main components in regenerative medicine that work through the release of secretomes. By adopting the use of the secretome in cell-free-based therapy, we may be able to address the challenges faced in cell-based therapy. As one of the components of cell-free-based therapy, secretome has the advantage of a better safety and efficacy profile than mesenchymal stem cells. However, secretome has its challenges that need to be addressed, such as its bioprocessing methods that may impact the secretome content and its mechanisms of action in clinical settings. Effective and standardization of bioprocessing protocols are important to ensure the supply and sustainability of secretomes for clinical applications. This may eventually impact its commercialization and marketability. In this review, the bioprocessing methods and their impacts on the secretome profile and treatment are discussed. This improves understanding of its fundamental aspects leading to potential clinical applications.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  6. Saadh MJ, Mohamed AH, Almoyad MAA, Allela OQB, Amin AH, Malquisto AA, et al.
    Cell Biochem Funct, 2024 Mar;42(2):e3962.
    PMID: 38491792 DOI: 10.1002/cbf.3962
    Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  7. Tan SL, Ahmad TS, Selvaratnam L, Kamarul T
    J Anat, 2013 Apr;222(4):437-50.
    PMID: 23510053 DOI: 10.1111/joa.12032
    Mesenchymal stem cells (MSCs) are recognized by their plastic adherent ability, fibroblastic-like appearance, expression of specific surface protein markers, and are defined by their ability to undergo multi-lineage differentiation. Although rabbit bone marrow-derived MSCs (rbMSCs) have been used extensively in previous studies especially in translational research, these cells have neither been defined morphologically and ultrastructurally, nor been compared with their counterparts in humans in their multi-lineage differentiation ability. A study was therefore conducted to define the morphology, surface marker proteins, ultrastructure and multi-lineage differentiation ability of rbMSCs. Herein, the primary rbMSC cultures of three adult New Zealand white rabbits (at least 4 months old) were used for three independent experiments. rbMSCs were isolated using the gradient-centrifugation method, an established technique for human MSCs (hMSCs) isolation. Cells were characterized by phase contrast microscopy observation, transmission electron microscopy analysis, reverse transcriptase-polymerase chain reaction (PCR) analysis, immunocytochemistry staining, flow cytometry, alamarBlue(®) assay, histological staining and quantitative (q)PCR analysis. The isolated plastic adherent cells were in fibroblastic spindle-shape and possessed eccentric, irregular-shaped nuclei as well as rich inner cytoplasmic zones similar to that of hMSCs. The rbMSCs expressed CD29, CD44, CD73, CD81, CD90 and CD166, but were negative (or dim positive) for CD34, CD45, CD117 and HLD-DR. Despite having similar morphology and phenotypic expression, rbMSCs possessed significantly larger cell size but had a lower proliferation rate as compared with hMSCs. Using established protocols to differentiate hMSCs, rbMSCs underwent osteogenic, adipogenic and chondrogenic differentiation. Interestingly, differentiated rbMSCs demonstrated higher levels of osteogenic (Runx2) and chondrogenic (Sox9) gene expressions than that of hMSCs (P  0.05). rbMSCs possess similar morphological characteristics to hMSCs, but have a higher potential for osteogenic and chondrogenic differentiation, despite having a lower cell proliferation rate than hMSCs. The characteristics reported here may be used as a comprehensive set of criteria to define or characterize rbMSCs.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/physiology; Mesenchymal Stromal Cells/ultrastructure
  8. Parate D, Franco-Obregón A, Fröhlich J, Beyer C, Abbas AA, Kamarul T, et al.
    Sci Rep, 2017 08 25;7(1):9421.
    PMID: 28842627 DOI: 10.1038/s41598-017-09892-w
    Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*; Mesenchymal Stromal Cells/radiation effects*
  9. Shani S, Ahmad RE, Naveen SV, Murali MR, Puvanan K, Abbas AA, et al.
    ScientificWorldJournal, 2014;2014:845293.
    PMID: 25436230 DOI: 10.1155/2014/845293
    Platelet rich concentrate (PRC) is a natural adjuvant that aids in human mesenchymal stromal cell (hMSC) proliferation in vitro; however, its role requires further exploration. This study was conducted to determine the optimal concentration of PRC required for achieving the maximal proliferation, and the need for activating the platelets to achieve this effect, and if PRC could independently induce early differentiation of hMSC. The gene expression of markers for osteocytes (ALP, RUNX2), chondrocytes (SOX9, COL2A1), and adipocytes (PPAR-γ) was determined at each time point in hMSC treated with 15% activated and nonactivated PRC since maximal proliferative effect was achieved at this concentration. The isolated PRC had approximately fourfold higher platelet count than whole blood. There was no significant difference in hMSC proliferation between the activated and nonactivated PRC. Only RUNX2 and SOX9 genes were upregulated throughout the 8 days. However, protein expression study showed formation of oil globules from day 4, significant increase in ALP at days 6 and 8 (P ≤ 0.05), and increased glycosaminoglycan levels at all time points (P < 0.05), suggesting the early differentiation of hMSC into osteogenic and adipogenic lineages. This study demonstrates that the use of PRC increased hMSC proliferation and induced early differentiation of hMSC into multiple mesenchymal lineages, without preactivation or addition of differentiation medium.
