Displaying publications 21 - 40 of 276 in total

Abstract:
Sort:
  1. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Yeong CH
    Pharmaceutics, 2019 Nov 12;11(11).
    PMID: 31718079 DOI: 10.3390/pharmaceutics11110596
    INTRODUCTION: Transarterial radioembolization (TARE) has been proven as an effective treatment for unresectable liver tumor. In this study, neutron activated, 153Sm-labeled microspheres were developed as an alternative to 90Y-labeled microspheres for hepatic radioembolization. 153Sm has a theranostic advantage as it emits both therapeutic beta and diagnostic gamma radiations simultaneously, in comparison to the pure beta emitter, 90Y.

    METHODS: Negatively charged acrylic microspheres were labeled with 152Sm ions through electrostatic interactions. In another formulation, the Sm-labeled microsphere was treated with sodium carbonate solution to form the insoluble 152Sm carbonate (152SmC) salt within the porous structures of the microspheres. Both formulations were neutron-activated in a research reactor. Physicochemical characterization, gamma spectrometry, and radiolabel stability tests were carried out to study the performance and stability of the microspheres.

    RESULTS: The Sm- and SmC-labeled microspheres remained spherical and smooth, with a mean size of 35 µm before and after neutron activation. Fourier transform infrared (FTIR) spectroscopy indicated that the functional groups of the microspheres remained unaffected after neutron activation. The 153Sm- and 153SmC-labeled microspheres achieved activity of 2.53 ± 0.08 and 2.40 ± 0.13 GBq·g-1, respectively, immediate after 6 h neutron activation in the neutron flux of 2.0 × 1012 n·cm-2·s-1. Energy-dispersive X-ray (EDX) and gamma spectrometry showed that no elemental and radioactive impurities were present in the microspheres after neutron activation. The retention efficiency of 153Sm in the 153SmC-labeled microspheres was excellent (~99% in distilled water and saline; ~97% in human blood plasma), which was higher than the 153Sm-labeled microspheres (~95% and ~85%, respectively).

    CONCLUSION: 153SmC-labeled microspheres have demonstrated excellent properties for potential application as theranostic agents for hepatic radioembolization.

    Matched MeSH terms: X-Rays
  2. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Acharya RU, Yeong CH
    World J Exp Med, 2020 Mar 30;10(2):10-25.
    PMID: 32266125 DOI: 10.5493/wjem.v10.i2.10
    BACKGROUND: Liver cancer is the 6th most common cancer in the world and the 4th most common death from cancer worldwide. Hepatic radioembolization is a minimally invasive treatment involving intraarterial administration of radioembolic microspheres.

    AIM: To develop a neutron-activated, biodegradable and theranostics samarium-153 acetylacetonate (153SmAcAc)-poly-L-lactic acid (PLLA) microsphere for intraarterial radioembolization of hepatic tumors.

    METHODS: Microspheres with different concentrations of 152SmAcAc (i.e., 100%, 150%, 175% and 200% w/w) were prepared by solvent evaporation method. The microspheres were then activated using a nuclear reactor in a neutron flux of 2 × 1012 n/cm2/s1, converting 152Sm to Samarium-153 (153Sm) via152Sm (n, γ) 153Sm reaction. The SmAcAc-PLLA microspheres before and after neutron activation were characterized using scanning electron microscope, energy dispersive X-ray spectroscopy, particle size analysis, Fourier transform infrared spectroscopy, thermo-gravimetric analysis and gamma spectroscopy. The in-vitro radiolabeling efficiency was also tested in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    RESULTS: The SmAcAc-PLLA microspheres with different SmAcAc contents remained spherical before and after neutron activation. The mean diameter of the microspheres was about 35 µm. Specific activity achieved for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc after 3 h neutron activation were 1.7 ± 0.05, 2.5 ± 0.05, 2.7 ± 0.07, and 2.8 ± 0.09 GBq/g, respectively. The activity of per microspheres were determined as 48.36 ± 1.33, 74.10 ± 1.65, 97.87 ± 2.48, and 109.83 ± 3.71 Bq for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc. The energy dispersive X-ray and gamma spectrometry showed that no elemental and radioactive impurities present in the microspheres after neutron activation. Retention efficiency of 153Sm in the SmAcAc-PLLA microspheres was excellent (approximately 99%) in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    CONCLUSION: The 153SmAcAc-PLLA microsphere is potentially useful for hepatic radioembolization due to their biodegradability, favorable physicochemical characteristics and excellent radiolabeling efficiency. The synthesis of the formulation does not involve ionizing radiation and hence reducing the complication and cost of production.

