Displaying publications 21 - 40 of 594 in total

Abstract:
Sort:
  1. Chan SW, Mirhosseini H, Taip FS, Ling TC, Nehdi IA, Tan CP
    Food Sci Biotechnol, 2016;25(Suppl 1):53-62.
    PMID: 30263486 DOI: 10.1007/s10068-016-0098-3
    The present study is aimed to prepare κ-carrageenan microparticles for the encapsulation of model drug, coenzyme Q10 (CoQ10). A face-centered central composite design was employed to study the effects of three different formulation variables (κ-carrageenan, emulsifier, and oil). The powder yield was found inversely affected by the κ-carrageenan and oil concentration. The encapsulation efficiency was maximized in the region of the middle level κ-carrageenan concentration, the high level emulsifier concentration, and the low level oil concentration. The emulsifier concentration was the most influential variable on the particle size of powder. The optimal formulation was reported as 0.91% (w/v) κ-carrageenan concentration, 0.64% (w/v) emulsifier, and 1.0% (w/w) oil. Both differential scanning colorimeter and X-ray diffraction analyses proved that incorporation of CoQ10 into κ- carrageenan microcapsules resulted in amorphous powder with significantly (p<0.05) higher water solubility compared to pure CoQ10 and physical mixture in the crystalline form.
    Matched MeSH terms: X-Ray Diffraction
  2. Nur Fadzilah Basri, Fauziah Abdul Aziz, Mohd Omar, A.K., Nik Norulaini, A.R.
    MyJurnal
    The main purpose of this study was to analyzed and examined the cocoa butter samples from Sabah. This work presence the crystal phases present in cocoa butter sample thus proved the existence of polymorphs obtained from differential scanning calorimeter (DSC) analysis and confirmed by X-ray diffraction (XRD). The cocoa butter samples were extracted using a conventional method by Soxhlet Extraction method. Crystals were formed under controlled static and tempered conditions. Cocoa butter polymorphism demonstrates that it is the actual crystallization temperature, not the cooling rate that determines the polymorph that crystallizes.
    Matched MeSH terms: X-Ray Diffraction
  3. Ayub, S.F., Nazir, K., Aziz, A.F., Ali, A.M.M., Saaid, S.I.Y., Yahya, M.Z.A.
    MyJurnal
    This paper presents on ionic conductivity of MG30-PEMA blend solid polymer electrolytes (SPEs) prepared by solution cast technique. The analysis has shown that conductivity increases with the increasing salt composition. It is observed via x-ray diffraction analysis that the crystallinity of the sample decreased with the amount of salt composition as expected. It is also observed that the dielectric value increases with increasing amount of LiCF3SO3 in the sample. Surface morphology revealed that ion aggregation occurred after optimum conductivity which has lowered the conductivity.
    Matched MeSH terms: X-Ray Diffraction
  4. Yusof Abdullah, Mohd Reusmaazran Yusof, Megat Harun Al Rashid Megat Ahmad, Hafizal Yazid, Abdul Aziz Mohamed, Norazila Mat Sali, et al.
    MyJurnal
    Effects of 3 MeV electron (10 mA) irradiation at room temperature on the phase, microstructure,
    electrical and life time properties of 4H-SiC wafer were investigated by scanning electron
    microscopy (SEM), X-ray diffraction (XRD), four point probe current-voltage measurements and
    positron annihilation spectroscopy. It was found that irradiation damage in SiC wafer is
    significantly increased with the increase of radiation dose as observed in SEM. Irradiation also
    resulted in modification of crystallite size as identified by XRD. The resistance of a sample before
    irradiation was found to be 0.8 MΩ, whereas for a sample irradiated at 200 kGy, the resistance as
    measured by four point probe was 5.2 MΩ. It seems that the increase of resistance hence, reduction
    in conductivities could be due to defects induced by the radiation dose received then created
    leakage currents at both reverse and low-forward biases and creation of traps in the SiC.
