Displaying publications 21 - 40 of 50 in total

Abstract:
Sort:
  1. Sakinah MAI, Latiffah Z
    Plant Dis, 2013 Aug;97(8):1110.
    PMID: 30722495 DOI: 10.1094/PDIS-09-12-0831-PDN
    Rambutan (Nephelium lappaceum L.) is among the tropical fruit grown in Malaysia and the demand for export rose in 2011. A fruit rot was observed between August and December 2011 from several areas in the states of Pulau Pinang and Perak, Malaysia. The symptoms initially appeared as light brown, water-soaked lesions that developed first in the pericarp and pulp, later enlarging and becoming dark brown. Greyish brown mycelia were observed on infected areas that turned yellowish at later stages of infection. Gliocephalotrichum bacillisporum was isolated from infected fruit by surface sterilization techniques. Conidia were mass-transferred onto potato dexstrose agar (PDA) plates and incubated at 27 ± 1°C. Tissue pieces (5 × 5 mm) excised from the margins between infected and healthy areas were then surface sterilized in 1% sodium hypochlorite for 3 to 5 min before being rinsed with distilled water, plated on PDA, and incubated at 27 ± 1°C for 7 days. Ten isolates of G. bacillisporum were obtained. Colonies on PDA were initially white before turning yellow with a feathery appearance. Microscopic characteristics on carnation leaf agar (CLA) consisted of hyaline conidia that were slightly ellipsoid to bacilliform with rounded apex ranging from 6.0 to 8.5 μm long and 2.0 to 2.5 μm wide. Conidiophores (70 to 130 μm long) were mostly single arising from large hypha approximately 13 to 16 μm. The conidiogenous structures were mostly quadriverticillate with dense, short, penicillate branches. The phialides were cylindrical and finger-like. Chlamydospores were present singly, in groups of 2 to 4, or in occasionally branched short chains and were brown in color with thick walls ranging from 11 to 13 μm. The cultural and morphological characteristics of G. bacillisporum isolates in the present study were very similar to previously published descriptions (1) except the conidiophores formed without sterile stipe extensions. All the G. bacillisporum isolates were deposited in culture collection at the Plant Pathology Lab, University Sains Malaysia, Penang. Molecular identification was accomplished from the ITS regions using ITS1 and ITS2 primers, and the β-tubulin gene using Bt2a and Bt2b primers (2). BLAST results from the ITS regions showed a 98 to 99% similarity with sequences of G. bacillisporum isolates reported in GenBank. Accession numbers of G. bacillisporum ITS regions: JX484850, JX484852, JX484853, JX484856, JX484858, JX484860, JX484862, JX484866, JX484867, and JX484868. The identity of G. bacillisporum isolates infecting rambutan was further confirmed by β-tubulin sequences (KC683909, KC683911, KC683912, KC683916, KC683919, KC683920, KC683923, KC683926, and KC683927), which showed 92 to 95% similarity with sequences of G. bacillisporum. Pathogenicity tests were also performed using mycelial plug (5 mm) and sprayed conidial suspensions (20 μl suspension of 106 conidia/ml) prepared from 7-day-old cultures. Inoculated fruits were incubated at 27 ± 1°C and after 10 days, similar rotting symptoms appeared on the fruit surface. The pathogen was reisolated from fruit rot lesions, thus fulfilling Koch's postulates, and tests were repeated twice. To our knowledge, this is the first report of G. bacillisporum causing fruit rot of rambutan (N. lappaceum L.) in Malaysia. References: (1) C. Decock et al. Mycologia 98:488, 2006. (2) N. L. Glass and G. C. Donaldson. Appl. Environ Microbiol. 61:1323, 1995.
    Matched MeSH terms: Suspensions
  2. Keith LM, Matsumoto TK
    Plant Dis, 2013 Jan;97(1):146.
