Displaying publications 21 - 40 of 85 in total

Abstract:
Sort:
  1. Darain KMU, Jumaat MZ, Shukri AA, Obaydullah M, Huda MN, Hosen MA, et al.
    Polymers (Basel), 2016 Jul 19;8(7).
    PMID: 30974542 DOI: 10.3390/polym8070261
    This study investigates the flexural behaviour of reinforced concrete (RC) beams strengthened through the combined externally bonded and near-surface mounted (CEBNSM) technique. The externally bonded reinforcement (EBR) and near-surface mounted (NSM) techniques are popular strengthening solutions, although these methods often demonstrate premature debonding failure. The proposed CEBNSM technique increases the bond area of the concrete⁻carbon fibre reinforced polymer (CFRP) interface, which can delay the debonding failure. This technique is appropriate when any structure has a narrow cross-sectional width or is in need of additional flexural capacity that an individual technique or material cannot attain. An experimental test matrix was designed with one control and five strengthened RC beams to verify the performance of the proposed technique. The strengthening materials were CFRP bar as NSM reinforcement combined with CFRP fabric as EBR material. The test variables were the diameter of the NSM bars (8 and 10 mm), the thickness of the CFRP fabrics (one and two layers) and the U-wrap anchorage. The strengthened beams showed enhancement of ultimate load capacity, stiffness, cracking behaviour, and strain compatibility. The ultimate capacity of the CEBNSM-strengthened beams increased from 71% to 105% compared to that of the control beam. A simulation method based on the moment-rotation approach was also presented to predict the behaviour of CEBNSM-strengthened RC beams.
    Matched MeSH terms: Textiles
  2. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Textiles
  3. Nur Amirah Fadzlena Md Fadzli, Wan Syazehan Ruznan, Suraya Ahmad Suhaimi, Mohd Azlin Mohd Nor, Suhaidi Ariffin, Mohd Rozi Ahmad, et al.
    MyJurnal
    Of late, dyeing fabrics with natural dyes have become an attraction because of its eco-friendly and less threatening disposition towards humankind. In the textile colouration industry, natural dyes play an important role because of the need for replacement synthetic dyes which have a great deal of tension with the environmental issues. This study focuses on the colour shade, colour coordinates, and fastness properties of dyed silk fabric from tagetes erecta (Mexican Marigold flower) using the water boiling extraction method. The dyeing was carried out using lemon juice as a natural mordant through the simultaneous mordanting method, using two different dyeing methods: infrared (IR) dyeing and exhaustion dyeing. The shades produced for exhaustion dyed fabric is light-yellow compared to the IR dyed fabric, which is medium-light yellow. These shades were confirmed with the CIELAB colour coordinates, L*a*b* values. The colourfastness to washing, perspiration, rubbing, and light of the fabrics were conducted to investigate the performance of the dye and mordant on the dyed silk fabrics. The colourfastness properties of the dyed silk fabric using infrared (IR) dyeing technique have better performance than using exhaustion dyeing technique.
    Matched MeSH terms: Textiles
  4. Aznin Baharudin, Nor Akmalazura Jani, Azyati Azreen, A. A. Assyura, Hawa Pornomo, M. Hafiz Mehat
    Borneo Akademika, 2020;4(1):1-12.
    MyJurnal
    This study is focused on formulating a natural-based fabric softener using baking
    soda and vinegar with the addition of insect repellent finish of citronella oil and
    vanillin. The effectiveness of the fabric softener was evaluated by conducting a fabric
    stiffness test on both untreated and treated fabric samples with the softener
    formulated in this study. The assessment for the efficacy of insect repellence was
    carried out using 3 human participants of the same gender and build but different
    blood type, positioned at a mosquito infested area. Three tests; negative, positive, and
    normal tests were conducted to evaluate the effectiveness of the formulated mosquito
    repellent finishes in the fabric softener. The results show that the formulated fabric
    softener is good mosquito repellent and it is good at giving a soft effect on the treated
    fabric.
    Matched MeSH terms: Textiles
  5. Ainil Huda Abu Talib, Siti Nuranis Syazana Misron, Nurul ‘izzah Mohd Fu’ad, Nurul Ariesha Zamri, Eryna Nasir
    Borneo Akademika, 2020;4(1):13-24.
