Displaying publications 21 - 40 of 106 in total

Abstract:
Sort:
  1. Ng KH, Bradley DA, Looi LM, Mahmood CS, Wood AK
    Appl Radiat Isot, 1993 Mar;44(3):511-6.
    PMID: 8472024
    Multi-elemental quantitative analyses of 15 paired samples of normal and malignant human breast tissue by instrumental neutron activation analysis are reported. The elements, Al, Br, Ca, Cl, Co, Cs, Fe, K, Na, Rb, Zn were detected. Significantly elevated concentration levels were found for Al, Br, Ca, Cl, Cs, K, Na, Zn in malignant compared to normal tissue. Although the role of elemental composition in breast cancer is unclear, this finding may be of importance as another parameter for differentiating normal from malignant tissue.
    Matched MeSH terms: Trace Elements/analysis*
  2. Taheri S, Asadi S, Nilashi M, Ali Abumalloh R, Ghabban NMA, Mohd Yusuf SY, et al.
    J Trace Elem Med Biol, 2021 Sep;67:126789.
    PMID: 34044222 DOI: 10.1016/j.jtemb.2021.126789
    COVID-19 is a kind of SARS-CoV-2 viral infectious pneumonia. This research aims to perform a bibliometric analysis of the published studies of vitamins and trace elements in the Scopus database with a special focus on COVID-19 disease. To achieve the goal of the study, network and density visualizations were used to introduce an overall picture of the published literature. Following the bibliometric analysis, we discuss the potential benefits of vitamins and trace elements on immune system function and COVID-19, supporting the discussion with evidence from published clinical studies. The previous studies show that D and A vitamins demonstrated a higher potential benefit, while Selenium, Copper, and Zinc were found to have favorable effects on immune modulation in viral respiratory infections among trace elements. The principles of nutrition from the findings of this research could be useful in preventing and treating COVID-19.
    Matched MeSH terms: Trace Elements/pharmacology*
  3. Usman UA, Yusoff I, Raoov M, Hodgkinson J
    Environ Geochem Health, 2020 Oct;42(10):3079-3099.
    PMID: 32180058 DOI: 10.1007/s10653-020-00543-0
    The research study was carried out to evaluate trace metals (Pb, Cd, Se, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) concentrations in groundwater of Lorong Serai 4, Hulu Langat, Selangor, Malaysia. Additionally, the research study focused on determining non-carcinogenic and carcinogenic health risks, sources of the contaminants, and effective remediation methods. The results show that the concentration levels of Pb, Cd, Se, Al, Cu, Zn, Ni, Cr, and Ag are lower than their corresponding permissible limits, while Fe, Mn, and As concentrations exceed their acceptable limit. The hazard index of the groundwater in the area exceeded the acceptable limit, showing the rate of carcinogenic and non-carcinogenic health effects associated with the water. The findings also indicate that the lifetime cancer risk is high compared to the maximum limits of lifetime cancer risk from the drinking water (10-6 to 10-4). The groundwater geochemical data of the area are used in establishing the source of Fe, Mn, and As metal ions. Evaluation of Fe2+/Fe3+ and S2-/SO42- redox couples and thermodynamic modelling indicates that the groundwater of the area is in redox disequilibrium. The groundwater samples contain aqueous iron sulphate, which is supersaturated, ferrous carbonate and aluminium sulphate that are saturated. The main state of redox disequilibrium is governed by mineral precipitation and dissolution. Aqueous arsenic and manganese are possibly derived from the dissolution of pyrite (arsenopyrite) and amorphous oxide-hydroxides, respectively. The high concentration of iron in the shallow groundwater in the area is primarily the result of silicate rock weathering of ferroan igneous and metamorphic minerals with a minor contribution from the oxidation of iron sulphides. Magnetite coated with graphene oxide (Fe3O4-GO) nanoparticles (NPs) was synthesized and characterized, and the adsorption preliminary experiments were carried out; and the Fe3O4-GO NPs show enhanced removal (Fe > As > Mn) capacity over graphene oxide (GO).
