Displaying publications 21 - 40 of 300 in total

Abstract:
Sort:
  1. Abdul Malek Ya’acob, Azhar Abu Bakar, Hanafi Ismail, Khairul Zaman Dahlan
    MyJurnal
    A hybrid composite consisting of untreated kenaf fibre and glass fibre was investigated by varying the fibre glass weight ratios and using interply fabrication method. The expected results were to have better composite performance in terms of its toughness and impact strength as a comparison between the hybrid (kenaf/E-glass fibre composites) and E-GF composites alone. For the purpose of this study, all the samples were prepared using typical sample preparation. Results show that the incorporation of E–glass fibre resulted in brittle failure and a higher amount of E-Glass fibre with low percentage of kenaf fibre causing high strength, low ductile, and low toughness behaviours.
    Matched MeSH terms: Tensile Strength
  2. Ahmad Kamil Arshad, Khairil Azman Masri, Juraidah Ahmad, Mohamad Saifullah Samsudin
    MyJurnal
    This paper presents the outcome of a laboratory investigation on mix design, resilient modulus, moisture susceptibility and rutting resistance of Stone Mastic Asphalt (SMA) and Dense Graded Asphalt (AC) that is incorporated with Nanosilica (NS) modified binder. Penetration Grade 60-70 (PEN60-70) types of binder were mixed with nanoparticles (NS) using concentration of 0wt%, 2wt%, 4wt% and 6wt% by weight of asphalt binder. The mixtures were tested for resilient modulus, indirect tensile strength and rutting, in order to evaluate the performance of NS-SMA and NS-AC. The results show that the existence of NS is capable of enhancing the performance of both asphalt mixtures, and the addition of NS decreases the susceptibility of moisture damage and provides better resistance against permanent deformation. Furthermore, the addition of 4wt% NS appears to be the most effective amount for the performance enhancement in AC and SMA mixtures.
    Matched MeSH terms: Tensile Strength
  3. Ng, L.F., Sivakumar, D., Zakaria, K.A., Sivaraos, Bapokutty, O.
    MyJurnal
    Efforts to reduce manufacturing cost and negative environmental impacts have seen the mixture of natural fibre with synthetic fibre in composite structures. However, there are limited studies on the notch effect and fibre orientation on mechanical properties of hybrid fibre metal laminate (FML). In this study, tensile properties of FML with notch and different fibre orientation were investigated. The hybrid FML incorporated with kenaf fibre at the middle layer was compared with FML with three layers of E-glass fibre. Kenaf fibre and E-glass fibre used were in plain woven form. The FML in 2/1 configuration was manufactured through hot press manufacturing method to bond layers of annealed aluminium 5052 to the composite. Tensile test was conducted in a quasi-static manner according to ASTM E8. The results showed FML with three layers of glass fibre exhibited higher tensile strength compared with hybrid FML. However, the introduction of kenaf fibre in hybrid FML reduces the notch and fibre orientation sensitivity compared with glass fibre reinforced FML.
    Matched MeSH terms: Tensile Strength
  4. Mohd Idrus Mohd Masirin, Ahmed Suliman Bader Ali, Allam Musbah Al Allam
    MyJurnal
    The major aim of this research was to investigate the addition of BPSC on the physical and rheological properties of asphalt binder. In this study, addition of five different percentages of BPSC compositions were studied, namely (2, 4, 6 and 8%). The impact of modifier on the rheological and physical properties was determined using conventional tests, such as softening point, ductility and penetration, and measurements from a dynamic shear rheometer. Based on the results, it was observed that the addition of BPSC has a significant impact on the rheological properties of asphalt binder and would improve rutting resistance at high temperatures. Meanwhile, results related to physical properties indicated that a decrease in penetration and increase in softening points results in stiffness of BPSC. The results showed that BPSC reduced temperature susceptibility and increased stiffness and elastic behaviour in comparison to unmodified asphalt binder. This means BPSC would increase the resistance of permanent deformation (rutting). Finally, BPSC could be considered as an appropriate additive to modify the properties of asphalt binder.