    Meanwhile positron annihilation spectroscopy (PAS) was used to analyse the life time of irradiated
    samples which nonetheless shows that all irradiated sample have similar life time of 151 ps. It was
    observed that that no degradation process of materials experienced by SiC wafer irradiated at 500
    kGy.
    Matched MeSH terms: X-Ray Diffraction
  5. Yusof Abdullah, Mohd Reusmaazran Yusof, Nadira Kamarudin, Paulus, Wilfred Sylvester, Rusnah Mustaffa, Nurazila Mat Zali, et al.
    MyJurnal
    Al/B4C composites with 0 wt.%, 5 wt.% and 10 wt.% of B4C were prepared by powder metallurgy and their properties were characterised successfully. Investigation of the effect of milling times (4, 8, 12, 16 hours) on microstructure, phase identification, hardness and neutron attenuation coefficient of composites has been studied. The results showed that hardness increased with increased of milling time, with maximum hardness obtained at 16 hours milling time. The increment is slower as the composition of B4C increased. The hardness of Al/10%B4C, Al/5%B4C and Al/0%B4C were 81.7, 78.7 and 61.2 HRB respectively. Morphology of scanning electron microscopy (SEM) showed that microstructures play important role in controlling the hardness. Meanwhile, x-ray diffraction (XRD) analysis showed the phases and crystalline present in composites with an indication that crystalline of the grain increased as the milling time increased. Neutron absorption of Al/10%B4C composites showed that this composite has the highest attenuation coefficient, thus indicating that it is the best composites for neutron shielding.
    Matched MeSH terms: X-Ray Diffraction
  6. Muhamad Hafizuddin Mohamad Basir, Bulan Abdullah, Siti Khadijah Alias
    MyJurnal
    This research investigates and analyzes wear properties of 316 stainless steel before and after applying paste boronizing process and to investigate the effect of shot blasting process in enhancing boron dispersion into the steel. In order to enhance the boron dispersion into 316 stainless steel, surface deformation method by shot blasting process was deployed. Boronizing treatment was conducted using paste medium for 8 hours under two different temperatures which were 8500 C and 9500 C. Wear behaviour was evaluated using pin-on-disc test for abrasion properties. The analysis on microstructure, X-ray Diffraction (XRD) and density were also carried out before and after applying boronizing treatment. Boronizing process that had been carried out on 316 stainless steel increases the wear resistance of the steel compared to the unboronized 316 stainless steel. The effect of boronizing treatment together with the shot blasting process give a greater impact in increasing the wear resistance of 316 stainless steel. This is mainly because shot blasted samples initiated surface deformation that helped more boron dispersion due to dislocation of atom on the deformed surface. Increasing the boronizing temperature also increases the wear resistance of 316 stainless steel. In industrial application, the usage of the components that have been fabricated using the improved 316 stainless steel can be maximized because repair and replacement of the components can be reduced as a result of improved wear resistance of the 316 stainless steel.
    Matched MeSH terms: X-Ray Diffraction
  7. Mazni Mustafa, W. Mohamad Daud W. Yusoff, Zainal Abidin Talib, Abdul Halim Shaari, Primus, Walter Charles
    MyJurnal
    Ca0.5Sr0.5Cu3Ti4O12 (CSCTO) ceramic oxide was prepared using solid state reaction technique. Impedance measurement was done using High Dielectric Resolution Analyzer (Novocontrol Novotherm) from 30 oC to 250 oC, in the frequency range of 10-2 to 106 Hz. X-ray diffraction pattern showed a single phase with a cubic structure. In the complex impedance plot, three semi-circles were observed; these represented the grain, grain boundary and electrode effect responses. The semi-circles were fitted using a series network of three parallel RC circuits. The resistance was found to increase with the decreasing temperature. The activation energies, Ea, obtained from the Arrhenius plots of CSCTO, were 0.31 eV and 0.73 eV for grain and grain boundary conductivity, respectively. The value of the grain energy was revealed as smaller than the grain boundary energy, due to the semi-conducting grain and the insulating grain boundary characteristic (Sinclair et al., 2002).