    Matched MeSH terms: Trace Elements/analysis*
  4. Ong MC, Gan SL
    Mar Pollut Bull, 2017 Nov 30;124(2):1001-1005.
    PMID: 28807418 DOI: 10.1016/j.marpolbul.2017.08.019
    A study had been carried out to determine Cu, Zn, Cd, Hg and Pb concentrations in the muscle and fins of four elasmobranchs species namely spot-tail sharks, milk sharks, whitespotted bamboo sharks and whitespotted guitarfish from Pulau Kambing LKIM Fishery Complex, Kuala Terengganu, Malaysia. Zinc level was found to have the highest concentration whereas Cd had the lowest concentration in both organs. By comparing both organs, metals concentrations in fins of all elasmobranchs species were higher than muscle. Result obtained was compared with the guidelines set by Malaysian Food Regulation and the provisional tolerable weekly intake was also determined. Current study recommends that the muscle of whitespotted bamboo shark from Kuala Terengganu Waters is likely not to be consumed due to it exceeded the allowable consumption guideline. Finding of this paper is very useful as it provides the baseline data on the pollution status of elasmobranchs in Kuala Terengganu Waters.
    Matched MeSH terms: Trace Elements/analysis*
  5. Wang CC, Abdul Jalal MI, Song ZL, Teo YP, Tan CA, Heng KV, et al.
    Int J Environ Res Public Health, 2022 Oct 25;19(21).
    PMID: 36360757 DOI: 10.3390/ijerph192113878
    Early childhood nutritional deficiency has detrimental consequences on physical and cognitive development. We conducted a single-center, single-blind, two-arm pilot randomized no-treatment controlled trial (the Child of Urban Poverty Iron Project (CUPIP); NCT03819530) in a people’s housing project locale in Selangor, Malaysia, between September 2019 and February 2020, to assess the trial’s general feasibility and preliminary benefits of daily micronutrient supplementation for iron storage and anthropometric outcomes in under-5 children. Those with history of premature births, congenital abnormalities, or baseline hemoglobin <70 g/L were excluded. Participants received baseline deworming and were simply randomized in a 1:1 ratio to either micronutrient (4-month daily micronutrient packets) or control (no micronutrient supplementation) groups. Information on anthropometric, erythrocytic, and iron storage endpoints were collected. Overall, 45 (25 micronutrient and 20 controls) participants were enrolled and completed 4-month endpoint assessments. Micronutrient recipients demonstrated higher median mean corpuscular volume, serum ferritin level with no significant differences in all anthropometric endpoints. In conclusion, this pilot trial was implementable, demonstrating that micronutrient supplementation significantly improved hematological, but not anthropometric, endpoints, of under-5-year-old children living in an underprivileged environment. A definitive well-designed trial with larger sample sizes and greater attrition control should be contemplated in the future.
    Matched MeSH terms: Trace Elements*
  6. Khan A, Ul-Haq Z, Fatima S, Ahmed J, Alobaid HM, Fazid S, et al.
    Nutrients, 2023 Mar 30;15(7).