    Matched MeSH terms: Mesenchymal Stromal Cells/physiology*
  10. Nam HY, Pingguan-Murphy B, Amir Abbas A, Mahmood Merican A, Kamarul T
    Biomech Model Mechanobiol, 2015 Jun;14(3):649-63.
    PMID: 25351891 DOI: 10.1007/s10237-014-0628-y
    It has been previously demonstrated that mechanical stimuli are important for multipotent human bone marrow-derived mesenchymal stromal cells (hMSCs) to maintain good tissue homeostasis and even to enhance tissue repair processes. In tendons, this is achieved by promoting the cellular proliferation and tenogenic expression/differentiation. The present study was conducted to determine the optimal loading conditions needed to achieve the best proliferation rates and tenogenic differentiation potential. The effects of mechanical uniaxial stretching using different rates and strains were performed on hMSCs cultured in vitro. hMSCs were subjected to cyclical uniaxial stretching of 4, 8 or 12 % strain at 0.5 or 1 Hz for 6, 24, 48 or 72 h. Cell proliferation was analyzed using alamarBlue[Formula: see text] assay, while hMSCs differentiation was analyzed using total collagen assay and specific tenogenic gene expression markers (type I collagen, type III collagen, decorin, tenascin-C, scleraxis and tenomodulin). Our results demonstrate that the highest cell proliferation is observed when 4 % strain [Formula: see text] 1 Hz was applied. However, at 8 % strain [Formula: see text] 1 Hz loading, collagen production and the tenogenic gene expression were highest. Increasing strain or rates thereafter did not demonstrate any significant increase in both cell proliferation and tenogenic differentiation. In conclusion, our results suggest that 4 % [Formula: see text] 1 Hz cyclic uniaxial loading increases cell proliferation, but higher strains are required for superior tenogenic expressions. This study suggests that selected loading regimes will stimulate tenogenesis of hMSCs.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  11. Balaji Raghavendran HR, Puvaneswary S, Talebian S, Murali MR, Raman Murali M, Naveen SV, et al.
    PLoS One, 2014;9(8):e104389.
    PMID: 25140798 DOI: 10.1371/journal.pone.0104389
    A comparative study on the in vitro osteogenic potential of electrospun poly-L-lactide/hydroxyapatite/collagen (PLLA/HA/Col, PLLA/HA, and PLLA/Col) scaffolds was conducted. The morphology, chemical composition, and surface roughness of the fibrous scaffolds were examined. Furthermore, cell attachment, distribution, morphology, mineralization, extracellular matrix protein localization, and gene expression of human mesenchymal stromal cells (hMSCs) differentiated on the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA were also analyzed. The electrospun scaffolds with a diameter of 200-950 nm demonstrated well-formed interconnected fibrous network structure, which supported the growth of hMSCs. When compared with PLLA/H%A and PLLA/Col scaffolds, PLLA/Col/HA scaffolds presented a higher density of viable cells and significant upregulation of genes associated with osteogenic lineage, which were achieved without the use of specific medium or growth factors. These results were supported by the elevated levels of calcium, osteocalcin, and mineralization (P<0.05) observed at different time points (0, 7, 14, and 21 days). Furthermore, electron microscopic observations and fibronectin localization revealed that PLLA/Col/HA scaffolds exhibited superior osteoinductivity, when compared with PLLA/Col or PLLA/HA scaffolds. These findings indicated that the fibrous structure and synergistic action of Col and nano-HA with high-molecular-weight PLLA played a vital role in inducing osteogenic differentiation of hMSCs. The data obtained in this study demonstrated that the developed fibrous PLLA/Col/HA biocomposite scaffold may be supportive for stem cell based therapies for bone repair, when compared with the other two scaffolds.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  12. Shamsul BS, Tan KK, Chen HC, Aminuddin BS, Ruszymah BH
    Tissue Cell, 2014 Apr;46(2):152-8.