    PMID: 30722309 DOI: 10.1094/PDIS-07-12-0702-PDN
    Mangosteen (Garcinia mangostana L.) is a tropical evergreen tree that produces one of the most prized tropical fruits, commonly known as the "Queen of the Fruits.″ Mangosteen has the potential to occupy a rapidly expanding niche market in Hawaii. In October 2009, a disease was observed that produced brown leaf spots and blotches surrounded by bright yellow halos at a mangosteen orchard located in Hakalau, Hawaii (19° 53' 49″ N, 155° 7' 35″ W). Recently transplanted 10+ year old trees were 95 to 100% infected. Pieces of infected leaves and stems were surface-sterilized, plated on potato dextrose agar (PDA), and incubated at 24°C ± 1°C for 21 days. The fungus growing on PDA was pale buff with sparse aerial mycelium and acervuli containing black, slimy spore masses. Single spore isolates were used for the morphological characteristics and molecular analysis. Conidia were 5-celled. Apical and basal cells were hyaline; the three median cells were umber to olivaceous. Conidia (n = 50) were 24.3 ± 0.2 × 7.5 ± 0.1 μm, with apical appendages, typically three, averaging 24.3 ± 0.4 μm long, and a basal appendage averaging 6.7 ± 0.2 μm long. DNA sequences were obtained from the β-tubulin gene and the internal transcribed spacer (ITS1 and ITS2) and 5.8S regions of the rDNA to confirm the identification. The morphological descriptions and measurements were similar to P. virgatula (Kleb.) Steyaert (1). Although sequence data of the ITS region (GenBank Accession No. JN542546) supports the identity of the fungus as P. virgatula, the taxonomy of this genus remains confused since there are only a few type cultures, so it is impossible to use sequences in GenBank to reliably clarify species names (2). To confirm pathogenicity, six leaves of two 3-year-old seedlings were inoculated. Seven-day-old cultures grown on 10% V8 agar at 24°C under continuous fluorescent lighting were used for inoculations. The inoculum consisted of spore suspensions in sterile distilled water adjusted to 6 × 105 conidia/ml. Using a fine haired paint brush, the inoculum was brushed onto the youngest leaves, while sterile distilled water was used as the control. The plants were incubated in a clear plastic bag placed on the laboratory bench at 24°C for 48 hours, then placed on a greenhouse bench and observed weekly for symptoms. After 14 days, leaf spots ranging in size from pinpoint to 5.4 mm in diameter with a distinctive yellow halo were present. Within 35 days, the leaf spots enlarged to leaf blotches ranging in size from 11.5 × 13.3 mm up to 28.3 × 34.6 mm with brown centers and a distinctive yellow halo identical to the field symptoms. A Pestalotiopsis sp. identical to that used to inoculate the seedlings was recovered from the leaf spots and blotches, confirming Koch's postulates. The experiment was repeated twice. Pestalotiopsis leaf blight has been reported in other countries growing mangosteen, including Thailand, Malaysia, and North Queensland, Australia (3). However, to our knowledge, this is the first report of a Pestalotiopsis sp. causing a disease on mangosteen in Hawaii. Although this disease is considered a minor problem in the literature (3), effective management practices should be established to avoid potential production losses. References: (1) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA. 1961. (2) S. S. N. Maharachchikumbura et al. Fungal Div. 50:167, 2011. (3) R. C. Ploetz. Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, Oxfordshire, UK, 2003.
    Matched MeSH terms: Suspensions
  3. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Suspensions
  4. Daungfu O, Youpensuk S, Lumyong S
    Trop Life Sci Res, 2019 Jan;30(1):73-88.