    Matched MeSH terms: Tensile Strength
  5. Nurul Syazwani Abdul Latif, Suzaini Abdul Ghani
    MyJurnal
    Weft density and draw in plan play an important role since they affect physical properties such as fabric weight, cloth cover factor as well as seam strength. Weft density refers to the amount of weft yarn in one inch. Meanwhile, draw in plan refers to the amount of heald shaft used and the order of warp yarn through the heald. In this study, plain woven fabrics were produced by using Sulzer Rapier Loom Machine. There were two different types of weft density used which were 15 and 20 weft per centimeter (wpcm) and four draws in plan: pointed, straight, broken and broken mirror. Seams were constructed by using plain seam of Ssa-1, four stitches of stitch density and 301 lockstitches for stitch type. Subsequently, the fabric samples were tested on seam strength by using Testometric tester. As a result of this study, it is proven that weft density and draw in plan of woven plain fabric are parameters that affect the seam strength and seam efficiency. The highest increase in percentage of seam strength was obtained from straight draw in plan which increases up to 17.19% from 15wpcm to 20wpcm. Meanwhile, broken draw in plan has the lowest increase percentage for seam strength which is 6.46%. Furthermore, seam efficiency also shows straight draw in plan gives good fabric durability compared to others. Lastly, it also shows broken draw in plan has no significant effect on fabric tensile strength and seam strength.
    Matched MeSH terms: Tensile Strength
  6. Norazean Shaari, Aidah Jumahat
    MyJurnal
    The effects of hole size on open hole tensile properties of Kevlar-glass fibre hybrid composite laminates were thoroughly investigated in this work. Woven Kevlar/glass fibre epoxy composite laminates were fabricated using hand lay-up and vacuum bagging technique. Specimens of five different hole size (1 mm, 4 mm, 6 mm, 8 mm and 12 mm) were carefully prepared before the tensile test was performed according to ASTM D5766. Results indicated that hybridizing Kevlar to glass fibres improved tensile strength and failure strain of hybrid composite specimen. In addition, increasing the hole size reduced strength retention of the hybrid specimen from 96% for 1 mm hole size to 62% and 44% for 6 mm and 12 mm, respectively. Fractography analysis showed that several types of failure mechanisms were observed such as brittle failure, ductile failure, fibre breakage, delamination and fibre-matrix splitting. It is concluded that as hole size increased, failure behaviour changed from a matrix dominated failure mode to a fibre-dominated failure mode.
    Matched MeSH terms: Tensile Strength
  7. Md Zin N, Al-Fakih A, Nikbakht E, Teo W, Anwar Gad M
    Materials (Basel), 2019 Dec 11;12(24).
    PMID: 31835775 DOI: 10.3390/ma12244159
    An experimental study is conducted to determine the influence of secondary reinforcement on the behaviour of corbels fabricated with three different types of high-performance fiber-reinforced cementitious composites, including engineered cementitious concrete (ECC); high-performance steel fiber-reinforced composite (HPSFRC); and hybrid fiber-reinforced composite (HyFRC). Two shear span-to-depth ratios (a/d = 0.75 and 1.0) are explored. The mechanical properties of the composites in terms of tensile, compressive, and flexural strengths are investigated. Next, the structural behaviour of the high-performance cementitious composite corbels in terms of ultimate load capacity, ductility, and failure modes under the three-point bending test are investigated. The secondary reinforcement is proven to significantly affect stiffness and ultimately load capacity of all three high-performance composite corbels with an aspect ratio of 0.75. However, the secondary reinforcement was more impactful for the HPSFRC corbels, with 51% increase of ultimate strength. Moreover, in terms of damage, fewer cracks occurred in ECC corbels. HPSFRC corbels displayed the highest level of ductility and deformation capacity compared to the other specimens. The results were comparatively analyzed against the predicted results using truss and plastic truss models which provided relatively reliable shear strength.
    Matched MeSH terms: Tensile Strength
  8. Mohd Jamil Abdul Wahab, Mohd Zamin Jumaat
    Sains Malaysiana, 2014;43:211-218.
    Some basic requirements are set for small clear specimen data to incorporate Malaysian timbers into equivalent European timber strength classes. In general, the correlation between structural and small clear specimen test results must be established for every timber group regardless of origin. This paper introduces a sort-plot technique for analysing the correlation of some mechanical properties of timber in selecting appropriate parametric model. Bending test was conducted on mixed species hardwoods for the determination of strength and stiffness values of both structural and small size specimens. The results showed that the sort-plot diagrams demonstrate an obvious linearity pattern between timber properties despite having poor regression values. The technique verified that properties of timber in structural and small size specimens correlated linearly.
    Matched MeSH terms: Tensile Strength
  9. Nor Hayati Muhammad, Ibrahim Abdullah, Dahlan Mohd
    Sains Malaysiana, 2011;40:1179-1186.