    Matched MeSH terms: X-Ray Diffraction
  8. Yeong, Meng How, Shah Rizal Kasim, Hazizan Md Akil, Zainal Arifin Ahmad
    MyJurnal
    β-tricalcium phosphate (β-TCP) powders were synthesized by using various particles sizes (40 nm – 780 μm) calcium carbonate (CaCO3) and phosphoric acid (H3PO4) at room temperature (25 ˚C). The synthesized powders were characterized by using X-Ray Diffraction (XRD) method. The purity of β-TCP powders were determined from XRD pattern while the crystallite size of β-TCP powders were calculated by using Scherrer equation. Results shows that the purity of β-TCP powders were ranged from 20.33 % to 81.94 % while the crystallite size of β- TCP powders were ranged from 0.04391 μm to 0.06751 μm. From this work, particle size of CaCO3 will influenced the purity but not the mean crystallite size of synthesized β-TCP.
    Matched MeSH terms: X-Ray Diffraction
  9. Masliana Muslimin, Meor Yusoff, M.S.
    MyJurnal
    The experiment aims to investigate the effect of high energy milling to the crystallite size of α-alumina. The starting material used is α-alumina powder with starting crystal size of 86nm. This powder was milled at different time ranges from 0 to 60 minutes and milling speed ranges from 400 rpm to 1100 rpm using a wet milling technique in corundum abrasive materials. The wet milling technique involved the use of water with the alumina to water ratio of 1:6.1. Samples prepared were then examined using the X-Ray Diffraction (XRD) to calculate the crystallite size and scanning electron microscope (SEM) was also used to determine changes in the morphology. Results from these analysis showed that the crystallite size will get smaller when milling speed and time of more than 600rpm and 30 minutes respectively were used. Optimum conditions to achieve the smallest crystal size of 79.7nm are 1000 rpm and 60 minutes.
    Matched MeSH terms: X-Ray Diffraction
  10. Halimah M, Chiew W, Sidek H, Daud W, Wahab Z, Khamirul A, et al.
    Sains Malaysiana, 2014;43:899-902.
    A series of (Li20)x(B203)1-x has been synthesized with mole fraction x=0.10, 0.15,020,025 and 0.30 mol% using melt quenching method. The structure of the glass system was determined by FTIR and X-ray diffraction. The density and molar volume were determined and the density increases with Li20 content whereas molar volume decreases with Li20. Refractive index of glass samples were measured by ellipsometer. Refractive index increases with increase of Li20. The absorption spectra of the studied glass showed that position of fundamental absorption edge shifts to longer wavelength with Li20. Optical band gap varies from 0.10 to 222 eV and Urbach energy varies from 2.91 to 1.55 eV. The variation in optical band gap and Urbach energy were due to the variation in the glass structure.
    Matched MeSH terms: X-Ray Diffraction
  11. Bangbai C, Techitdheera W, Chongsri K, Pecharapa W
    Sains Malaysiana, 2013;42:239-246.
    In this work, the preparation of ZnO, N-doped ZnO (NZO), Al-doped ZnO (AZO) and Al, N-doped ZnO (ANZO) thin films by the sol-gel spin-coating method is reported. The structural properties and surface morphologies of films were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optical properties of the films were interpreted from their transmission spectra using UV-VIS spectrophotometer. The XRD and SEM results disclosed that the crystallization quality and grain size of as-prepared films were highly influenced by N and Al doping. UV-VIS spectrophotometer results indicated that Al and N additives could significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.
    Matched MeSH terms: X-Ray Diffraction
  12. Wan Nasarudin Wan Jalal, Huda Abdullah, Mohd Syafiq Zulfakar, Sahbudin Shaari, Mohammad Thariqul Islam, Badariah Bais
    Sains Malaysiana, 2014;43:833-842.
