Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Ujang Z, Abdul Rashid AH, Suboh SK, Halim AS, Lim CK
    J Appl Biomater Funct Mater, 2014 Dec 30;12(3):155-62.
    PMID: 24700269 DOI: 10.5301/jabfm.5000190
    BACKGROUND: The physical and biological characteristics of oligochitosan (O-C) film, including its barrier and mechanical properties, in vitro cytotoxicity and in vivo biocompatibility, were studied to assess its potential use as a wound dressing.

    METHODS: Membrane films were prepared from water-soluble O-C solution blended with various concentrations of glycerol to modify the physical properties of the films. In vitro and in vivo biocompatibility evaluations were performed using primary human skin fibroblast cultures and subcutaneous implantation in a rat model, respectively.

    RESULTS: Addition of glycerol significantly influenced the barrier and mechanical properties of the films. Water absorption capacity was in the range of 80%-160%, whereas water vapor transmission rate varied from 1,180 to 1,618 g/m2 per day. Both properties increased with increasing glycerol concentration. Tensile strength decreased while elongation at break increased with the addition of glycerol. O-C films were found to be noncytotoxic to human fibroblast cultures and histological examination proved that films are biocompatible.

    CONCLUSION: These results indicate that the membrane film from O-C has potential application as a wound-dressing material.

    Matched MeSH terms: Biocompatible Materials/chemical synthesis
  2. Lee SY, Wee AS, Lim CK, Abbas AA, Selvaratnam L, Merican AM, et al.
    J Mater Sci Mater Med, 2013 Jun;24(6):1561-70.
    PMID: 23512151 DOI: 10.1007/s10856-013-4907-4
    This study aims to pre-assess the in vitro and in vivo biocompatibility of poly(vinyl alcohol)-carboxylmethyl-chitosan-poly(ethylene glycol) (PCP) scaffold. PCP was lyophilised to create supermacroporous structures. 3-(4, 5-dimethyl-thiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and immunohistochemistry (IHC) were used to evaluate the effectiveness of PCP scaffolds for chondrocytes attachment and proliferation. The ultrastructural was assessed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Extracellular matrix (ECM) formation was evaluated using collagen type-II staining, glycosaminoglycan (GAG) and collagen assays. Histological analysis was conducted on 3-week implanted Sprague-Dawley rats. The MTT, IHC, SEM and TEM analyses confirm that PCP scaffolds promoted cell attachment and proliferation in vitro. The chondrocyte-PCP constructs secreted GAG and collagen type-II, both increased significantly from day-14 to day-28 (P 
    Matched MeSH terms: Biocompatible Materials/chemical synthesis*
  3. Amin Yavari S, Chai YC, Böttger AJ, Wauthle R, Schrooten J, Weinans H, et al.
    PMID: 25842117 DOI: 10.1016/j.msec.2015.02.050
    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium.
    Matched MeSH terms: Biocompatible Materials/chemical synthesis*
  4. Mishra RK, Ramasamy K, Ahmad NA, Eshak Z, Majeed AB
    J Mater Sci Mater Med, 2014 Apr;25(4):999-1012.
    PMID: 24398912 DOI: 10.1007/s10856-013-5132-x
    Stimuli responsive hydrogels have shown enormous potential as a carrier for targeted drug delivery. In this study we have developed novel pH responsive hydrogels for the delivery of 5-fluorouracil (5-FU) in order to alleviate its antitumor activity while reducing its toxicity. We used 2-(methacryloyloxyethyl) trimetylammonium chloride a positively charged monomer and methacrylic acid for fabricating the pH responsive hydrogels. The released 5-FU from all except hydrogel (GEL-5) remained biologically active against human colon cancer cell lines [HT29 (IC50 = 110-190 μg ml(-1)) and HCT116 (IC50 = 210-390 μg ml(-1))] but not human skin fibroblast cells [BJ (CRL2522); IC50 ≥ 1000 μg ml(-1)]. This implies that the copolymer hydrogels (1-4) were able to release 5-FU effectively to colon cancer cells but not normal human skin fibroblast cells. This is probably due to the shorter doubling time that results in reduced pH in colon cancer cells when compared to fibroblast cells. These pH sensitive hydrogels showed well defined cell apoptosis in HCT116 cells through series of events such as chromatin condensation, membrane blebbing, and formation of apoptotic bodies. No cell killing was observed in the case of blank hydrogels. The results showed the potential of these stimuli responsive polymer hydrogels as a carrier for colon cancer delivery.
    Matched MeSH terms: Biocompatible Materials/chemical synthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links