    Matched MeSH terms: X-Rays
  3. Abosadiya HM, Anouar el H, Hasbullah SA, Yamin BM
    PMID: 25748989 DOI: 10.1016/j.saa.2015.01.092
    A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.
    Matched MeSH terms: X-Rays
  4. Lin R, Hu E, Liu M, Wang Y, Cheng H, Wu J, et al.
    Nat Commun, 2019 04 09;10(1):1650.
    PMID: 30967531 DOI: 10.1038/s41467-019-09248-0
    Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.
    Matched MeSH terms: X-Rays
  5. Zafar MN, Masood S, Chaudhry GE, Muhammad TST, Dalebrook AF, Nazar MF, et al.
    Dalton Trans, 2019 Aug 08.
    PMID: 31393494 DOI: 10.1039/c9dt01923e
    The two cationic palladium(ii) complexes, [Pd(Len)2][OTf]2 (4) and [Pd(Lphen)2][OTf]2 (5), were synthesized by treatment of bis(benzonitrile)dichloropalladium(ii) with [H2Len][OTf]2 (2) or [H2Lphen][OTf]2 (3), respectively, in the presence of a weak base. The pro-ligands 2 and 3 were synthesized by melt reactions between N-methyl-4-chloropyridinium triflate (1) and the amines ethylenediamine or phenylenediamine, respectively. The water-soluble compounds 2-5 were fully characterized, including by single-crystal X-ray crystal structure determinations for 2-4. UV-Vis and fluorescence spectroscopy were used to study the binding interactions of 2-5 with CT-DNA. The spectroscopic data suggested the presence of intercalative and groove binding modes and this was supported by molecular docking studies. The in vitro cytotoxicity studies (IC50 values) showed that the human breast cancer cell lines MCF-7 and T47D were more sensitive towards 3, 4 and 5 than cisplatin. The cytotoxicity of the new compounds decreased in the order 5 > 4 > 3 > 2. Furthermore, the annexin V-FITC staining method strongly suggested the presence of phosphatidylserine (PS) on the outer membrane of the treated cells, which is a hallmark of apoptosis.
    Matched MeSH terms: X-Rays
  6. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF
    ACS Omega, 2020 Jan 28;5(3):1656-1668.
    PMID: 32010840 DOI: 10.1021/acsomega.9b03709
    The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
    Matched MeSH terms: X-Rays
  7. Suhaimi NS, Md Din MF, Ishak MT, Abdul Rahman AR, Mohd Ariffin M, Hashim N', et al.
    Sci Rep, 2020 Dec 02;10(1):20984.
    PMID: 33268816 DOI: 10.1038/s41598-020-77810-8
    In this paper, the electrical, dielectric, Raman and small angle X-ray scattering (SAXS) structure behavior of disposed transformer oil in the presence of multi-walled carbon nanotube (MWCNT) were systematically tested to verify their versatility for preparing better alternative transformer oil in future. MWCNT nanofluids are prepared using a two-step method with concentrations ranging from 0.00 to 0.02 g/L. The test results reveal that 0.005 g/L concentration possesses the most optimum performance based on the electrical (AC breakdown and lightning impulse) and dielectric (permittivity, dissipation factor and resistivity) behavior. According to the trend of AC breakdown strength and lightning impulse pattern, there were 212.58% and 40.01% enhancement indicated for 0.005 g/L concentration compared to the disposed transformer oil. The presence of MWCNT also yielding to the decrement of dissipation factor, increased on permittivity and resistivity behavior of disposed transformer oil which reflected to the performance of electrical properties. Furthermore, it is found that these features correlated to the structural properties as systematically verify by Raman and SAXS analysis study.