    PMID: 30847034 DOI: 10.21315/tlsr2019.30.1.5
    Citrus canker caused by Xanthomonas citri subsp. citri is a disease affecting the yield and fruit quality of lime (Citrus aurantiifolia). This research investigated endophytic bacteria obtained from six healthy Citrus spp. to inhibit the pathogen and to control citrus canker on lime plants. Numbers of the endophytic bacteria isolated from C. aurantifolia, C. hystrix, C. maxima, C. nobilis, C. reticulata and C. sinensis were 28, 25, 29, 42, 12 and 34 isolates, respectively. The selected endophytic bacteria that were effective against X. citri subsp. citri were Bacillus amyloliquefaciens LE109, B. subtilis LE24 and B. tequilensis PO80. The optimum culture medium for an antagonistic effect on the pathogen in B. amyloliquefaciens LE109 and B. tequilensis PO80 was yeast extract peptone dextrose broth, and in B. subtilis LE24 was modified soluble starch broth. To control citrus canker in lime, young expanded leaves of lime plants were aseptically punctured and inoculated with 30 μl of bacterial suspension of the pathogen (108 CFU/ml in 0.85% NaCl) per punctured location. After the pathogenic inoculation for 24 h, the leaves were then inoculated with 30 μl of the selected endophytic bacteria (108 CFU/ml in 0.85% NaCl), and treated with 30 μl of the culture media containing bioactive compounds produced by the selected endophytic bacteria. The leaves inoculated with cell suspensions of B. amyloliquefaciens LE109 or B. subtilis LE24 could completely control citrus canker. However, the leaves inoculated with B. tequilensis PO80 displayed 10% disease incidence. Additionally, the leaves treated with the crude bioactive compounds of B. amyloliquefaciens LE109 or B. subtilis LE24 could completely control citrus canker. Notably, the leaves treated with the crude bioactive compounds of B. tequilensis PO80 displayed 5% disease incidence. The results of this study showed that the Bacillus strains play important roles in the biocontrol of citrus canker in lime.
    Matched MeSH terms: Suspensions
  5. Noradilah, S. A., Mohamed Kamel, A. G., Anisah, N., Noraina, A. R., Yusof, S.
    MyJurnal
    Introduction: Acanthamoeba is an ubiquitous free-living protozoa which causes serious ocular problems. Acanthamoeba keratitis is becoming more prevalent amongst contact lens wearers. The disease can cause loss of vision and blindness if not treated properly. The objective of this research is to study the sensitivity of six Acanthamoeba spp. isolates, of which three were from the clinical isolates (HKL 95, HTH 40 and HS 6) and the remaining three from environmental isolates (TTT 9, TL 3 and SMAL 8) to antimicrobial agents. Methods: The antimicrobial agents chosen for this purpose were polyhexamethylene biguanide (PHMB) and chlorhexidine. Serial dilutions were perfomed for polyhexamethylene biguanide and chlorhexidine. Cyst suspensions from the chosen isolates were exposed to PHMB and chlorhexidine respectively. After 48 hours incubation time at 30°C, each mixture was filtered and filtration membrane was put onto non-nutrient agar laid with Escherichia coli. The agar plates were incubated for three days at 30°C and examined daily until day 14 to detect the presence of Acanthamoeba trophozoites under the inverted microscope. The presence of trophozoites indicated the ineffectiveness of the antimicrobial agents. Results: Both of the antimicrobial agents tested were found to be effective against Acanthamoeba cysts from all the test strains. Polyhexamethylene biguanide gave a minimum cysticidal concentration (MCC) mean value of 2.848 μg/mL while chlorhexidine showed
    MCC mean value at a concentration of 3.988 μg/mL. Conlusion: It can be concluded that the Acanthamoeba cysts were sensitive to polyhexamethylene biguanide and chlorhexidine.
    Matched MeSH terms: Suspensions
  6. Smith CE, Turner LH
    Bull World Health Organ, 1961;24(1):35-43.
    PMID: 20604084
    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time.It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken.
    Matched MeSH terms: Suspensions
  7. Mukhlis A Rahman, Mohd Kamal Ghazali, Juhana Jaafar, Ahmad Fauzi Ismail, Wan Muhammad Solehin Wan Abd Aziz, Mohd Hafiz Dzarfan Othman
    Sains Malaysiana, 2015;44:1195-1201.
    This article describes the preparation of titanium dioxide (TiO2) hollow fiber membrane using phase inversion and sintering technique. In this study, nano-sized TiO2 powders with different particle sizes were used to prepare ceramic hollow fiber membranes. In a series of preparation steps, a dispersant was dissolved in organic solvent before the addition of ceramic powders. These steps were followed by the addition of polymer binder. The membrane precursor was obtained by extruding the ceramic suspension into a coagulation bath, which enabled the precipitation of the precursor of ceramic hollow fiber membrane. The dried precursor was later sintered at temperatures ranging from 1200 to 1300oC to obtain TiO2 hollow fiber membrane. Scanning electron microscopy (SEM) was used to study the morphology of TiO2 hollow fiber membrane. The SEM images show the membrane can be shaped into asymmetric structure and symmetric structure based on the ceramic suspension compositions. The highest mechanical strength obtained was 223 MPa when the membrane prepared using 20 wt. % ceramic loading of single nano-sized powder and sintered at 1300oC. TiO2 hollow fiber membrane prepared using similar ceramic loading showed high permeation rate of inert gas. High pure water fluxes were obtained when permeability tests was carried out using TiO2 hollow fiber membrane, prepared using mixture of nano-sized particles, even though its cross-section have a sponge-like structure.