    PMID: 37049531 DOI: 10.3390/nu15071690
    Cost-effective interventions are needed to address undernutrition, particularly micronutrient deficiencies, which are common in children under the age of five in low- and middle-income countries. A community-based, non-randomized clinical trial was undertaken in the Kurram district of Khyber Pakhtunkhwa from January 2018 to June 2019, to evaluate the effect of locally produced micronutrient powder (local name: Vita-Mixe) on plasma micronutrient status, hemoglobin level, and anthropometric outcomes. Children aged 24-48 months old were recruited and allocated to the intervention and control arm of the study. The enrolled children in the intervention arm received one micronutrient powder (MNP) sachet for consumption on alternate days for 12 months. To assess the impact of the intervention on plasma levels of zinc, vitamin D, vitamin A, and hemoglobin level, blood samples were taken at baseline and after one year following the intervention. The analysis was conducted using Enzyme-Linked Immunosorbent Assay (ELISA), atomic absorption spectrometry, and an automated hematology analyzer. For the impact on growth parameters, the anthropometric assessment was performed using WHO standard guidelines. A 24 h dietary recall interview was used to assess the nutrient intake adequacy. Results showed that in the intervention arm, children had on average a 7.52 ng/mL (95% CI 5.11-9.92, p-value < 0.001) increase in the plasma level of vitamin A, 4.80 ng/mL (95% CI 1.63-7.95, p-value < 0.002) increase in vitamin D levels and 33.85 µg/dL (95% CI 24.40-43.30, p-value < 0.001) increase in the plasma zinc level, as well as a 2.0g/dL (95% CI 1.64-2.40, p-value < 0.001) increase in hemoglobin level. Statistically significant improvement was observed in the weight-for-height z-score (WHZ) (from -1.0 ± 0.88 to -0.40 ± 1.01, p < 0.001) and weight-for-age z-score (WAZ) (from -1.40 ± 0.50 to -1.05 ± 0.49, p < 0.001) in the intervention group compared to the control group. No statistically significant change was observed in the height-for-age z-score (HAZ) in the intervention group (p = 0.93). In conclusion, micronutrient powder supplementation is a cost-effective intervention to improve the micronutrient status, hemoglobin level, and growth parameters in under-five children, which can be scaled up in the existing health system to address the alarming rates of undernutrition in Pakistan and other developing countries.
    Matched MeSH terms: Trace Elements*
  7. Malays J Nutr, 1995;1(2):-.
    MyJurnal
    Research performed in four fishing villages in the district of Semporna, Sabah revealed a total 55 species of intertidal marine organisms were being utilized as source of food. Specimens were collected during low tides by accompanying the local people. The villages involved were Kg. Panjl, Kg. Bangau-Bangau (a resettlement area for the Sea Bajaus), Kg. Air and Kg. Kebimbangan. Idenfication of species was based on illustration described in texts as well as comparing with the collections in local muziums. Local name for each species was obtained from the population living within the vicinity of coastal areas. The total number of species collected, however, differed among the villages. Chemical analysis based on A.O.A.C of several species indicated variations in nutritive values and trace metals as well as lead content.
    Matched MeSH terms: Trace Elements
  8. Miskon FM, Noor Azhar Mord Shazili, Faridah Mohammad, Kamaruzzaman Yunus
    Sains Malaysiana, 2014;43:529-534.
    The selected trace metals in the soft tissue of Thais clavigera from 11 sampling sites along the coastal waters of the east coast of Peninsular Malaysia were studied. Significant inter-spatial variations in trace metals were recorded. Sites with relatively high concentrations of the contaminant metals Hg, Cd, Pb and Zn are correlated to their close proximity to industrial and urban sites or to boating and aquaculture activities. This could possibly be contributed by the high growth of industrial activities like port and sewage release. Interspatial comparison with previous studies indicated lower measurement. Meanwhile, comparison with other studies around the world also designated lower values except for Zn. The metal accumulation patterns indicated an enrichment of essential metals over non-essential metals. Comparison of metal concentration with maximum permissible limits of toxic metals in food established in different countries, as well as Malaysian Food Act 1983 and Food Regulations 1985 Fourteen Schedule, indicated the values were well within safety levels.
    Matched MeSH terms: Trace Elements
  9. Ibrahim WA, Nodeh HR, Sanagi MM
    Crit Rev Anal Chem, 2016 Jul 03;46(4):267-83.
    PMID: 26186420 DOI: 10.1080/10408347.2015.1034354
    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.
    Matched MeSH terms: Trace Elements/isolation & purification*; Trace Elements/chemistry
  10. Zheltova AA, Kharitonova MV, Iezhitsa IN, Serebryansky EP, Evsyukov OY, Spasov AA, et al.
    J Trace Elem Med Biol, 2017 Jan;39:36-42.
