Displaying publications 21 - 40 of 117 in total

Abstract:
Sort:
  1. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2010 Sep 15;159(2):130-43.
    PMID: 20673570 DOI: 10.1016/j.cis.2010.06.002
    Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.
    Matched MeSH terms: Titanium/chemistry*
  2. Zainudin NF, Abdullah AZ, Mohamed AR
    J Hazard Mater, 2010 Feb 15;174(1-3):299-306.
    PMID: 19818556 DOI: 10.1016/j.jhazmat.2009.09.051
    Photocatalytic degradation of phenol was investigated using the supported nano-TiO(2)/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO(2) as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO(2):ZSM-5:silica gel:colloidal silica gel=1:0.6:0.6:1) which giving about 90% degradation of 50mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m(2)/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.
    Matched MeSH terms: Titanium/chemistry*
  3. Akpan UG, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):520-9.
    PMID: 19505759 DOI: 10.1016/j.jhazmat.2009.05.039
    This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.
    Matched MeSH terms: Titanium/chemistry*
  4. Maleki-Ghaleh H, Hafezi M, Hadipour M, Nadernezhad A, Aghaie E, Behnamian Y, et al.
    PLoS One, 2015;10(9):e0138454.
    PMID: 26383641 DOI: 10.1371/journal.pone.0138454
    In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.
    Matched MeSH terms: Titanium/chemistry*
  5. Choudhury D, Lackner JM, Major L, Morita T, Sawae Y, Bin Mamat A, et al.
    J Mech Behav Biomed Mater, 2016 06;59:586-595.
    PMID: 27085502 DOI: 10.1016/j.jmbbm.2016.04.004
    This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading.
    Matched MeSH terms: Titanium/chemistry*
  6. Rad S, Shamsudin S, Taha MR, Shahid S
    Water Sci Technol, 2016;73(2):405-13.
    PMID: 26819397 DOI: 10.2166/wst.2015.465
    The photo-degradation of nutrients in stormwater in photocatalytic reactor wet detention pond using nano titanium dioxide (TiO2) in concrete was investigated in a scale model as a new stormwater treatment method. Degradation of phosphate and nitrate in the presence of nano-TiO2 under natural ultra violet (UV) from tropical sunlight was monitored for 3 weeks compared with normal ponds. Two types of cement, including ordinary Portland and white cement mixed with TiO2 nano powder, were used as a thin cover to surround the body of the pond. Experiments with and without the catalyst were carried out for comparison and control. Average Anatase diameter of 25 nm and Rutile 100 nm nano particles were applied at three different mixtures of 3, 10 and 30% weight. The amounts of algae available orthophosphate and nitrate, which cause eutrophication in the ponds, were measured during the tests. Results revealed that the utilization of 3% up to 30% weight nano-TiO2 can improve stormwater outflow quality by up to 25% after 48 h and 57% after 3 weeks compared with the control sample in normal conditions with average nutrient (phosphate and nitrate) removal of 4% after 48 h and 10% after 3 weeks.
    Matched MeSH terms: Titanium/chemistry*
  7. Rafieerad AR, Bushroa AR, Nasiri-Tabrizi B, Fallahpour A, Vadivelu J, Musa SN, et al.
    J Mech Behav Biomed Mater, 2016 08;61:182-196.
    PMID: 26874249 DOI: 10.1016/j.jmbbm.2016.01.028
    PVD process as a thin film coating method is highly applicable for both metallic and ceramic materials, which is faced with the necessity of choosing the correct parameters to achieve optimal results. In the present study, a GEP-based model for the first time was proposed as a safe and accurate method to predict the adhesion strength and hardness of the Nb PVD coated aimed at growing the mixed oxide nanotubular arrays on Ti67. Here, the training and testing analysis were executed for both adhesion strength and hardness. The optimum parameter combination for the scratch adhesion strength and micro hardness was determined by the maximum mean S/N ratio, which was 350W, 20 sccm, and a DC bias of 90V. Results showed that the values calculated in the training and testing in GEP model were very close to the actual experiments designed by Taguchi. The as-sputtered Nb coating with highest adhesion strength and microhardness was electrochemically anodized at 20V for 4h. From the FESEM images and EDS results of the annealed sample, a thick layer of bone-like apatite was formed on the sample surface after soaking in SBF for 10 days, which can be connected to the development of a highly ordered nanotube arrays. This novel approach provides an outline for the future design of nanostructured coatings for a wide range of applications.