    MyJurnal
    The Silver Reed Model LK150 knitting machine is a home knitting machine which is
    extremely lightweight and compact, making it preferable by most home knitters.
    There are various knitwears with interesting patterns can be made using this model. In
    the field of garments manufacturing by using flatbed knitting machines, it is
    important to understand the physical properties of fabric so that their impact on
    dimensional changes can be predicted to produce the most suitable end use. The
    samples were produced by using a blended bamboo/cotton yarn, with a composition
    of 30% cotton and 70% bamboo. The main objectives of this study are to to evaluate
    the physical properties of single jersey fabric knitted on home knitting machine by
    using different stitch dials and to relate the physical properties with different stitch
    lengths. Then, all tests were conducted to compare the physical properties of samples
    between three different stitch dials and the effects of before and after washing. The
    physical properties measured in this research were stitch length, stitch density, weight,
    thickness, absorbency and shrinkage. The result indicated that the longer the stitch
    length, the higher the percentage of the water impact penetration. Meanwhile, there
    was a slight reduction on the density, thickness and fabric weight. In addition, the
    result after three times washing showed that the samples only had slight changes in
    density, thickness, weight and stitch length, but has significant changes on the water
    impact penetration.
    Matched MeSH terms: Textiles
  6. Sinnapa S, Soon LS
    Med J Malaya, 1970 Jun;24(4):278-86.
    PMID: 4096943
    Matched MeSH terms: Textiles
  7. Hindatu Y, Annuar MSM, Subramaniam R, Gumel AM
    Bioprocess Biosyst Eng, 2017 Jun;40(6):919-928.
    PMID: 28341913 DOI: 10.1007/s00449-017-1756-4
    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m2, which was 15-53% higher than the MFC operated with CC-C (214 mW/m2) and pristine CC (119 mW/m2) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.
    Matched MeSH terms: Textiles
  8. Thoa LTK, Thao TTP, Nguyen-Thi ML, Chung ND, Ooi CW, Park SM, et al.
    Chemosphere, 2023 Jun;325:138392.
    PMID: 36921772 DOI: 10.1016/j.chemosphere.2023.138392
    The present study reported the improvement of biological treatment for the removal of recalcitrant dyes including aniline blue, reactive black 5, orange II, and crystal violet in contaminated water. The biodegradation efficiency of Fusarium oxysporum was significantly enhanced by the addition of mediators and by adjusting the biomass density and nutrient composition. A supplementation of 1% glucose in culture medium improved the biodegradation efficiency of aniline blue, reactive black 5, orange II, and crystal violet by 2.24, 1.51, 4.46, and 2.1 folds, respectively. Meanwhile, the addition of mediators to culture medium significantly increased the percentages of total removal for aniline blue, reactive black 5, orange II, and crystal violet, reaching 86.07%, 68.29%, 76.35%, and 95.3%, respectively. Interestingly, the fungal culture supplemented with 1% remazol brilliant blue R boosted the biodegradation up to 97.06%, 89.86%, 91.38%, and 86.67% for aniline blue, reactive black 5, orange II, and crystal violet, respectively. Under optimal culture conditions, the fungal culture could degrade these synthetic dyes concentration up to 104 mg/L. The present study demonstrated that different recalcitrant dye types can be efficiently degraded using microorganism such as F. oxysporum.
    Matched MeSH terms: Textiles
  9. Kristanti RA, Fikri Ahmad Zubir MM, Hadibarata T
    J Environ Manage, 2016 May 1;172:107-11.
    PMID: 26922501 DOI: 10.1016/j.jenvman.2015.11.017
    Cresol Red, a commercial dye that used widely to color nylon, wool, cotton, and polyacrylonitrile-modified nylon in the massive textile manufacture is toxic recalcitrant. Absidia spinosa M15, a novel fungal strain isolated from a tropical rain forest, was found to decolorize Cresol Red 65% within 30 d under agitation condition. UV-Vis spectroscopy, TLC analysis and mass spectra of samples after decolorization process in culture medium confirmed final decolorization of Cresol Red. Two metabolites were identified in the treated medium: benzeneacetic acid (tR 9.6 min and m/z 136) and benzoic acid (tR 5.7 min and m/z 122). Laccase showed the significant activity (133.8 U/L) in biomass obtained at the end of experiment demonstrates role of the enzyme in the decolorization process.