    Matched MeSH terms: X-Rays
  8. Liao X, Zhang Y, Wang J, Kang J, Zhang J, Wang J, et al.
    Materials (Basel), 2019 Nov 09;12(22).
    PMID: 31717524 DOI: 10.3390/ma12223698
    The tunability of semi-conductivity in SrTiO3 single crystal substrates has been realized by a simple encapsulated annealing method under argon atmosphere. This high temperature annealing-induced property changes are characterized by the transmission spectra, scanning electron microscopy (SEM) and synchrotron-based X-ray absorption (XAS). We find the optical property is strongly influenced by the annealing time (with significant decrease of transmittance). A sub gap absorption at ~427 nm is detected which is attributed to the introduction of oxygen vacancy. Interestingly, in the SEM images, annealing-induced regularly rectangle nano-patterns are directly observed which is contributed to the conducting filaments. The XAS of O K-edge spectra shows the changes of electronic structure by annealing. Very importantly, resistance switching response is displayed in the annealed SrTiO3 single crystal. This suggests a possible simplified route to tune the conductivity of SrTiO3 and further develop novel resistance switching materials.
    Matched MeSH terms: X-Rays
  9. Nur Ain, A.R., Mohd Sabri, M.G., Wan Rafizah, W.A., Nurul Azimah, M.A., Wan Nik, W.B.
    ASM Science Journal, 2018;11(101):56-67.
    MyJurnal
    Corrosion is a natural deterioration process that destructs metal surface. Metal of highly
    protected by passivation layer such as Stainless Steel 316L also undergoes pitting corrosion
    when continuously exposed to aggressive environment. To overcome this phenomenon, application
    of epoxy based coating with addition of zinc oxide- poly (3,4-ethylenedioxythiophene)
    doped with poly (styrene sulphonate) hybrid nanocomposite additive was introduced as
    paint/metal surface coating. The compatibility between these two materials as additive
    was studied by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD),
    Field Emission Scanning Electron Microscopy/Energy-Dispersive X-ray spectroscopy (FESEM/EDX)
    and Transmission Electron Microscopy (TEM) analysis. The effect of nanocomposite
    wt.% in epoxy based coating with immersion duration in real environment on corrosion
    protection performance was analyzed through potentiodynamic polarization analysis. The
    main finding showed that addition of hybrid nanocomposite had increased corrosion protection
    yet enhanced corrosion process when excess additives was loaded into epoxy coating.
    Addition of 2 wt.% ZnO-PEDOT:PSS was found significantly provided optimum corrosion
    protection to stainless steel 316L as the corrosion rate for 0 day, 15 days and 30 days of
    immersion duration is 0.0022 mm/yr, 0.0004 mm/yr and 0.0015 mm/yr; respectively.
    Matched MeSH terms: X-Rays
  10. Ahmad SR, Yaacob NA, Jaeb MZ, Hussin Z, Wan Mohammad WMZ
    Iran J Public Health, 2020 Aug;49(8):1485-1493.
    PMID: 33083325 DOI: 10.18502/ijph.v49i8.3892
    Background: There is growing evidence that DM may play an important role in the occurrence of unsuccessful TB treatment outcomes. This study was undertaken to examine the prevalence of DM among TB population, compare the profile of TB patients with and without DM and determine the effect of DM on unsuccessful treatment outcomes among TB patients in Kelantan state, Malaysia from 2012 to 2016.