    Matched MeSH terms: Titanium/chemistry*
  8. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Titanium/chemistry*
  9. Iqbal A, Saidu U, Adam F, Sreekantan S, Yahaya N, Ahmad MN, et al.
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923041 DOI: 10.3390/molecules26092509
    In this work, mesoporous TiO2-modified ZnO quantum dots (QDs) were immobilised on a linear low-density polyethylene (LLDPE) polymer using a solution casting method for the photodegradation of tetracycline (TC) antibiotics under fluorescent light irradiation. Various spectroscopic and microscopic techniques were used to investigate the physicochemical properties of the floating hybrid polymer film catalyst (8%-ZT@LLDPE). The highest removal (89.5%) of TC (40 mg/L) was achieved within 90 min at pH 9 due to enhanced water uptake by the LDDPE film and the surface roughness of the hybrid film. The formation of heterojunctions increased the separation of photogenerated electron-hole pairs. The QDs size-dependent quantum confinement effect leads to the displacement of the conduction band potential of ZnO QDs to more negative energy values than TiO2. The displacement generates more reactive species with higher oxidation ability. The highly stable film photocatalyst can be separated easily and can be repeatedly used up to 8 cycles without significant loss in the photocatalytic ability. The scavenging test indicates that the main species responsible for the photodegradation was O2●-. The proposed photodegradation mechanism of TC was demonstrated in further detail based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS).
    Matched MeSH terms: Titanium/chemistry
  10. Subramonian W, Wu TY, Chai SP
    J Environ Manage, 2017 Feb 01;187:298-310.
    PMID: 27914351 DOI: 10.1016/j.jenvman.2016.10.024
    In this work, heterogeneous photocatalysis was used to treat pulp and paper mill effluent (PPME). Magnetically retrievable Fe2O3-TiO2 was fabricated by employing a solvent-free mechanochemical process under ambient conditions. Findings elucidated the successful incorporation of Fe2O3 into the TiO2 lattice. Fe2O3-TiO2 was found to be an irregular and slightly agglomerated surface morphology. In comparison to commercial P25, Fe2O3-TiO2 exhibited higher ferromagnetism and better catalyst properties with improvements in surface area (58.40 m2/g), pore volume (0.29 cm3/g), pore size (18.52 nm), and band gap (2.95 eV). Besides, reusability study revealed that Fe2O3-TiO2 was chemically stable and could be reused successively (five cycles) without significant changes in its photoactivity and intrinsic properties. Additionally, this study demonstrated the potential recovery of Fe2O3-TiO2 from an aqueous suspension by using an applied magnetic field or sedimentation. Interactive effects of photocatalytic conditions (initial effluent pH, Fe2O3-TiO2 dosage, and air flow-rate), reaction mechanism, and the presence of chemical oxidants (H2O2, BrO3-, and HOCl) during the treatment process of PPME were also investigated. Under optimal conditions (initial effluent pH = 3.88, [Fe2O3-TiO2] = 1.3 g/L, and air flow-rate = 2.28 L/min), the treatment efficiency of Fe2O3-TiO2 was 98.5% higher than the P25. Based on Langmuir-Hinshelwood kinetic model, apparent rate constants of Fe2O3-TiO2 and P25 were 9.2 × 10-3 and 2.7 × 10-3 min-1, respectively. The present study revealed not only the potential of using magnetic Fe2O3-TiO2 in PPME treatment but also demonstrated high reusability and easy separation of Fe2O3-TiO2 from the wastewater.