    PMID: 27908421 DOI: 10.1016/j.jtemb.2016.07.002
    The aim of the present study was to assess whether dietary magnesium deficiency can alter distribution of macroelements and trace elements in different organs and tissues. Experiments were carried out on 12 adult female Wistar rats, which were fed either a diet with low Mg content (≤20mgkg(-1) of diet) (LMgD) or a diet with daily recommended Mg content (≈500mgkg(-1)) as control group (CG) for 70 days. On the 70th day of the experiment heart, aorta, femoral skeletal muscle, forebrain, cerebellum, pituitary gland, thyroid gland, ovaries, uterus, liver, kidneys, and spleen were taken for analysis of mineral content. Concentrations of Fe and Ca were measured by inductively coupled plasma-atomic emission spectrometry, and levels of Na, K, Mg, Co, Cu, Zn, Ni, Se, I were determined by inductively coupled plasma mass spectrometry. On the 70th day, LMgD led to significant reduction of Mg level in red blood cells, plasma, aorta, uterus and thyroid gland compared to CG as well as resulted in significant decrease of Mg/Ca ratio in kidneys, spleen and ovaries. Contrary to this, an increase of Mg/Ca ratio was found in cerebellum of LMgD group. Significant decrease of K concentration was shown in aorta of LMgD animals compared to CG whereas myocardial K concentration was increased in LMgD group. Na level was two-fold higher in skeletal muscles of rats that received LMgD in comparison to CG (p=0.006). Increased concentrations of Fe in ovaries and uterus were found in LMgD. Mg restriction did not affect Zn concentration in any of tasted tissues. Se level was higher in spleen and lower in uterus of LMgD animals compared to CG. MgD was accompanied by increased level of Co in skeletal muscles and decreased its level in kidneys and uterus. LMgD feeding was associated with decreased concentrations of Ni in heart, thyroid gland, spleen, uterus and Co in heart, aorta, liver, kidneys, spleen and ovaries. The changes of Mg, K, Co content were accompanied by dramatic (10-fold) decrease of I concentration in aorta of LMgD animals. LMgD causes decrease of I content in ovaries and increase of I level in uterus vs CG. Thus, distribution of macroelements (Ca, Na, K) was weakly affected by Mg restriction that led to the most evident alterations of Co and Ni tissue levels. Moreover, mineral balance of uterus seems to be the most susceptible to low Mg intake. Hypomagnesaemia resulted in significant changes of 5 studied trace elements (Fe, Se, Cu, Ni and Co).
    Matched MeSH terms: Trace Elements/blood; Trace Elements/metabolism*
  11. Wan Ibrahim WA, Abd Ali LI, Sulaiman A, Sanagi MM, Aboul-Enein HY
    Crit Rev Anal Chem, 2014;44(3):233-54.
    PMID: 25391563 DOI: 10.1080/10408347.2013.855607
    The progress of novel sorbents and their function in preconcentration techniques for determination of trace elements is a topic of great importance. This review discusses numerous analytical approaches including the preparation and practice of unique modification of solid-phase materials. The performance and main features of ion-imprinting polymers, carbon nanotubes, biosorbents, and nanoparticles are described, covering the period 2007-2012. The perspective and future developments in the use of these materials are illustrated.
    Matched MeSH terms: Trace Elements/analysis; Trace Elements/isolation & purification*
  12. Ikonomopoulou MP, Olszowy H, Francis R, Ibrahim K, Whittier J
    Sci Total Environ, 2013 Apr 15;450-451:301-6.