    Matched MeSH terms: Suspensions
  8. Salati M, Wong MY, Sariah M, Nik Masdek H
    Plant Dis, 2010 May;94(5):642.
    PMID: 30754434 DOI: 10.1094/PDIS-94-5-0642A
    In December 2008, infected leaves of Trichosanthes cucumerina were observed on commercial cucurbit farms located in Pontian, Johor (south of West Malaysia). Bright yellow and small necrotic lesions were observed on the adaxial surface of the leaves, whereas sporangiophores were observed on pale yellowish brown-to-brown lesions on the abaxial surface. The length and width of the sporangia ranged from 19 to 36 μm (28.6) and 11 to 23 μm (17.6), respectively. The length of the sporangiophores ranged from 310 to 450 μm, with an average length of 380 μm. The pathogen was identified as Pseudoperonospora cubensis on the basis of the morphological criteria described by Palti and Cohen (2). To confirm the morphological findings, DNA was extracted from symptomatic tissue and the internal transcribed spacer (ITS) region was PCR amplified using primers ITS5-P2 and ITS4 (3). The appropriate-sized amplicon was gel excised and column purified and then submitted for direct sequencing. The resulting 802 bp amplified ITS region was 100% identical to published P. cubensis sequences (GenBank Accession Nos. EU876603, EU876584, and AY198306). This sequence was deposited with NCBI GenBank under the Accession No. GU233293. In this study, pathogenicity tests were conducted using detached leaf disc assays (1) and a P. cubensis isolate obtained from T. cucumerina. For this purpose, leaf discs were excised from 6- to 8-week-old leaves of T. cucumerina using a 20-mm cork borer. Five leaf discs were placed with their abaxial surface facing upward on moist filter paper in petri dishes. Each of four leaf discs was inoculated with four 10-μl droplets of a 1 × 105 per ml sporangial suspension, whereas the fifth disc was inoculated with water droplets and served as a control. Three replications were completed. The leaf discs were placed in darkness at 14 ± 2°C for 24 h and subsequently incubated with a 12-h photoperiod. After 10 days, sporulation was observed on the sporangia-inoculated leaf discs with similar morphological features to the initial field samples. To our knowledge, this is the first report of P. cubensis causing downy mildew of T. cucumerina in Malaysia. References: (1) A. Lebeda and M. P. Widrlechner. J. Plant Dis. Prot. 110:337, 2003. (2) J. Palti and Y. Cohen. Phytoparasitica 8:109, 1980. (3) H. Voglmayr and O. Constantinescu. Mycol. Res. 112:487, 2008.
    Matched MeSH terms: Suspensions
  9. Hawa MM, Salleh B, Latiffah Z
    Plant Dis, 2009 Sep;93(9):971.