    Methods: A cross sectional study was conducted in Sep 2017 using data from registered TB cases in Kelantan state, Malaysia from 2012 to 2016. The profile of TB patients with and without DM were compared in univariable analysis. Multiple logistic regression was used to determine association between DM and unsuccessful treatment outcomes.

    Results: A total of 1854 TB patients were diagnosed with DM. The annual proportion was ranging from 26 to 29%. TB patients with DM had an older age, live single, low educational status, poor chest x ray finding and diagnosed with smear positive sputum compared to TB patients without DM. TB patients with DM had three times higher risk to develop unsuccessful TB treatment outcomes compared to TB patients without DM (95% CI 2.47-3.58; P = 0.012) in multivariable analysis.

    Conclusion: Those with DM had the worst prognosis of TB outcomes among the significant risk factors. TB control program in Malaysia will need to expand efforts to focus on treatment of TB-DM patients to improve their cure rates in order to achieve the goals of tuberculosis elimination.

    Matched MeSH terms: X-Rays
  11. Lim MJ, Shahri NNM, Taha H, Mahadi AH, Kusrini E, Lim JW, et al.
    Carbohydr Polym, 2021 May 15;260:117806.
    PMID: 33712152 DOI: 10.1016/j.carbpol.2021.117806
    Chitin-encapsulated cadmium sulfide quantum dots (CdS@CTN QDs) were successfully synthesized from chitin and Cd(NO3)2 precursor using the colloidal chemistry method, toward the development of biocompatible and biodegradable QDs for biomedical applications. CdS@CTN QDs exhibited the nanocrystalline cubic CdS encapsulated by α-chitin. The average particle size of CdS@CTN QDs was estimated using empirical Henglein model to be 3.9 nm, while their crystallite size was predicted using Scherrer equation to be 4.3 nm, slightly larger compared to 3-mercaptopropionic acid-capped CdS QDs (3.2 and 3.6 nm, respectively). The mechanism of formation was interpreted based on the spectroscopic data and X-ray crystal structures of CdS@CTN QDs fabricated at different pH values and mass ratios of chitin to Cd(NO3)2 precursor. As an important step to explore potential biomolecular and biological applications of CdS@CTN QDs, their antibacterial activities were tested against four different bacterial strains; i.e. Escherichia coli, Bacillus subtillus, Staphylococcus aureus and Pseudomonas aeruginosa.
    Matched MeSH terms: X-Rays
  12. Alosfur FK, Jumali MH, Radiman S, Ridha NJ, Yarmo MA, Umar AA
    Nanoscale Res Lett, 2013;8(1):346.
    PMID: 23919496 DOI: 10.1186/1556-276X-8-346
    Recently, TiO2/multi-walled carbon nanotube (MWCNT) hybrid nanocatalysts have been a subject of high interest due to their excellent structures, large surface areas and peculiar optical properties, which enhance their photocatalytic performance. In this work, a modified microwave technique was used to rapidly synthesise a TiO2/MWCNT nanocatalyst with a large surface area. X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller measurements were used to characterise the structure, morphology and the surface area of the sample. The photocatalytic activity of the hybrid nanocatalysts was evaluated through a comparison of the degradation of methylene blue dye under irradiation with ultraviolet and visible light. The results showed that the TiO2/MWCNT hybrid nanocatalysts degraded 34.9% of the methylene blue (MB) under irradiation with ultraviolet light, whereas 96.3% of the MB was degraded under irradiation with visible light.
    Matched MeSH terms: X-Rays
  13. Khezripour S, Rezaie M, Hassanpour M, Hassanpour M, Rashed Iqbal Faruque M, Uddin Khandaker M
    PLoS One, 2023;18(8):e0288287.
    PMID: 37594963 DOI: 10.1371/journal.pone.0288287
    Various atomic and nuclear methods use hard (high-energy) X-rays to detect elements. The current study aims to investigate the hard X-ray production rate via high-energy proton beam irradiation of various materials. For which, appropriate conditions for producing X-rays were established. The MCNPX code, based on the Monte Carlo method, was used for simulation. Protons with energies up to 1650 MeV were irradiated on various materials such as carbon, lithium, lead, nickel, salt, and soil, where the resulting X-ray spectra were extracted. The production of X-rays in lead was observed to increase 16 times, with the gain reaching 0.18 as the proton energy increases from 100 MeV to 1650 MeV. Comparatively, salt is a good candidate among the lightweight elements to produce X-rays at a low proton energy of 30 MeV with a production gain of 0.03. Therefore, it is suggested to irradiate the NaCl target with 30 MeV proton to produce X-rays in the 0-2 MeV range.
    Matched MeSH terms: X-Rays
  14. Yanliang shang, Shouji du, Honghong gao, Tongyin han
    Sains Malaysiana, 2017;46:2241-2250.