    Matched MeSH terms: Textiles
  10. Asghar A, Bello MM, Raman AAA, Daud WMAW, Ramalingam A, Zain SBM
    Heliyon, 2019 Sep;5(9):e02396.
    PMID: 31517121 DOI: 10.1016/j.heliyon.2019.e02396
    In this work, quantum chemical analysis was used to predict the degradation potential of a recalcitrant dye, Acid blue 113, by hydrogen peroxide, ozone, hydroxyl radical and sulfate radical. Geometry optimization and frequency calculations were performed at 'Hartree Fock', 'Becke, 3-parameter, Lee-Yang-Parr' and 'Modified Perdew-Wang exchange combined with PW91 correlation' levels of study using 6-31G* and 6-31G** basis sets. The Fourier Transform-Raman spectra of Acid blue 113 were recorded and a complete analysis on vibrational assignment and fundamental modes of model compound was performed. Natural bond orbital analysis revealed that Acid blue 113 has a highly stable structure due to strong intermolecular and intra-molecular interactions. Mulliken charge distribution and molecular electrostatic potential map of the dye also showed a strong influence of functional groups on the neighboring atoms. Subsequently, the reactivity of the dye towards the oxidants was compared based on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. The results showed that Acid blue 113 with a HOMO value -5.227 eV exhibits a nucleophilic characteristic, with a high propensity to be degraded by ozone and hydroxyl radical due to their lower HOMO-LUMO energy gaps of 4.99 and 4.22 eV respectively. On the other hand, sulfate radical and hydrogen peroxide exhibit higher HOMO-LUMO energy gaps of 7.92 eV and 8.10 eV respectively, indicating their lower reactivity towards Acid blue 113. We conclude that oxidation processes based on hydroxyl radical and ozone would offer a more viable option for the degradation of Acid blue 113. This study shows that quantum chemical analysis can assist in selecting appropriate advanced oxidation processes for the treatment of textile effluent.
    Matched MeSH terms: Textiles
  11. Abdul Rahman Hassan, Nurul Hannan Mohd Safari, Sabariah Rozali, Hafizan Juahir, Mohd Khairul Amri Kamarudin
    MyJurnal
    Nanofiltration membranes technology commonly used for wastewater treatment especially
    wastewater containing charged and/or uncharged species. Commonly, textile wastewater
    possesses high chemical oxygen demand (COD) and non-biodegradable compounds such as
    pigments and dyes which lead to environmental hazard and serious health problem. Therefore, the
    objective of this study was to investigate the effects of hydrophilic surfactant on the preparation and
    performance of Active Nanofiltration (ANF) membrane. The polymeric ANF membranes were
    prepared via dry/wet phase inversion technique by immersion precipitation process. The
    Cetyletrimethylammonium bromide (CTAB) as cationic surfactant was added in casting solution at
    concentrations from 0 to 2.5 wt%. The synthesized membrane performance was evaluated in terms
    of pure water permeation (PWP) and dye rejection. The experimental data showed that the
    membrane demonstrated good increment of PWP ranging from 0.27 to 10.28 L/m2
    h at applied
    pressure from 100 to 500kPa, respectively. Meanwhile, the ANF membranes achieved high
    removal of Methyl Blue and Reactive Black 5 dye up to 99.5% and 91.6%, respectively.
    Matched MeSH terms: Textiles
  12. Nor Habibah Mohd Rosli, Wan Azlina Ahmad
    Science Letters, 2018;12(1):30-43.