    PMID: 30754569 DOI: 10.1094/PDIS-93-9-0971C
    Red-fleshed dragon fruit (Hylocereus polyrhizus [Weber] Britton & Rose) is a newly introduced and potential crop in the Malaysian fruit industry. Besides its nutritious value, the fruit is being promoted as a health crop throughout Southeast Asia. In April of 2007, a new disease was observed in major plantations of H. polyrhizus throughout five states (Kelantan, Melaka, Negeri Sembilan, Penang, and Perak) in Malaysia with 41 and 25% disease incidence and severity, respectively. Stems of H. polyrhizus showed spots or small, circular, faint pink-to-beige necrotic lesions that generally coalesced as symptoms progressed. Symptom margins of diseased stem samples were surface sterilized with a 70% alcohol swab, cut into small blocks (1.5 × 1.5 × 1.5 cm), soaked in 1% sodium hypochlorite (NaOCI) for 3 min, and rinsed in several changes of sterile distilled water (each 1 min). The surface-sterilized tissues were placed onto potato dextrose agar (PDA) and incubated under alternating 12-h daylight and black light for 7 days. A fungus was consistently isolated from the stems of symptomatic H. polyrhizus and identified as Curvularia lunata (Wakker) Beodijn (1-3) that showed pale brown multicelled conidia (phragmoconidia; three to five celled) that formed apically through a pore (poroconidia) in sympodially, elongating, geniculated conidiophores. Conidia are relatively fusiform, cylindrical, or slightly curved, with one of the central cells being larger and darker (26.15 ± 0.05 μm). All 25 isolates of C. lunata obtained from diseased H. polyrhizus are deposited at the Culture Collection Unit, Universiti Sains Malaysia and available on request. Isolates were tested for pathogenicity by injecting conidial suspensions (1 × 106 conidia/ml) and pricking colonized toothpicks on 25 healthy H. polyrhizus stems. Controls were treated with sterile distilled water and noncolonized toothpicks. All inoculated plants and controls were placed in a greenhouse with day and night temperatures of 30 to 35°C and 23 to 30°C, respectively. Development of external symptoms on inoculated plants was observed continuously every 2 days for 2 weeks. Two weeks after inoculation, all plants inoculated with all isolates of C. lunata developed stem lesions similar to those observed in the field. No symptoms were observed on the control plants and all remained healthy. C. lunata was reisolated from 88% of the inoculated stems, completing Koch's postulates. The pathogenicity test was repeated with the same results. To our knowledge, this is the first report of C. lunata causing a disease on H. polyrhizus. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England, 1971. (2) R. R. Nelson and F. A. Hassis. Mycologia 56:316, 1964. (3) C. V. Subramanian. Fungi Imperfecti from Madras V. Curvularia. Proc. Indian Acad. Sci. 38:27, 1955.
    Matched MeSH terms: Suspensions
  10. Mohd Shakrie Palan Abdullah, Mohamed Ibrahim Noordin, Syed Ibrahim Mohd Ismail, Nur Murnisa Mustapha, Malina Jasamai, Ahmad Fuad Shamsuddin, et al.
    Sains Malaysiana, 2018;47:323-336.
    Gelatine is used as an excipient for various pharmaceutical dosage forms, such as capsule shells (both hard and soft),
    tablets, suspensions, emulsions and injections (e.g. plasma expanders). It is also broadly used in various industries
    such as food and cosmetics. Gelatine is a biopolymer obtained from discarded or unused materials of bovine, porcine,
    ovine, poultry and marine industrial farms. The discarded materials can be the skin, tendons, cartilages, bones and
    connective tissues. Gelatine sourced from animals is relatively easy and inexpensive to produce. The potential needs of
    gelatine cannot be overemphasised. Rising demands, health concerns and religious issues have heightened the need for
    alternative sources of gelatine. This review presents the various industrial uses of gelatine and the latest developments
    in producing gelatine from various sources.
    Matched MeSH terms: Suspensions
  11. Khanuja HK, Awasthi R, Mehta M, Satija S, Aljabali AAA, Tambuwala MM, et al.
    Recent Pat Nanotechnol, 2021;15(4):351-366.
    PMID: 33357187 DOI: 10.2174/1872210514666201224103010
    BACKGROUND: Nanosuspensions are colloidal systems consisting of pure drug and stabilizers, without matrix or lyophilized into a solid matrix. Nanosuspensions improve the solubility of the drug both in the aqueous and organic phases. Nanosuspensions are also known as brick dust molecules, as they increase the dissolution of a system and improve absorption.

    METHODS: Extensive information related to nanosuspensions and its associated patents were collected using Pub Med and Google Scholar.

    RESULTS: Over the last decade nanosuspensions have attracted tremendous interest in pharmaceutical research. It provides unique features including, improved solubility, high drug loading capacity, and passive targeting. These particles are cost-effective, simple, and have lesser side effects with minimal dose requirements. However, the stability of nanosuspensions still warrants attention.

    CONCLUSION: Nanosuspensions play a vital role in handling the numerous drug entities with difficult physico-chemical characteristics such as solubility and can further aid with a range of routes that include nasal, transdermal, ocular, parenteral, pulmonary etc. This review highlights the relevance of nanosuspensions in achieving safe, effective and targeted drug delivery.