    Mineral composition of rock has a very important influence on the physical and mechanical properties of tunnel surrounding rock. Take Dangjianshan tunnel in cold regions for example, the rock specimens in different parts of tunnel were taken to carry out the detection test of mineral composition. By the detail qualitative and quantitative analysis, the relationship between mineral composition and surrounding rock engineering properties was explored. First of all, the composition and content of minerals contained in in the rock specimens were detected by X ray fluorescence spectrometer and X ray powder diffraction. The detection results show that rock of tunnel contains high hardness minerals such as quartz and feldspar which were proven by initial engineering geological investigation report, in addition, it also contains several kinds of low hardness minerals including inclined chlorite and illite which may exhibit large deformation characteristic of soft rock after the tunnel excavation in case of meeting water and weathering conditions. The total content of inclined chlorite and illite accounted for a considerable component in main tunnel, inclined shaft and parallel pilot respectively and the influence on surrounding rock engineering properties cannot be ignored. Therefore, mineral composition detection must be paid attention to after tunnel excavation. Secondly, the effects of mineral composition on surrounding rock were analyzed in aspects of rock strength, weathering resistance, water softening property and excavation deformation through comparing the rock samples in different parts of tunnel. The comparative results showed that when the mineral contents is high with high hardness and poor hydrophilicity, tunnel surrounding rock plays a better performance of physical and mechanical properties, vice versa. Finally, according to the specific geological and construction parameters of the tunnel, the correlation analysis was studied about the vault settlement after tunnel excavation and the hydrophilicity mineral content in main cave. The logarithmic relationship between them was found and the correlation coefficient was 0.98. It can provide a useful reference for the settlement prediction of Dangjinshan tunnel construction.
    Matched MeSH terms: X-Rays
  15. Rodrigues A, Olivato PR, Zukerman-Schpector J, Maganhi SH, Reis AK, Tiekink ER
    J Phys Chem A, 2015 Aug 13;119(32):8714-23.
    PMID: 26213179 DOI: 10.1021/acs.jpca.5b04019
    The X-ray single crystal analysis of isomeric ortho, meta, and para bromo-substituted α-methylsulfonyl-α-diethoxyphosphoryl acetophenones showed that this class of compound adopts synclinal (gauche) conformations for both [-P(O)(OEt)2] and [-S(O)2Me] groups, with respect to the carbonyl functional group. The phosphonate, sulfonyl, and carbonyl functional groups are joined through an intramolecular network of attractive interactions, as detected by molecular orbital calculations at the M06-2X/6-31G(d,p) level. These interactions are responsible for the more stable conformations in the gas phase, which also persist in the solid-state structures. The main structural distinction in the title compounds relates to the torsion angle of the aryl group (with respect to the carbonyl group), which gives rise to different interactions in the crystal packing, due to the different positions of the Br atom.
    Matched MeSH terms: X-Rays
  16. Kho SS, Tay PS, Lee J, Tie ST
    AME Case Rep, 2017;1:4.
    PMID: 30263991 DOI: 10.21037/acr.2017.09.05
    Pleural effusion is a common encounter in renal failure patients and frequently possess a diagnostic challenge to clinician especially when it was exudative. Fortunately, transudative pleural effusion secondary to fluid overload remains the commonest cause of pleural effusion in haemodialysis patients. Frequent thoracocentesis enhance pleural inflammation and potentially complicate further this challenging clinical presentation. We report a middle-aged gentleman with advanced chronic kidney disease presented with dyspnea and new right upper lobe consolidation on chest roentograph. He had a history of recurrent bilateral pleural effusion secondary to fluid overload and hence multiple attempts of thoracocentesis were performed. Medical thoracoscopy performed previously yielded non-specific pleuritis. Flexible bronchoscopy demonstrates normal airway with negative microbiological studies. Computed tomography (CT) of the thorax shown a loculated hypodense pleural effusion at the apical region of the right upper lobe. Ultrasound guided thoracocentesis anteriorly yield 400 mL of clear straw color fluid which was transudative by Light's criteria. Post tapping chest X-ray shown complete resolution of right upper lobe consolidation and patient reports immediate relieve of dyspnea. Patient was started on regular effective haemodialysis and pleural effusion did not recur during follow up. Loculated pleural effusion masquerading as mediastinal tumour had been reported but pleural effusion that conformed to the contour of a lung lobe is rare. This case highlights the atypical but unique presentation of a transudative pleural effusion and demonstrates the risk of repeated thoracocentesis complicating a simple clinical presentation.
    Matched MeSH terms: X-Rays
  17. Chuah JS, Wong WL, Bakin S, Lim RZM, Lee EP, Tan JH
    Ann Med Surg (Lond), 2021 May;65:102294.
    PMID: 33948169 DOI: 10.1016/j.amsu.2021.102294
    Introduction and importance: A totally implantable venous access device (TIVAD), also referred to as 'chemoport', is frequently used for oncology patients. Chemoport insertion via the subclavian vein access may compress the catheter between the first rib and the clavicle, resulting in pinch-off syndrome (POS). The sequela includes catheter transection and subsequent embolization. It is a rare complication with incidence reported to be 1.1-5.0% and can lead to a devastating outcomes.