    PMID: 23500829 DOI: 10.1016/j.scitotenv.2013.02.031
    A variety of trace metals were measured in the egg contents of three clutches of Chelonia mydas collected from Kuala Terengganu state in Peninsular Malaysia. We quantified Mn, Cu, Zn, Se (essential trace metals) and As (anthropogenic pollutant) at several developmental stages obtained by incubating eggs at two different temperatures (27 °C and 31 °C). The incubation temperatures were chosen because they produce predominantly male or predominantly female hatchlings, respectively. The eggs were removed from the sand and washed before being placed in incubators, to ensure that the only possible source of the detected metals was maternal transfer. Other metals: Mo, Co, Ni, Cd, Sn, Sb, Hg, Tl and Pb (all non-essential metals) were detected at concentrations below the lower limit of quantitation (LLOQ). Trace metal concentrations, particularly [Zn], increased during development, other metals (Cu, As, Se and Cr) accumulated to a lesser degree than zinc but no significant differences were observed between the incubation temperatures at any stage of incubation. To date, only a few studies on trace metals in turtle embryos and hatchlings have been reported; this study will provide basic knowledge on the accumulation of trace metals during development at two different incubation temperatures.
    Matched MeSH terms: Trace Elements/analysis; Trace Elements/pharmacokinetics
  13. Agusa T, Kunito T, Sudaryanto A, Monirith I, Kan-Atireklap S, Iwata H, et al.
    Environ Pollut, 2007 Feb;145(3):766-77.
    PMID: 16828209
    Concentrations of 20 trace elements were determined in muscle and liver of 34 species of marine fish collected from coastal areas of Cambodia, Indonesia, Malaysia and Thailand. Large regional difference was observed in the levels of trace elements in liver of one fish family (Carangidae): the highest mean concentration was observed in fish from the Malaysian coastal waters for V, Cr, Zn, Pb and Bi and those from the Java Sea side of Indonesia for Sn and Hg. To assess the health risk to the Southeast Asian populations from consumption of fish, intake rates of trace elements were estimated. Some marine fish showed Hg levels higher than the guideline values by U.S. Environmental Protection Agency and Joint FAO/WHO Expert Committee on Food Additives (JECFA). This suggests that consumption of these fish may be hazardous to the people.
    Matched MeSH terms: Trace Elements/administration & dosage; Trace Elements/analysis*
  14. Muhammed Shameem KM, Chawla A, Mallya M, Barik BK, Unnikrishnan VK, Kartha VB, et al.
    J Biophotonics, 2018 06;11(6):e201700271.
    PMID: 29411942 DOI: 10.1002/jbio.201700271
    Presence of renal-calculi (kidney stones) in human urethra is being increasingly diagnosed over the last decade and is considered as one of the most painful urological disorders. Accurate analysis of such stones plays a vital role in the evaluation of urolithiasis patients and in turn helps the clinicians toward exact etiologies. Two highly complementary laser-based analytical techniques; laser-induced breakdown spectroscopy (LIBS) and micro-Raman spectroscopy have been used to identify the chemical composition of different types of renal-calculi. LIBS explores elemental characteristics while Raman spectroscopy provides molecular details of the sample. This complete information on the sample composition might help clinicians to identify the key aspects of the formation of kidney stones, hence assist in therapeutic management and to prevent recurrence. The complementarity of both techniques has been emphasized and discussed. LIBS spectra of different types of stones suggest the probable composition of it by virtue of the major, minor and trace elements detected from the sample. However, it failed to differentiate the crystalline form of different hydrates of calcium oxalate stone. This lacuna was overcome by the use of Raman spectroscopy and these results are compared with conventional chemical analysis.
    Matched MeSH terms: Trace Elements
  15. Alafeef AK, Ariffin F, Zulkurnain M
    Foods, 2020 Aug 29;9(9).