    PMID: 24630213 DOI: 10.1016/j.tice.2014.02.001
    Autogenous bone graft is the gold standard for fusion procedure. However, pain at donor site and inconsistent outcome have left a surgeon to venture into some other technique for spinal fusion. The objective of this study was to determine whether osteogenesis induced bone marrow stem cells with the combination of ceramics granules (HA or TCP/HA), and fibrin could serve as an alternative to generate spinal fusion. The sheep's bone marrow mesenchymal stem cells (BMSCs) were aspirated form iliac crest and cultured for several passages until confluence. BMSCs were trypsinized and seeded on hydroxyapatite scaffold (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) for further osteogenic differentiation in the osteogenic medium one week before implantation. Six adult sheep underwent three-level, bilateral, posterolateral intertransverse process fusions at L1-L6. Three fusion sites in each animal were assigned to three treatments: (a) HA constructs group/L1-L2, (b) TCP/HA constructs group/L2-L3, and (c) autogenous bone graft group/L5-L6. The spinal fusion segments were evaluated using radiography, manual palpation, histological analysis and scanning electron microscopy (SEM) 12 weeks post implantation. The TCP/HA constructs achieved superior lumbar intertransverse fusion compared to HA construct but autogenous bone graft still produced the best fusion among all.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  13. Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, Ali AM, Omar AR, Janzamin E, et al.
    Cytotherapy, 2012 Sep;14(8):948-53.
    PMID: 22587592 DOI: 10.3109/14653249.2012.684377
    BACKGROUND AIMS: Mesenchymal stromal cells (MSC) have been isolated from a number of different tissues, including umbilical cord. Because of the lack of a uniform approach to human umbilical cord matrix-derived mesenchymal (hUCM) cell expansion, we attempted to identify the optimum conditions for the production of a high quantity of hUCM cells by comparing two media.

    METHODS: We compared the ability of Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and Alpha Minimum Essential Medium (α-MEM) with Glutamax (GL) (α-MEM/GL) to expand hUCM cells. For this purpose, hUCM cells were cultured in plates containing different culture media supplemented with 10% fetal bovine serum (FBS). Culture dishes were left undisturbed for 10-14 days to allow propagation of the newly formed hUCM cells. The expansion properties, CD marker expression, differentiation potential, population doubling time (PDT) and cell activity were compared between the two groups.

    RESULTS: The hUCM cells harvested from each group were positive for MSC markers, including CD44, CD90 and CD105, while they were negative for the hematopoietic cell surface marker CD34. Differentiation into adipogenic and osteogenic lineages was confirmed for both treatments. Cell activity was higher in the α-MEM/GL group than the DMEM/F12 group. PDT was calculated to be 60 h for the DMEM/F12 group, while for the α-MEM/GL group it was 47 h.

    CONCLUSIONS: Our data reveal that α-MEM/GL with 10% FBS supports hUCM cell growth more strongly than DMEM/F12 with 10% FBS.

    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  14. Tan KK, Tan GH, Shamsul BS, Chua KH, Ng MHA, Ruszymah BHI, et al.
    Med J Malaysia, 2005 Jul;60 Suppl C:53-8.
    PMID: 16381285
    Spinal fusion using autologous bone graft is performed in an increasing rate for many spinal disorders. However, graft harvesting procedure is associated with prolonged operation time and potential donor site morbidity. We produced an engineered 'bone graft' substitute by using porous hydroxyapatite (HA) scaffold seeded with autologous bone marrow osteoprogenitor cells (OPCs) and fibrin. This obviates bone graft harvesting, thus eliminates donor site morbidity and shortens the operation time. The aim of this study is to evaluate Hydroxyapatite (HA) ceramics as scaffold for autologous tissue engineered bone construct for spinal fusion in a sheep model. The sheep's marrow was aspirated from iliac crest. The bone marrow mesenchymal stem cells (BMMSCs) were cultured for several passages in the presence of growth and differentiation factors to increase the number of OPCs. After the cultures reached confluence, they were trypsinized and seeded on Hydroxyapatite scaffold (HA). Approximately 5 million cells were generated after 3 weeks of culture. Microscopically, very tight Colony Forming Units (CFU-Fs) were seen on monolayer culture. The Von Kossa and Alizarin Red staining of monolayer culture showed positive mineralization areas; indicating the presence of OPCs. Sheep underwent a posterolateral spinal fusion in which scaffolds with or without OPCs seeded were implanted on both sides of the lumbar spine (L1-L2). Intended fusion segments were immobilized using wires. At the end of third month, the fusion constructs were harvested for histological examination. Fibrous tissue infiltration found in the inter-connecting pores of plain HA ceramics indicates inefficient new bone regeneration. New bone was found surrounding the HA ceramics seeded with autologous cells. The new bone is probably formed by the sheep BMMSCs that were initially encapsulating HA while it remained intact. The new bone is naturally fused with the vertebrae. In conclusion, the incorporation of autologous bone marrow cells improved the effectiveness of HA ceramics as 'bone graft' substitute for spinal fusion.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  15. Choi JR, Yong KW, Wan Safwani WKZ
    Cell Mol Life Sci, 2017 07;74(14):2587-2600.