    Matched MeSH terms: Suspensions
  12. Sadri R, Hosseini M, Kazi SN, Bagheri S, Abdelrazek AH, Ahmadi G, et al.
    J Colloid Interface Sci, 2018 Jan 01;509:140-152.
    PMID: 28898734 DOI: 10.1016/j.jcis.2017.07.052
    In this study, we synthesized covalently functionalized graphene nanoplatelet (GNP) aqueous suspensions that are highly stable and environmentally friendly for use as coolants in heat transfer systems. We evaluated the heat transfer and hydrodynamic properties of these nano-coolants flowing through a horizontal stainless steel tube subjected to a uniform heat flux at its outer surface. The GNPs functionalized with clove buds using the one-pot technique. We characterized the clove-treated GNPs (CGNPs) using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). We then dispersed the CGNPs in distilled water at three particle concentrations (0.025, 0.075 and 0.1wt%) in order to prepare the CGNP-water nanofluids (nano-coolants). We used ultraviolet-visible (UV-vis) spectroscopy to examine the stability and solubility of the CGNPs in the distilled water. There is significant enhancement in thermo-physical properties of CGNPs nanofluids relative those for distilled water. We validated our experimental set-up by comparing the friction factor and Nusselt number for distilled water obtained from experiments with those determined from empirical correlations, indeed, our experimental set-up is reliable and produces results with reasonable accuracy. We conducted heat transfer experiments for the CGNP-water nano-coolants flowing through the horizontal heated tube in fully developed turbulent condition. Our results are indeed promising since there is a significant enhancement in the Nusselt number and convective heat transfer coefficient for the CGNP-water nanofluids, with only a negligible increase in the friction factor and pumping power. More importantly, we found that there is a significant increase in the performance index, which is a positive indicator that our nanofluids have potential to substitute conventional coolants in heat transfer systems because of their overall thermal performance and energy savings benefits.
    Matched MeSH terms: Suspensions
  13. Jeong W, Snell GI, Levvey BJ, Westall GP, Morrissey CO, Wolfe R, et al.
    J Antimicrob Chemother, 2018 Mar 01;73(3):748-756.
    PMID: 29211913 DOI: 10.1093/jac/dkx440
    Objectives: This study describes therapeutic drug monitoring (TDM) of posaconazole suspension and modified release (MR) tablets in lung transplant (LTx) recipients and evaluates factors that may affect posaconazole trough plasma concentration (Cmin).

    Methods: A single-centre, retrospective study evaluating posaconazole Cmin in LTx recipients receiving posaconazole suspension or MR tablets between January 2014 and December 2016.

    Results: Forty-seven LTx patients received posaconazole suspension, and 78 received the MR tablet formulation; a total of 421 and 617 Cmin measurements were made, respectively. Posaconazole was concurrently administered with proton pump inhibitor in ≥ 90% of patients. The median (IQR) of initial posaconazole Cmin following 300 mg daily of posaconazole tablet was significantly higher than that of 800 mg daily of posaconazole suspension [1.65 (0.97-2.13) mg/L versus 0.81 (0.48-1.15) mg/L, P 

    Matched MeSH terms: Suspensions
  14. Mukhopadhyay S, Mukherjee S, Hashim MA, Sen Gupta B
    Chemosphere, 2015 Jan;119:355-362.
    PMID: 25061940 DOI: 10.1016/j.chemosphere.2014.06.087
    Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
    Matched MeSH terms: Suspensions
  15. Amin MC, Abadi AG, Katas H
    Carbohydr Polym, 2014 Jan;99:180-9.
    PMID: 24274495 DOI: 10.1016/j.carbpol.2013.08.041
    Bacterial cellulose (BC) is a biopolymer with significant potential for the development of novel materials. This work aimed to prepare and characterize BC powders from nata de coco, and assess the possible enhancement of the powder properties by spray drying. Therefore, BC powders prepared by acid treatment and mechanical processing were spray-dried, and characterized according to their morphology, flowability, thermal stability, water retention capacity, and compared with commercial microcrystalline cellulose (MCC). The powders redispersibility and suspensions rheology were also evaluated. SEM showed that spray-dried BC microparticles exhibited semispherical shape and had flow rate of 4.23 g s(-1) compared with 0.52 g s(-1) for MCC. Particle size analysis demonstrated that spray-dried BC microparticles could be redispersed. TGA showed that BC samples had higher thermal stability than MCC. Water retention capacities of BC samples were greater than MCC. These findings provide new insight on the potential applications of spray-dried BC as a promising pharmaceutical excipient.