    MyJurnal
    Wastewater from industrial plants such as textile, electroplating and petroleum refineries contains various substances that tend to increase the chemical oxygen demand (COD) of the wastewater. Therefore, it is desired to develop a process suitable for treating the wastewater to meet the regulatory limits. This work was conducted to investigate the potential of adapted single culture of A. baumannii, A.calcoaceticus and C.cellulans in reducing COD in real textile wastewater. The study was carried out by adapting each single culture (10% inoculums) to increasing concentration (1%, 2.5 %, 5%, 7.5 % and 10%) of textile wastewater. Then it was introduced to the textile effluent without pH adjustment for five days and the COD values were measured. The textile wastewater was supplemented with pineapple waste for bacterial growth and metabolism. Results obtained showed that pineapple waste was a good nutrient supply for the growth of the bacteria and the best concentration of textile wastewater for adaptation was at 2.5%. The results also showed that A.calcoaceticus shows highest COD reduction with 67% removal whereas A. baumannii and C.cellulans with 60% and 58% removal respectively. The outcome supported that the single culture used in this study showed considerably high reduction of COD from real textile wastewater.
    Matched MeSH terms: Textiles
  13. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
    Matched MeSH terms: Textiles
  14. Logroño W, Pérez M, Urquizo G, Kadier A, Echeverría M, Recalde C, et al.
    Chemosphere, 2017 Mar 01;176:378-388.
    PMID: 28278426 DOI: 10.1016/j.chemosphere.2017.02.099
    An air exposed single-chamber microbial fuel cell (SCMFC) using microalgal biocathodes was designed. The reactors were tested for the simultaneous biodegradation of real dye textile wastewater (RTW) and the generation of bioelectricity. The results of digital image processing revealed a maximum coverage area on the biocathodes by microalgal cells of 42%. The atmospheric and diffused CO2 could enable good algal growth and its immobilized operation on the cathode electrode. The biocathode-SCMFCs outperformed an open circuit voltage (OCV), which was 18%-43% higher than the control. Furthermore, the maximum volumetric power density achieved was 123.2 ± 27.5 mW m(-3). The system was suitable for the treatment of RTW and the removal/decrease of COD, colour and heavy metals. High removal efficiencies were observed in the SCMFCs for Zn (98%) and COD (92-98%), but the removal efficiencies were considerably lower for Cr (54-80%). We observed that this single chamber MFC simplifies a double chamber system. The bioelectrochemical performance was relatively low, but the treatment capacity of the system seems encouraging in contrast to previous studies. A proof-of-concept experiment demonstrated that the microalgal biocathode could operate in air exposed conditions, seems to be a promising alternative to a Pt cathode and is an efficient and cost-effective approach to improve the performance of single chamber MFCs.
    Matched MeSH terms: Textiles
  15. Shanggar, K., Ng, C.H., Razack, A.H., Dublin, N.
    JUMMEC, 2010;13(1):59-62.
    MyJurnal
    Malignant tumours of the scrotum are very rare. Several type of occupations have been identified as high risk for the development of SCC of scrotum e.g paraffin and shale oil workers (1), textile workers (2) etc. We report a rare case of SCC of scrotum. Search of our records in the Urology and Pathology departments of our Centre showed that this is the only case of SCC of the scrotum in the last 10 years.
    Matched MeSH terms: Textiles
  16. Krishnan, Jagannathan, Siti Rabiatul Adawiyah Ibrahim
    MyJurnal
    Mixed microbial culture used in this study was developed from sludge that was taken from local textile wastewater treatment tank. Acclimatization process was performed before starting the biodegradation experiment to obtain a microbial culture with high degradation properties. Kinetic studies by the mixed microbial culture were determined quantitatively for the model pollutant, Reactive Black 5 (RB 5). By using Michaelis-Menten model, the constants were found to be 11.15 mg l-1 h -1 and 29.18 mg l-1 for Vm and Km respectively. The values of kinetic constants for Monod model were found to be 33.11 mg l-1 cell h-1 for the maximum specific microbial growth rate, µm and 86.62 mg l-1 for Monod constant, Ks. The effects of process parameters such as pH, inoculum size and initial dye concentration on the biodegradation of azo dye, RB 5 were systematically investigated. Maximum removal efficiencies observed in this study were 75% for pH 6, 100% for 15% inoculum concentration and 75% for 20 ppm of initial dye concentration.
    Matched MeSH terms: Textiles
  17. Thomas J, Idris NA, Collings DA
    J Microsc, 2017 10;268(1):13-27.