    Case presentation: 50-year-old male had his chemoport inserted for adjuvant chemotherapy 3 years ago. During the removal, remaining half of the distal catheter was not found. There was no difficulties during the removal. Chest xray revealed that the fractured catheter had embolized to the right ventricle. Further history taking, he did experienced occasional palpitation and chest discomfort for the past six months. Electrocardiogram and cardiac enzymes were normal. Urgent removal of the fractured catheter via the percutaneous endovascular approach, under fluoroscopic guidance by an experience interventional radiologist was done. The procedure was successful without any complication. Patient made an uneventful recovery. He was discharged the following day, and was well during his 3rd month follow up.

    Conclusion: Early detection and preventive measures can be done to prevent pinch-off syndrome. Unrecognized POS can result in fatal complications such as cardiac arrhythmia and septic embolization. Retrieval via the percutaneous endovascular approach provide excellent outcome in the case of embolized fractured catheter.

    Matched MeSH terms: X-Rays
  18. Kayode JS, Yusup Y, Nawawi MNM, Ariffin KS, Kalil AE, Tagwa MG
    Data Brief, 2018 Oct;20:1525-1531.
    PMID: 30258956 DOI: 10.1016/j.dib.2018.09.014
    Energy Dispersive X-ray Analysis, EDX mapping, Scanning Electron Microscope, SEM, together with X-ray Fluorescence Analysis, XRF, was carried out to extract the needed data from some metamorphic rock samples in part of the Nigerian Southwestern Precambrian Basement Complex, NSPBC. The foremost aim is to obtain the detail subsurface geological structures of the rocks within the area and to enhanced understanding of the processes and the types of metamorphic evolution in the area. The techniques involved qualitative and quantitative data analysis of the major, minor and radioactive elements present in the samples of rocks analyzed. The data helped to experimentally evaluate the rocks microstructures, and to also explore the development of magmatic and metamorphic mechanisms for the recognition of textual associations in the area. Applications of the EDX, SEM, and XRF data analysis are effortlessly done to determine the varied mixtures of Si, Al, Ca, Fe, K, Mg, and Na, in the presence of O existing in the rocks samples.The data helped in the classification and perceptive of these rocks and it was considered as a necessary tool in the knowledge of the metamorphism and origin of the Basement Complex rocks through measurement of the intensity of the emitted X-ray and its characteristics.
    Matched MeSH terms: X-Rays
  19. Tajudin SM, Tabbakh F
    Radiol Phys Technol, 2019 Sep;12(3):299-304.
    PMID: 31302871 DOI: 10.1007/s12194-019-00522-w
    Photon irradiation facilities are often shielded using lead despite its toxicity and high cost. In this study, three Monte Carlo codes, EGS5, MCNPX, and Geant4, were utilized to investigate the efficiency of a relatively new polymeric base compound (CnH2n), as a radiation shielding material for photons with energies below 150 keV. The proposed compound with the densities of 6 and 8 g cm-3 were doped with the weight percentages of 8.0 and 15.0% gadolinium. The probabilities of photoelectric effect and Compton scattering were relatively equal at low photon energies, thus the shielding design was optimized using three Monte Carlo codes for the conformity of calculation results. Consequently, 8% Gd-doped polymer with thickness less than 2 cm and density of 6 g cm-3 was adequate for X-ray room shielding to attenuate more than 95% of the 150-keV incident photons. An average dose rate reduction of 88% can be achieved to ensure safety of the radiation area.
    Matched MeSH terms: X-Rays/adverse effects
  20. Yoga, R., Sivapathasundaram, N., Suresh, C.
    Malays Orthop J, 2009;3(1):72-77.
    MyJurnal
    We evaluated the efficacy of a cement gun to improve the depth of cement penetration in total knee arthroplasty. Ninety-one consecutive patients from two hospitals were recruited for this study. For Group I cement was applied to the tibial baseplate and the proximal tibia with fingers. Group 2 had similar application of cement to the tibial baseplate but cement was pressurized into the proximal tibia using a cement gun.. The knee was kept extended until the cement hardened. Standard post-operative x-rays were reviewed to assess cement penetration into the proximal tibia. The mean cement penetration was 2.1 mm in Group 1 and 3.1 mm in Group 2 and the difference was statistically significant. The use of the cement gun improves cement penetration into the proximal tibia and facilitates early stability of the implant fixation to the bone.
    Matched MeSH terms: X-Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links