    Matched MeSH terms: Suspensions
  16. Ngu H, Wong KK, Law PL
    Water Environ Res, 2012 Apr;84(4):299-304.
    PMID: 22834217
    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.
    Matched MeSH terms: Suspensions
  17. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ
    J Hazard Mater, 2009 Aug 30;168(1):57-63.
    PMID: 19268454 DOI: 10.1016/j.jhazmat.2009.01.130
    The photocatalytically driven removal of eco-persistent 4-chlorophenol from water using ZnO is reported here. Kinetic dependence of transformation rate on operating variables such as initial 4-chlorophenol concentration and photocatalyst doses was investigated. A complete degradation of 4-chlorophenol at 50 mg L(-1) levels was realised in 3h. Analytical profiles on 4-chlorophenol transformation were consistent with the best-line fit of the pseudo zero-order kinetics. The addition of small amounts of inorganic anions as SO(4)(2-), HPO(4)(-), S(2)O(8)(2-) and Cl(-) revealed two anion types: active site blockers and rate enhancers. Fortunately, Cl(-) and SO(4)(2-) commonly encountered in contaminated waters enhanced the rate of 4-chlorophenol degradation. The reaction intermediates and route to 4-chlorophenol mineralisation were elucidated by combined RP-HPLC and GC-MS methods. In addition to previously reported pathway products of 4-chlorophenol photo-oxidation catechol was detected. A radical mechanism involving o-hydroxylation is proposed to account for the formation of catechol.
    Matched MeSH terms: Suspensions
  18. Qian YS, Ramamurthy S, Candasamy M, Shadab M, Kumar RH, Meka VS
    Curr Pharm Biotechnol, 2016;17(6):549-55.
    PMID: 26813303
    CONTEXT: Kaempferol has a large particle size and poor water solubility, leading to poor oral bioavailability. The present work aimed to develop a kaempferol nanosuspension (KNS) to improve pharmacokinetics and absolute bioavailability.

    METHODS: A nanosuspension was prepared using high pressure homogenization (HPH) techniques. The physico-chemical properties of the kaempferol nanosuspension (KNS) were characterized using photon correlation spectroscopy (PCS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffractometry (XRD). A reversephase high performance liquid chromatography (RP-HPLC) method for the analysis of the drug in rat plasma was developed and validated as per ICH guidelines. In vivo pharmacokinetic parameters of oral pure kaempferol solution, oral kaempferol nanosuspension and intravenous pure kaempferol were assessed in rats.

    RESULTS AND DISCUSSION: The kaempferol nanosuspension had a greatly reduced particle size (426.3 ± 5.8 nm), compared to that of pure kaempferol (1737 ± 129 nm). The nanosuspension was stable under refrigerated conditions. No changes in physico-chemical characteristics were observed. In comparison to pure kaempferol, kaempferol nanosuspension exhibited a significantly (P<0.05) increased in Cmax and AUC(0-∞) following oral administration and a significant improvement in absolute bioavailability (38.17%) compared with 13.03% for pure kaempferol.

    CONCLUSION: These results demonstrate enhanced oral bioavailability of kaempferol when formulated as a nanosuspension.

    Matched MeSH terms: Suspensions
  19. Esfandyari Bayat A, Junin R, Derahman MN, Samad AA
    Chemosphere, 2015 Sep;134:7-15.
    PMID: 25889359 DOI: 10.1016/j.chemosphere.2015.03.052
    The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type.
    Matched MeSH terms: Suspensions
  20. Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, et al.
    ACS Omega, 2021 Mar 30;6(12):8210-8225.
    PMID: 33817480 DOI: 10.1021/acsomega.0c06242
    The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.
    Matched MeSH terms: Suspensions
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links