    The effects of HVA-2 on radiation-induced cross-linkings in 60/40 natural rubber/ linear low density polyethylene (NR/LLDPE) blends was studied. NR/LLDPE was irradiated by using a 3.0 MeV electron beam machine with doses ranging from 0 to 250 kGy. Results showed that under the irradiation employed, the blends NR/LLDPE were cross-linked by the electron beam irradiation. The presence of HVA-2 in the blends caused the optimum dose to decrease and the blends to exhibit higher tensile properties. Further, within the dose range studied, the degradation caused by electron beam irradiation was found to be minimal. The optimized processing conditions were 120oC, 50 rpm rotor speed and 13 min processing time. The gel content, tensile strength, elongation at break, hardness and impact test studies were used to follow the irradiation-induced cross-linkings in the blend. For blends of 60/40 NR/LLDPE with 2.0 phr HVA-2, the optimum tensile strength and dose, were 19 MPa and 100 kGy, respectively. Blends of 60/40 NR/LLDPE without HVA-2, the optimum tensile strength and dose were 17.2 MPa and 200 kGy, respectively.
    Matched MeSH terms: Tensile Strength
  10. Mohammed, Kachalla, Kareem, Shatha Sahib
    MyJurnal
    Structural buildings in seismic prone area, the required energy dissipation of strong column-weak beam especially for reinforced concrete frame structures is achievably through adequate beam-column joint strengthening connection in order to have high seismic performance. Literature investigation shows several approaches and techniques for modelling the weak joint for a typical frame structure. This paper extensively reviews those techniques, methods, concepts and their performance in improving the shear capacity for a deficient reinforced concrete beam-column joints in withstanding seismic loads. The beam-column joints performance responses showed positive. However, the need for an improved connection that will offer high ductility capacity and energy dissipation ability for post-tensioned reinforced concrete beam-column joints with continuing bottom reinforcement is highly feasible with the use of the Direct Displacement Based design philosophy. This will be of great interest for the future development of highly efficient joint system for frame structure capable of resisting significant seismic load.
    Matched MeSH terms: Tensile Strength
  11. Mohd Nurazzi Norizan, Khalina Abdan, Mohd Sapuan Salit, Rahmah Mohamed
    Sains Malaysiana, 2018;47:699-705.
    The aim of this paper was to describe the effects of treated sugar palm yarn fibre loading on the mechanical properties
    of reinforced unsaturated polyester composites. Composites with varying fibre loads (10, 20, 30, 40 and 50 wt. %) were
    prepared using a hand-layup process. The composites were tested for tensile, flexural and impact strength according to
    ASTM D3930, ASTM D790 and ASTM D256 standards, respectively. The results showed that an increase in fibre loading
    of up to 30 wt. % increased tensile strength (31.27 MPa), tensile modulus (4.83 GPa), flexural strength (58.14 MPa)
    and modulus (4.48 GPa). Maximum loading can be attained at 40 wt. % of fibre loading for impact strength (38 kJ/
    m2). The effectiveness of stress transfer mechanism through the fibre-matrix interaction, coupled with the optimization
    of fibre loading in resisting fracture and failure, boosts the overall mechanical performance of sugar palm composite.
    Matched MeSH terms: Tensile Strength
  12. Yang J, Xu S, Wang W, Ran X, Ching YC, Sui X, et al.
    Carbohydr Polym, 2023 Jan 15;300:120253.
    PMID: 36372510 DOI: 10.1016/j.carbpol.2022.120253
    In this work, a systematic coupling study of silane coupling agent between starch and epoxidized soybean oils (ESO) was carried out. Starch was modified by 3-aminopropyl trimethoxy silane (APMS) with various contents of NaOH. The APMS-modified starch was incorporated with ESO to synthesize the bioplastics by solution casting. As demonstrated by the FTIR spectra, the hydrogen bond interactions among starch molecules were inhibited by the modification. This outcome provided higher interaction and compatibility of starch with ESO, as confirmed by FESEM. TGA showed that the thermal stability of starch decreased considerably after the silylation. In contrast, the produced bioplastics with silylated starch exhibited higher thermal stability than the control sample. Regarding the bioplastics, an obvious increase of tensile strength from 5.78 MPa to 9.29 MPa was obtained. This work suggested a simple and effective modification technique by APMS to improve compatibility of starch/ESO-based bioplastics with superior mechanical and thermal properties.
    Matched MeSH terms: Tensile Strength
  13. Ketabchi MR, Masoudi Soltani S, Chan A
    Environ Sci Pollut Res Int, 2023 Sep;30(41):93722-93730.