    PMID: 32872507 DOI: 10.3390/foods9091197
    Selenium is an essential micronutrient with significant antioxidant activity promising in mitigating the formation of acrylamide during high-temperature roasting. In this study, green coffee beans pretreated with selenium (Se-coffee) were investigated on their selenium uptake, selenium retention in green and roasted beans, antioxidant activities, and formation of acrylamide during conventional and superheated steam roasting. Comparisons were made with positive (pretreated without selenium) and negative (untreated) controls. The acrylamide formation was significantly inhibited in Se-coffee (108.9-165.3 μg/kg) compared to the positive and negative controls by 73.9% and 52.8%, respectively. The reduction of acrylamide by superheated steam roasting only observed in the untreated coffee beans (negative control) by 32.4% parallel to the increase in its antioxidant activity. Selenium pretreatment significantly increased antioxidant activity of the roasted Se-coffee beans after roasting although soaking pretreatment significantly reduced antioxidant activity in the green beans. Acrylamide reduction in the roasted coffee beans strongly correlated with the change in antioxidant capacities after roasting (∆FRAP, 0.858; ∆DPPH, 0.836). The results indicate that the antioxidant properties of the organic selenium suppressed acrylamide formation during coffee roasting.
    Matched MeSH terms: Trace Elements
  16. Nashriyah Mat, Mazleha Maskin, Abdul Khalik Wood, Zaini Hamzah
    MyJurnal
    Mineral elemental uptake by Colocasia esculenta growing in swamp agroecosystem was studied following 14, 18 or 28 months of field spraying (MAT, months after treatment) with herbicide Gramoxone ® (paraquat). In overall, Al (68226.67 + 24066.56 μg/g dw) was the major element in riverine alluvial swamp soil, followed by micronutrient Fe (22280.00 + 6328.87 μg/g dw).
    Concentration of macronutrient K (20733.33 + 7371.82 μg/g dw) was the highest in swamp taro leaf followed by macronutrient Ca (7050.00 + 3767.26 μg/g dw). In overall, the order of importance of the average mineral concentration in swamp taro leaf was K > Ca > Mn > Al > Na > Fe > Zn > Br > Co. However at 14 MAT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Al > Na > Mn > Fe > Zn > Br > Co. At 18 MAT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Mn > Al > Fe > Na > Zn > Br > Co. At 28 MAT, the order of importance of mineral content concentration in swamp taro leaf was K > Ca > Mn > Fe > Al > Zn > Na > Br > Co. In overall, the average order of importance of mineral elemental uptake or the soil plant transfer coefficient was Mn > K > Na > Zn > Co > Fe > Al; similar with the order at 28 MAT. However, at 14 MAT the order of importance of the soil plant transfer coefficient was different at Mn > K > Na > Co > Zn > Al > Fe.
    Matched MeSH terms: Trace Elements
  17. Han H, Hu S, Syed-Hassan SSA, Xiao Y, Wang Y, Xu J, et al.
    Bioresour Technol, 2017 Jul;236:138-145.
    PMID: 28399417 DOI: 10.1016/j.biortech.2017.03.112
    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions.
    Matched MeSH terms: Trace Elements
  18. Bradley, D.A., Ramli, A.T., Hashim, S., Wagiran, H., Webb, M., Jeynes, C.
    ASM Science Journal, 2010;4(1):15-21.
    MyJurnal
    This research was focused on the thermoluminescence (TL) response of commercially produced single-mode telecommunication optical fibre manufactured by INOCORP (Canada). The fibres were either in the form of pure silica (SiO2) or as SiO2 doped with Ge or Al at concentrations appropriate for total internal reflection, as required for telecommunication purposes. Each of these INOCORP fibres had a core diameter of 125 ± 0.1 μm. It was noted that dopant concentration was not included among the data provided in the accompanying product data sheet. A particularly important parameter for obtaining the highest TL yield in this study was the dopant concentration of the SiO2 fibre. The dopants tended to diffuse during the production of the optical fibre. To obtain this parameter, proton induced X-ray emission (PIXE) analysis was utilised. PIXE while having limited depth resolution could unambiguously identify elements and analyse trace elements with a detection limit approaching μg g–1. For Al-doped fibres, dopant concentrations in the range of 0.98 – 2.93 mol% had been estimated, the equivalent range for Ge-doped fibres was 0.53 – 0.71 mol%. A linear dose response was observed following 2.5 MeV proton irradiation for Ge- and Al-doped fibres for up to 7 min exposure.