    CaxZn(1_x)Al204thin films (x = 0.00; 0 .05 ; 0.10; 0.15 and 0.20) were prepared by sol-gel method with the substitution of Zn2+ by Ca" in the framework of ZnAl204. The effect of Ca addition on the structure and morphology of CaZnAl204thin films was investigated by x-ray diffraction (xRD), field-emission scanning electron microscope (FESEM), energy-dispersive x-ray spectroscopy (EDx), ultra-violet visible (uv-Vis) and atomic force microscope (AFM). The xRD patterns showed the characteristic peaks of face-centred cubic (fcc)ZnAl204and CaZnAl204. The addition of Ca increased the crystallite size from 8.9 to 302 nm. The bandgap of CaxZnuld204 thin film was found in the range of 3.40 to 3.84 eV. sEm micrograph shows the morphology of all thin films is sphere-like, with the grain size increased from 33 to 123 nm. The AFM images show the roughness of surface morphology increased. The substitution of Zn2+ by Ca" increased the crystallite size, grain size and surface roughness which evidently increased the density (4.59 to 4.64 glcm3) and dielectric constant (8.48 to 9.54). The composition of CaxZn(1_x)Al204is considered as suitable material for GPS patch antennas.
    Matched MeSH terms: X-Ray Diffraction
  13. Ng S, Yam F, Beh K, Hassan Z
    Sains Malaysiana, 2014;43:947-951.
    Often, fluoride based electrolyte was applied to synthesize highly ordered titanium dioxide nanotubes. However, in the present work, bundled titanium dioxide nanotubes were fabricated in chloride based electrolyte through electrochemical method. Structural and morphological investigations were carried out on the nanotubes synthesized under different anodization parameters. The growth mechanism of such nanotubes was elucidated and illustrated. The estimated diameter of the as-anodized nanotube was less than 150 nm while the length varied from hundreds of nanometer to microns. X-ray diffraction patterns and Raman spectra have showed anatase and rutile phases of titanium dioxide within the thermally treated samples.
    Matched MeSH terms: X-Ray Diffraction
  14. An'amt M, Huang N, Radiman S, Lim H, Muhamad M
    Sains Malaysiana, 2014;43:137-144.
    Titanate nanotubes were prepared by a rapid hydrothermal method in the presence of triethanolamine (TEA) using TiO2 nanoparticles as a precursor. The addition of TEA significantly reduced the formation time of the titanate nanotubes from 24 to 6 h. The crystalline structure of the titanate nanotubes was revealed to be H2Ti2O5 through the X-ray diffraction (xRD) measurement. The morphology of the titanate nanotubes was confirmed using transmission electron microscopy (TEM) while the surface area was characterized using Brunauer-Emmett-Teller (BET) surface area analysis. The titanate nanotubes produced were several hundred nanometers in length and had an average outer diameter of - 11.5 nm, inner diameter of -5.0 nm, interlayer spacing of 0.93 nm and surface area of >250 m2Ig. The photocatalytic activity of the titanate nanotubes was studied using methylene blue as a model dye; the titanate nanotubes showed better photocatalytic performance as compared to TiO2 nanoparticles.
    Matched MeSH terms: X-Ray Diffraction
  15. Rahmat RA, Humphries MA, Austin JJ, Linacre AMT, Raven M, Self P
    Forensic Sci Int, 2020 May;310:110236.
    PMID: 32172179 DOI: 10.1016/j.forsciint.2020.110236
    Heat alters colour and crystallinity of teeth by destruction of the organic content and inducing hydroxyapatite crystal growth. The colour and crystallite changes can be quantified using spectrophotometric and x-ray diffraction analyses, however these analyses are not commonly used in combination to evaluate burned dental remains. In this study, thirty-nine teeth were incinerated at 300-1000 °C for 15 and 30 min and then measured using a spectrophotometer and an x-ray diffractometer. Response variables used were lightness, L*, and chromaticity a* and b* and luminance (whiteness and yellowness) for colour, and crystal size for crystallinity. Statistical analysis to determine the attribution of these variables revealed yellowness and crystal size were significantly affected by temperature (p < 0.05), whilst duration of heat-exposure showed no significant effect. This study suggests the inclusion of both spectrophotometric and x-ray diffraction in investigating thermal-heated teeth is useful to accurately estimate the temperature teeth are exposed to.