    PMID: 37515618 DOI: 10.1007/s11356-023-28892-0
    The bio- and thermal degradation as well as the water absorption properties of a novel biocomposite comprising cellulose nanoparticles, natural rubber and polylactic acid have been investigated. The biodegradation process was studied through an assembled condition based on the soil collected from the central Malaysian palm oil forests located in the University of Nottingham Malaysia. The effects of the presence of the cellulose nanoparticles and natural rubber on the biodegradation of polylactic acid were investigated. The biodegradation process was studied via thermal gravimetric analysis and scanning electron microscopy. It was understood that the reinforcement of polylactic acid with cellulose nanoparticles and natural rubber increases the thermal stability by ~ 20 °C. Limited amorphous regions on the surface of the cellulose nanoparticles accelerated the biodegradation and water absorption processes. Based on the obtained results, it is predicted that complete biodegradation of the synthesised biocomposites can take place in 3062 h, highlighting promising agricultural applications for this biocomposite.
    Matched MeSH terms: Tensile Strength
  14. Nam HY, Pingguan-Murphy B, Amir Abbas A, Mahmood Merican A, Kamarul T
    Biomech Model Mechanobiol, 2015 Jun;14(3):649-63.
    PMID: 25351891 DOI: 10.1007/s10237-014-0628-y
    It has been previously demonstrated that mechanical stimuli are important for multipotent human bone marrow-derived mesenchymal stromal cells (hMSCs) to maintain good tissue homeostasis and even to enhance tissue repair processes. In tendons, this is achieved by promoting the cellular proliferation and tenogenic expression/differentiation. The present study was conducted to determine the optimal loading conditions needed to achieve the best proliferation rates and tenogenic differentiation potential. The effects of mechanical uniaxial stretching using different rates and strains were performed on hMSCs cultured in vitro. hMSCs were subjected to cyclical uniaxial stretching of 4, 8 or 12 % strain at 0.5 or 1 Hz for 6, 24, 48 or 72 h. Cell proliferation was analyzed using alamarBlue[Formula: see text] assay, while hMSCs differentiation was analyzed using total collagen assay and specific tenogenic gene expression markers (type I collagen, type III collagen, decorin, tenascin-C, scleraxis and tenomodulin). Our results demonstrate that the highest cell proliferation is observed when 4 % strain [Formula: see text] 1 Hz was applied. However, at 8 % strain [Formula: see text] 1 Hz loading, collagen production and the tenogenic gene expression were highest. Increasing strain or rates thereafter did not demonstrate any significant increase in both cell proliferation and tenogenic differentiation. In conclusion, our results suggest that 4 % [Formula: see text] 1 Hz cyclic uniaxial loading increases cell proliferation, but higher strains are required for superior tenogenic expressions. This study suggests that selected loading regimes will stimulate tenogenesis of hMSCs.
    Matched MeSH terms: Tensile Strength*
  15. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2017 Jun;99:265-273.
    PMID: 28249765 DOI: 10.1016/j.ijbiomac.2017.02.092
    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc.
    Matched MeSH terms: Tensile Strength*
  16. Nazrin A, Sapuan SM, Zuhri MYM
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992514 DOI: 10.3390/polym12102216
    In this paper, sugar palm nanocellulose fibre-reinforced thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites were prepared using melt blending and compression moulding with different TPS concentrations (20%, 30%, 40%, 60%, and 80%) and constant sugar palm nanocellulose fibres (0.5%). The physical, mechanical, thermal, and water barrier properties were investigated. The SEM images indicated different TPS loading effects with the morphology of the blend bionanocomposites due to their immiscibility. A high content of TPS led to agglomeration, while a lower content resulted in the presence of cracks and voids. The 20% TPS loading reduced the tensile strength from 49.08 to 19.45 MPa and flexural strength from 79.60 to 35.38 MPa. The thermal stability of the blend bionanocomposites was reduced as the TPS loading increased. The thickness swelling, which corresponded to the water absorption, demonstrated an increasing trend with the increased addition of TPS loading.
    Matched MeSH terms: Tensile Strength
  17. Sinniah, Saraswathy D., Jones, Steven P., Georgiou, George, Cunningham, Susan J., Petrie, Aviva
    Compendium of Oral Science, 2016;3(1):17-24.