    Matched MeSH terms: Trace Elements
  19. Ashraf A, Saion E, Gharibshahi E, Kamari HM, Yap CK, Hamzah MS, et al.
    Appl Radiat Isot, 2017 Apr;122:96-105.
    PMID: 28129589 DOI: 10.1016/j.apradiso.2017.01.006
    A study was carried out on the distribution and enrichment of trace elements in the core marine sediments of East Malaysia from three stations at South China Sea and one station each at Sulu Sea and Sulawesi Sea. Five stations of sediment cores were recovered and the vertical concentration profiles of six elements namely Br, Cs, Hf, Rb, Ta, and V were determined using the instrumental neutron activation analysis. The enrichment factor, geoaccumulation index and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. Except for Cs and Hf, which by the enrichment factor are categorized from minimum enrichment to moderate enrichment in all stations and for V and Rb in Sulu Sea and Sulawesi Sea, which are categorized minimum enrichment, other elements are found to be no enrichment at all stations. The geoaccumulation index of Hf in one station shows moderately polluted and for other elements are unpolluted. However, the modified degree values of all samples are less than 1, suggesting very low contamination of elements found in all the stations.
    Matched MeSH terms: Trace Elements
  20. Baba Musta, Mohamad Md. Tan
    Highly weathered basaltic rock was exposed at PSK profile of Kuantan, Segamat Highway. The weathering profile from fresh rock soil can be observed at PKJ profile at Kg. Jabi Quarry. Twelve rock and soil samples from PSK profile and thirteen samples from PKJ profile have been collected for geochemical analysis. The objective of the analysis is to establish the behaviour of several major and trace elements in the weathering profile of the basaltic rock. The samples were analysed by XRF and XRD techniques. Petrographic study was done on fresh rock samples and concretions. The concentration of major elements (TiO2, Al2O3 and Fe2O3) appear to be increased with the increasing of the degree of weathering whereas the concentration of SiO2 and CaO are decreased. There is a clear correlation between Fe2O3 + Al2O3 with L.O.I as well as between Fe2O3 with Al2O3. Behaviour of the trace elements (Ni, Co, Cr and Zn) against the weathering process are totally different. The secondary minerals (kaolinite, nactire, geothite, hematite and gibbsite) appear to control the behaviour of the major and trace elements.
    Batuan basalt yang terluluhawa sepenuhnya telah dicerap di lokaliti PSK Lebuhraya Segamat-Kuantan. Profil luluhawa yang boleh dilihat perubahan daripada batuan segar hingga tanih didapati di lokaliti PKJ Kuari Kg. Jabi. Dua contoh profil dengan masing-masing 12 sampel dan 13 sample tanih telah dikaji untuk menentukan perlakuan beberapa unsur major dan unsur surih batuan basalt yang terluluhawa. Kaedah analisis yang digunakan ialah pendarflour sinar-X (XRF) dan pembelauan sinar-X (XRF). Kajian petrografi pula dibuat pada sampel batuan segar dan sampel konkresi. Nilai unsur major TiO2, Al2O3 dan Fe2O3 bertambah dengan bertambahnya darjah luluhawa manakala SiO2 dan CaO menyusut. Hubungan korelasi Fe2O3 + Al2O3 dengan L.O.I dan Fe2O3 denagn Al2O3 adalah jelas. Unsur surih nikel (Ni) kobalt (Co), kromium (Cr) dan zink (Zn) mempunyai perlakuan yang berbeza-beza dengan luluhawa. Perlakuan yang ditunjukkan oleh unsur major dan surih tersebut dikawal oleh mineral sekunder (koalinit, nakrit, geotit, hematit dan gibsit).
    Matched MeSH terms: Trace Elements
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links