    PMID: 28654160 DOI: 10.1111/jmi.12582
    Pontamine fast scarlet 4B is a red paper and textiles dye that has recently been introduced as a fluorescent probe for plant cell walls. Pontamine exhibits bifluorescence, or fluorescence dependent on the polarization of the excitation light: Because cellulose is aligned within the cell wall, pontamine-labelled cell walls exhibit variable fluorescence as the excitation polarization is modulated. Thus, bifluorescence measurements require polarized excitation that can be directly or indirectly modulated. In our confocal microscopy observations of various cellulose samples labelled with pontamine, we modulated excitation polarization either through sample rotation or by the confocal's scanfield rotation function. This variably rotated laser polarizations on Leica confocal microscopes, but not those from other makers. Beginning with samples with directly observable microfibril orientations, such as purified bacterial cellulose, the velamen of orchid roots and the inner S2 layer of radiata pine compression wood, we demonstrate that modelling the variations in pontamine fluorescence with a sine curve can be used to measure the known microfibril angles. We then measured average local microfibril angles in radiata pine samples, and showed similar microfibril angles in compression and normal (opposite) wood. Significantly, bifluorescence measurements might also be used to understand the degree of local cellulose alignment within the cell wall, as opposed to variations in the overall cellulose angle.
    Matched MeSH terms: Textiles
  18. Aziz HA, Razak MHA, Rahim MZA, Kamar WISW, Abu Amr SS, Hussain S, et al.
    Data Brief, 2018 Jun;18:920-927.
    PMID: 29900259 DOI: 10.1016/j.dib.2018.03.113
    Wastewater treatment is a key challenge in the textile industry. The current treatment methods for textile wastewater are insufficient or ineffective for complex dyes generated from the textile industry. This study evaluated the performances of two novel inorganic coagulants with high cationic charges, namely, titanium tetrachloride (TiCl4) and zirconium tetrachloride (ZrCl4). They were utilised to treat textile industry wastewater. Both coagulation processes were performed under the same experimental operational conditions. Turbidity, suspended solids (SS), colour, chemical oxygen demand (COD) and ammonia were measured to assess the efficiencies of the coagulants. Results indicated that ZrCl4 and TiCl4 exhibited high potentials for textile wastewater treatment. ZrCl4 presented high removal efficiency in COD and SS, whereas TiCl4 showed excellent removal in ammonia.
    Matched MeSH terms: Textiles
  19. Abd Rahman NH, Yamada Y, Amin Nordin MS
    Materials (Basel), 2019 May 19;12(10).
    PMID: 31109128 DOI: 10.3390/ma12101636
    Previous works have shown that wearable antennas can operate ideally in free space; however, degradation in performance, specifically in terms of frequency shifts and efficiency was observed when an antenna structure was in close proximity to the human body. These issues have been highlighted many times yet, systematic and numerical analysis on how the dielectric characteristics may affect the technical behavior of the antenna has not been discussed in detail. In this paper, a wearable antenna, developed from a new electro-textile material has been designed, and the step-by-step manufacturing process is presented. Through analysis of the frequency detuning effect, the on-body behavior of the antenna is evaluated by focusing on quantifying the changes of its input impedance and near-field distribution caused by the presence of lossy dielectric material. When the antenna is attached to the top of the body fat phantom, there is an increase of 17% in impedance, followed by 19% for the muscle phantom and 20% for the blood phantom. These phenomena correlate with the electric field intensities (V/m) observed closely at the antenna through various layers of mediums (z-axis) and along antenna edges (y-axis), which have shown significant increments of 29.7% in fat, 35.3% in muscle and 36.1% in blood as compared to free space. This scenario has consequently shown that a significant amount of energy is absorbed in the phantoms instead of radiated to the air which has caused a substantial drop in efficiency and gain. Performance verification is also demonstrated by using a fabricated human muscle phantom, with a dielectric constant of 48, loss tangent of 0.29 and conductivity of 1.22 S/m.
    Matched MeSH terms: Textiles
  20. Bharathi D, Nandagopal JGT, Ranjithkumar R, Gupta PK, Djearamane S
    Arch Microbiol, 2022 Feb 14;204(3):169.
    PMID: 35157149 DOI: 10.1007/s00203-022-02767-3
    The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.
    Matched MeSH terms: Textiles
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links