    MyJurnal
    used with bonded retainers. Setting: Department of Orthodontics, UCL Eastman Dental Institute, United Kingdom. Methods: Flowable composite resins (Transbond TM Supreme LV, StarFlowTM and Tetric EvoFlow®) and non -flowable control resin (TransbondTM LR) were made into cylinders prior to bonding to hydoxyapatite discs. They were then mounted into jigs and tested in the InstronTM Universal Testing Machine in both shear and tensile modes. Results: The highest mean shear bond strength was seen with StarFlow TM (14.09 MPa), which was significantly higher than both TransbondTM LR (9.48 MPa) and TransbondTM Supreme LV (8.20 MPa). The mean shear bond strength of Tetric EvoFlow® (11.86 MPa) was also significantly higher than TransbondTM Supreme LV. The highest mean tensile bond strength was seen with Tetric EvoFlow® (2.14 MPa), which was significantly higher than TransbondTM LR (1.15 MPa) and TransbondTM Supreme LV (0.61 MPa) but not significantly different to StarFlowTM (1.47 MPa). For shear loading, StarFlowTM had the highest 50th percentile survival estimate at 15.10 MPa, followed by Tetric EvoFlow® (13.00 MPa) and TransbondTM Supreme LV (7.50 MPa). TransbondTM LR had a 50th percentile estimate at 9.00 MPa. For tensile loading, Tetric EvoFlow® had the highest 50th percentile survival estimate at 2.50 MPa, followed by StarFlowTM (1.30 MPa) and TransbondTM Supreme LV (0.50 MPa). TransbondTM LR had a 50th percentile estimate at 1.00 MPa. Conclusions: Mean shear bond strengths for all of the resins were significantly higher than the mean tensile bond strengths. StarFlowTM and Tetric EvoFlow® could potentially be suitable clinical alternatives to TransbondTM LR due to its low viscosity flow characteristics and adequate shear and tensile bond strengths.
    Matched MeSH terms: Tensile Strength
  18. Chen RS, Mohd Ruf MFH, Shahdan D, Ahmad S
    PLoS One, 2019;14(9):e0222662.
    PMID: 31545820 DOI: 10.1371/journal.pone.0222662
    Thermoplastic natural rubber (TPNR) was compounded with graphene nanoplatelets (GNP) via ultrasonication and melt blending. The effects of ultrasonication period (1-4 hours) and GNP weight fraction (0.5, 1.0, 1.5 and 2.0 wt.%) on the mechanical, thermal and conductivity properties were investigated. Results showed that the 3 hours of ultrasonic treatment on LNR/GNP gave the greatest improvement in tensile strength of 25.8% (TPNR/GNP nanocomposites) as compared to those without ultrasonication. The TPNR nanocomposites containing 1.5 wt.% GNP exhibited the highest strength (16 MPa for tensile, 14 MPa for flexural and 11 kJm-2 for impact) and modulus (556 MPa and 869 MPa for tensile and flexural, respectively). The incorporation of GNP had enhanced the thermal stability. It can be concluded that the GNP had imparted the thermally and electrically conductive nature to the TPNR blend.
    Matched MeSH terms: Tensile Strength
  19. Lee JC, Payam Shafigh, Hilmi Mahmud, Muhammad Aslam
    Sains Malaysiana, 2017;46:645-653.
    Oil-palm-boiler clinker (OPBC) is an agricultural solid waste sourced from the palm oil industry in tropical regions. This study investigates the use of OPBC as coarse aggregate instead of conventional coarse aggregates to produce a greener concrete, which will help in implementing sustainable construction practices by reducing the usage of raw materials. For this purpose, normal weight coarse aggregates was substituted with dry OPBC aggregates up to 75% (by volume) in a high strength normal weight concrete. The effectiveness of this substitution on the properties of the concrete such as workability, density, compressive strength, splitting tensile strength and modulus of elasticity was studied. The slump test results showed that using OPBC in dry condition reduced the workability of the concrete and therefore can be used up to 50% of the total volume of coarse aggregate. Concrete containing 50% OPBC can be considered as semi-lightweight concrete with high strength. Using OPBC in concrete reduced the splitting tensile strength and modulus of elasticity, however, the reduction was not significant.
    Matched MeSH terms: Tensile Strength
  20. Ibrahim F, Mohan D, Sajab MS, Bakarudin SB, Kaco H
    Polymers (Basel), 2019 Sep 23;11(10).
    PMID: 31547544 DOI: 10.3390/polym11101544
    In this study, lignin has been extracted from oil palm empty fruit bunch (EFB) fibers via an organosolv process. The organosolv lignin obtained was defined by the presence of hydroxyl-containing molecules, such as guaiacyl and syringyl, and by the presence of phenolic molecules in lignin. Subsequently, the extracted organosolv lignin and graphene nanoplatelets (GNP) were utilized as filler and reinforcement in photo-curable polyurethane (PU), which is used in stereolithography 3D printing. The compatibility as well as the characteristic and structural changes of the composite were identified through the mechanical properties of the 3D-printed composites. Furthermore, the tensile strength of the composited lignin and graphene shows significant improvement as high as 27%. The hardness of the photo-curable PU composites measured by nanoindentation exhibited an enormous improvement for 0.6% of lignin-graphene at 92.49 MPa with 238% increment when compared with unmodified PU.
    Matched MeSH terms: Tensile Strength
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links