    Matched MeSH terms: Titanium/chemistry
  11. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
    Matched MeSH terms: Titanium/chemistry*
  12. Maqbool M, Tirmazi SSM, Shakoor A, Akram Z, Nazir R, Chohan AN, et al.
    Biomed Res Int, 2023;2023:1044541.
    PMID: 36845639 DOI: 10.1155/2023/1044541
    BACKGROUND: Despite of having improved endodontic file designs as well as the reinforced metal alloy file structure, intracanal endodontic file separation (EFS) is still a very problematic and worrisome dental incident, which usually occurs without any visible signs of permanent deformation. Further, there have been conflicting reports regarding the clinical significance of leaving separated files within root canals.

    AIMS: The aim of this study was to look into the current perceptions and awareness about file separation during endodontic treatment among the dental house officers (DHOs).

    MATERIALS AND METHODS: A novel validated questionnaire comprising of 15 close-ended questions was distributed anonymously via Google Forms through email to 1100 DHOs across Pakistan. The questionnaire consisted of two parts: the first component (Section I) collected demographic data and the second component (Section II) investigated the causes of EFS during root canal treatment. Following the completion of socioeconomic information, including age and gender, the DHOs were asked to answer a few questions about the various reasons for endodontic instrument fracture.

    RESULTS: A total of 800 responses were recorded, with an effective rate of 72.8%. The majority of the DHOs (p value < 0.001) perceived that endodontic instrument fracture occurred in the posterior (61.5%) and apical third of the canal (50.5%) and in older permanent dentition (67.3%), possibly due to patient anxiety (62%). Better choice of instrument (61.15%), operators' experience (95.3%), knowledge (87.5%), and proper root canal cleaning (91.1%) are believed to be the vital steps in reducing endodontic file separation/fracture. Furthermore, majority of them (p value < 0.001) perceived that stainless steel was a superior alloy for filing instruments. Manual files tend to be more prone to fractures due to repeated use than rotary files.

    CONCLUSION: This study demonstrated that young DHOs had adequate knowledge and awareness regarding the potential predisposing factors and handling techniques for EFS. This study thereby provides an evaluating tool to access the insights of the current perceptions and awareness of DHOs concerning EFS.

    Matched MeSH terms: Titanium/chemistry
  13. Lim PF, Leong KH, Sim LC, Abd Aziz A, Saravanan P
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3455-3464.
    PMID: 30515688 DOI: 10.1007/s11356-018-3821-1
    In this work, a sunlight-sensitive photocatalyst of nanocubic-like titanium dioxide (TiO2) and N-doped graphene quantum dots (N-GQDs) is developed through a simple hydrothermal and physical mixing method. The successful amalgamation composite photocatalyst characteristics were comprehensively scrutinized through various physical and chemical analyses. A complete removal of bisphenol A (BPA) is attained by a synthesized composite after 30 min of sunlight irradiation as compared to pure TiO2. This clearly proved the unique contribution of N-GQDs that enhanced the ability of light harvesting especially under visible light and near-infrared region. This superior characteristic enables it to maximize the absorbance in the entire solar spectrum. However, the increase of N-GQDs weight percentage has created massive oxygen vacancies that suppress the generation of active radicals. This resulted in a longer duration for a complete removal of BPA as compared to lower weight percentage of N-GQDs. Hence, this finding can offer a new insight in developing effective sunlight-sensitive photocatalysts for various complex organic pollutants degradation.
    Matched MeSH terms: Titanium/chemistry*
  14. Afzal S, Samsudin EM, Julkapli NM, Hamid SB
    Environ Sci Pollut Res Int, 2016 Nov;23(22):23158-23168.