    Matched MeSH terms: X-Ray Diffraction
  16. Rezaei Ardani M, Azwina F, Wern TY, Ramli SF, Rezan SA, Aziz HA, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(14):17587-17601.
    PMID: 33403630 DOI: 10.1007/s11356-020-12097-w
    This study investigated the coagulation performance of titanium tetrachloride (TiCl4) for leachate treatment and preparation of titanium oxide (TiO2) from generated sludge through calcination process at different temperatures and times. TiCl4 with chitosan as coagulant aid employed to perform coagulation process on Alor Ponhsu Landfill leachate. Further calcination process was done to synthesize TiO2 from produced sludge for photocatalytic applications. The studied factors included pH, TiCl4 dosage, and chitosan dosage. The results indicated that maximum reduction in suspended solids was 92.02% at pH 4, 1200 mg/L TiCl4, and 250 mg/L chitosan addition, and maximum reduction in chemical oxygen demand was 71.92% at experimental condition of 1200 mg/L TiCl4 and 500 mg/L chitosan with pH 10. The maximum and minimum band gaps of prepared TiO2 achieved at 3.35 eV and 2.75 eV, respectively. Morphology and phase analysis of prepared TiO2 characterized using scanning electron microscope (SEM) and X-ray diffraction (XRD). The XRD spectrums showed the anatase phase at lower calcination temperature and the rutile phase at elevated temperature. The photocatalysis activity of produced TiO2 investigated under UV irradiation and showed almost fast degradation similar to commercial TiO2. The results indicated that TiO2 powder was successfully prepared from generated sludge from TiCl4 coagulation for photocatalytic applications.
    Matched MeSH terms: X-Ray Diffraction
  17. Loo YS, Zahid NI, Madheswaran T, Ikeno S, Nurdin A, Mat Azmi ID
    Mol Pharm, 2023 Sep 04;20(9):4611-4628.
    PMID: 37587099 DOI: 10.1021/acs.molpharmaceut.3c00333
    Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 μM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.
    Matched MeSH terms: X-Ray Diffraction
  18. Nurdin I, Johan MR, Yaacob II, Ang BC
    ScientificWorldJournal, 2014;2014:589479.
    PMID: 24963510 DOI: 10.1155/2014/589479
    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.
    Matched MeSH terms: X-Ray Diffraction
  19. Bang LT, Long BD, Othman R
    ScientificWorldJournal, 2014;2014:969876.
    PMID: 24723840 DOI: 10.1155/2014/969876
    The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively coupled plasma (ICP) techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO4(4-)) and carbonate (CO3(2-)) ions competed to occupy the phosphate (PO4(3-)) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap. At 750°C heat-treatment temperature, the diametral tensile strengths (DTS) of Si-CO3Ap and CO3Ap were about 10.8 ± 0.3 and 11.8 ± 0.4 MPa, respectively.
    Matched MeSH terms: X-Ray Diffraction
  20. Saw KG, Tneh SS, Yam FK, Ng SS, Hassan Z
    PLoS One, 2014;9(2):e89348.
    PMID: 24586707 DOI: 10.1371/journal.pone.0089348
    The concentration of acceptor carriers, depletion width, magnitude of donor level movement as well as the sensitivity factor are determined from the UV response of a heterojunction consisting of ZnO on type IIb diamond. From the comparison of the I-V measurements in dark condition and under UV illumination we show that the acceptor concentration (∼10(17) cm(-3)) can be estimated from p-n junction properties. The depletion width of the heterojunction is calculated and is shown to extend farther into the ZnO region in dark condition. Under UV illumination, the depletion width shrinks but penetrates both materials equally. The ultraviolet illumination causes the donor level to move closer to the conduction band by about 50 meV suggesting that band bending is reduced to allow more electrons to flow from the intrinsically n-type ZnO. The sensitivity factor of the device calculated from the change of threshold voltages, the ratio of dark and photocurrents and identity factor is consistent with experimental data.
    Matched MeSH terms: X-Ray Diffraction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links