    PMID: 28224204 DOI: 10.1007/s00018-017-2484-2
    Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  16. Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH
    Regen Med, 2017 03;12(2):203-216.
    PMID: 28244823 DOI: 10.2217/rme-2016-0112
    The therapeutic use of mesenchymal stromal cells (MSCs) represents a promising alternative clinical strategy for treating acute and chronic lung disorders. Several preclinical reports demonstrated that MSCs can secrete multiple paracrine factors and that their immunomodulatory properties can support endothelial and epithelial regeneration, modulate the inflammatory cascade and protect lungs from damage. The effects of MSC transplantation into patients suffering from lung diseases should be fully evaluated through careful assessment of safety and associated risks, which is a prerequisite for translation of preclinical research into clinical practice. In this article, we summarize the current status of preclinical research and review initial MSC-based clinical trials for treating lung injuries and lung disorders.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  17. Muhammad SA, Nordin N, Mehat MZ, Fakurazi S
    Cell Tissue Res, 2019 Feb;375(2):329-344.
    PMID: 30084022 DOI: 10.1007/s00441-018-2884-0
    Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  18. Salih M, Shaharuddin B, Abdelrazeg S
    Curr Stem Cell Res Ther, 2020;15(3):211-218.
    PMID: 31995019 DOI: 10.2174/1574888X15666200129145251
    Organ and tissue transplantation are limited by the scarcity of donated organs or tissue sources. The success of transplantation is limited by the risk of disease transmission and immunological- related rejection. There is a need for new strategies and innovative solutions to make transplantation readily available, safer and with less complications to increase the success rates. Accelerating progress in stem cell biology and biomaterials development have pushed tissue and organ engineering to a higher level. Among stem cells repertoire, Mesenchymal Stem Cells (MSC) are gaining interest and recognized as a cell population of choice. There is accumulating evidence that MSC growth factors, its soluble and insoluble proteins are involved in several key signaling pathways to promote tissue development, cellular differentiation and regeneration. MSC as multipotent non-hematopoietic cells with paracrine factors is advantageous for regenerative therapies. In this review, we discussed and summarized the important features of MSC including its immunomodulatory properties, mechanism of homing in the direction of tissue injury, licensing of MSC and the role of MSC soluble factors in cell-free therapy. Special consideration is highlighted on the rapidly growing research interest on the roles of MSC in ocular surface regeneration.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  19. Yong KW, Choi JR, Dolbashid AS, Wan Safwani WKZ
    Regen Med, 2018 03;13(2):219-232.
    PMID: 29509072 DOI: 10.2217/rme-2017-0078
    An outstanding amount of resources has been used in research on manipulation of human stem cells, especially mesenchymal stem cells (MSCs), for various clinical applications. However, human MSCs have not been fully utilized in clinical applications due to restrictions with regard to their certain biosafety and bioefficacy concerns, for example, genetic abnormality, tumor formation, induction of host immune response and failure of homing and engraftment. This review summarizes the biosafety and bioefficacy assessment of human MSCs in terms of genetic stability, tumorigenicity, immunogenicity, homing and engraftment. The strategies used to reduce the biosafety concerns and improve the bioefficacy of human MSCs are highlighted. In addition, the approaches that can be implemented to improve their biosafety and bioefficacy assessment are briefly discussed.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  20. Lau MN, Kunasekaran W, On YY, Tan LJ, Zaharin NA, H A Ghani S, et al.
    PLoS One, 2022;17(12):e0279129.
    PMID: 36574419 DOI: 10.1371/journal.pone.0279129
    The objective of this study was to compare the characteristics of Dental Pulp Stem Cells (DPSCs) derived from healthy human permanent teeth with those that were orthodontically-intruded to serve as potential Mesenchymal Stem Cells (MSC). Recruited subjects were treated with orthodontic intrusion on one side of the maxillary first premolar while the opposite side served as the control for a period of six weeks before the dental pulp was extracted. Isolated DPSCs from both the control and intruded samples were analyzed, looking at the morphology, growth kinetics, cell surface marker profile, and multilineage differentiation for MSC characterisation. Our study showed that cells isolated from both groups were able to attach to the cell culture flask, exhibited fibroblast-like morphology under light microscopy, able to differentiate into osteogenic, adipogenic and chondrogenic lineages as well as tested positive for MSCs cell surface markers CD90 and CD105 but negative for haematopoietic cell surface markers CD34 and HLA-DR. Both groups displayed a trend of gradually increasing population doubling time from passage 1 to passage 5. Viable DPSCs from both groups were successfully recovered from their cryopreserved state. In conclusion, DPSCs in the dental pulp of upper premolar not only remained viable after 6 weeks of orthodontic intrusion using fixed appliances but also able to develop into MSCs.
    Matched MeSH terms: Mesenchymal Stromal Cells*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links