    PMID: 27591888
    For the synthesis of a highly active TiO2-chitosan nanocomposite, pH plays a crucial role towards controlling its morphology, size, crystallinity, thermal stability, and surface adsorption properties. The presence of chitosan (CS) biopolymer facilitates greater sustainability to the photoexcited electrons and holes on the catalysts' surface. The variation of synthesis pH from 2 to 5 resulted in different physico-chemical and photocatalytic properties, whereby a pH of 3 resulted in TiO2-chitosan nanocomposite with the highest photocatalytic degradation (above 99 %) of methylene orange (MO) dye. This was attributed to the efficient surface absorption properties, high crystallinity, and the presence of reactive surfaces of -NH2 and -OH groups, which enhances the adsorption-photodegradation effect. The larger surface oxygen vacancies coupled with reduced electron-hole recombination further enhanced the photocatalytic activity. It is undeniable that the pH during synthesis is critical towards the development of the properties of the TiO2-chitosan nanocomposite for the enhancement of photocatalytic activity.
    Matched MeSH terms: Titanium/chemistry*
  15. Ghadiry M, Gholami M, Lai CK, Ahmad H, Chong WY
    PLoS One, 2016;11(4):e0153949.
    PMID: 27101247 DOI: 10.1371/journal.pone.0153949
    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.
    Matched MeSH terms: Titanium/chemistry*
  16. Mari E, Duraisamy M, Eswaran M, Sellappan S, Won K, Chandra P, et al.
    Mikrochim Acta, 2024 Mar 20;191(4):212.
    PMID: 38509344 DOI: 10.1007/s00604-024-06273-9
    The facile fabrication is reported of highly electrochemically active Ti3C2Tx MXene/MWCNT (3D/1D)-modified screen-printed carbon electrode (SPE) for the efficient simultaneous electrochemical detection of paracetamol, theophylline, and caffeine in human blood samples. 3D/1D Ti3C2Tx MXene/MWCNT nanocomposite was synthesized using microwave irradiation and ultrasonication processes. Then, the Ti3C2Tx/MWCNT-modified SPE electrode was fabricated and thoroughly characterized towards its physicochemical and electrochemical properties using XPS, TEM, FESEM, XRD, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. As-constructed Ti3C2Tx-MWCNT/SPE offers excellent electrochemical sensing performance with good detection limits (0.23, 0.57, and 0.43 µM) and wide linear ranges (1.0 ~ 90.1, 2.0 ~ 62.0, and 2.0-90.9 µM) for paracetamol, caffeine, and theophylline, respectively,  in the human samples. Notably, the non-enzymatic electroactive nanocomposite-modified electrode has depicted a semicircle Nyquist plot with low charge transfer resistance (Rct∼95 Ω), leading to high ionic diffusion and facilitating an excellent electron transfer path. All the above results in efficient stability, reproducibility, repeatability, and sensitivity compared with other reported works, and thus, it claims its practical utilization in realistic clinical applications.
    Matched MeSH terms: Titanium/chemistry
  17. Habiba U, Islam MS, Siddique TA, Afifi AM, Ang BC
    Carbohydr Polym, 2016 09 20;149:317-31.
    PMID: 27261756 DOI: 10.1016/j.carbpol.2016.04.127
    Chitosan/PVA/Na-titanate/TiO2 composite was synthesized by solution casting method. The composite was analyzed via Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Thermal gravimetric analysis and water stability test. Incorporation of Na-titanate shown decrease of crystallinity for chitosan but increase water stability. However, the composite structure was deteriorated with considerable weight loss in acidic medium. Two anionic dyes, methyl orange and congo red were used for the adsorption test. The adsorption behavior of the composites were described by pseudo-second-order kinetic model and Lagergren-first-order model for methyl orange and congo red, respectively. For methyl orange, adsorption was started with a promising decolorization rate. 99.9% of methyl orange dye was removed by the composite having higher weightage of chitosan and crystalline TiO2 phase. On the other hand, for the congo red the composite having higher chitosan and Na-titanate showed an efficient removal capacity of 95.76%. UV-vis results showed that the molecular backbone of methyl orange and congo red was almost destroyed when equilibrium was obtained, and the decolorization rate was reaching 100%. Kinetic study results showed that the photocatalytic degradation of methyl orange and congo red could be explained by Langmuir-Hinshelwood model. Thus, chitosan/PVA/Na-titanate/TiO2 possesses efficient adsorptivity and photocatalytic property for dye degradation.
    Matched MeSH terms: Titanium/chemistry*
  18. Shahadat M, Teng TT, Rafatullah M, Arshad M
    Colloids Surf B Biointerfaces, 2015 Feb 1;126:121-37.
    PMID: 25543989 DOI: 10.1016/j.colsurfb.2014.11.049
    This article explains recent advances in the synthesis and characterization of novel titanium-based nanocomposite materials. Currently, it is a pressing concern to develop innovative skills for the fabrication of hybrid nanomaterials under varying experimental conditions. This review generally focuses on the adsorption behavior of nanocomposites for the exclusion of organic and inorganic pollutants from industrial effluents and their significant applications in various fields. The assessment of recently published articles on the conjugation of organic polymers with titanium has revealed that these materials may be a new means of managing aquatic pollution. These nanocomposite materials not only create alternative methods for designing novel materials, but also develop innovative industrial applications. In the future, titanium-based hybrid nanomaterials are expected to open new approaches for demonstrating their outstanding applications in diverse fields.
    Matched MeSH terms: Titanium/chemistry*
  19. Al-Alwani MA, Mohamad AB, Kadhum AA, Ludin NA
    PMID: 25483560 DOI: 10.1016/j.saa.2014.11.018
    Nine solvents, namely, n-hexane, ethanol, acetonitrile, chloroform, ethyl-ether, ethyl-acetate, petroleum ether, n-butyl alcohol, and methanol were used to extract natural dyes from Cordyline fruticosa, Pandannus amaryllifolius and Hylocereus polyrhizus. To improve the adsorption of dyes onto the TiO2 particles, betalain and chlorophyll dyes were mixed with methanol or ethanol and water at various ratios. The adsorption of the dyes mixed with titanium dioxide (TiO2) was also observed. The highest adsorption of the C.fruticosa dye mixed with TiO2 was achieved at ratio 3:1 of methanol: water. The highest adsorption of P.amaryllifolius dye mixed with TiO2 was observed at 2:1 of ethanol: water. H.polyrhizus dye extracted by water and mixed with TiO2 demonstrated the highest adsorption among the solvents. All extracted dye was adsorbed onto the surface of TiO2 based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The inhibition of crystallinity of TiO2 was likewise investigated by X-ray analysis. The morphological properties and composition of dyes were analyzed via SEM and EDX.
    Matched MeSH terms: Titanium/chemistry*
  20. Tan AW, Tay L, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B
    Int J Nanomedicine, 2014;9:5389-401.
    PMID: 25473278 DOI: 10.2147/IJN.S72659
    Two important criteria of an ideal biomaterial in the field of stem cells research are to regulate the cell proliferation without the loss of its pluripotency and to direct the differentiation into a specific cell lineage when desired. The present study describes the influence of TiO2 nanofibrous surface structures on the regulation of proliferation and stemness preservation of adipose-derived stem cells (ADSCs). TiO2 nanofiber arrays were produced in situ onto Ti-6Al-4V substrate via a thermal oxidation process and the successful fabrication of these nanostructures was confirmed by field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and contact angle measurement. ADSCs were seeded on two types of Ti-6Al-4V surfaces (TiO2 nanofibers and flat control), and their morphology, proliferation, and stemness expression were analyzed using FESEM, AlamarBlue assay, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) after 2 weeks of incubation, respectively. The results show that ADSCs exhibit better adhesion and significantly enhanced proliferation on the TiO2 nanofibrous surfaces compared to the flat control surfaces. The greater proliferation ability of TiO2 nanofibrous surfaces was further confirmed by the results of cell cycle assay. More importantly, TiO2 nanofibrous surfaces significantly upregulate the expressions of stemness markers Sox-2, Nanog3, Rex-1, and Nestin. These results demonstrate that TiO2 nanofibrous surfaces can be used to enhance cell adhesion and proliferation while simultaneously maintaining the stemness of ADSCs, thereby representing a promising approach for their potential application in the field of bone tissue engineering as well as regenerative therapies.
    Matched MeSH terms: Titanium/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links