Displaying publications 21 - 40 of 124 in total

Abstract:
Sort:
  1. Al-Mohammed NN, Alias Y, Abdullah Z, Shakir RM, Taha EM, Hamid AA
    Molecules, 2013 Sep 26;18(10):11978-95.
    PMID: 24077176 DOI: 10.3390/molecules181011978
    Several new substituted sulfonamide compounds were synthesized and their structures were confirmed by ¹H-NMR, ¹³C-NMR, FT-IR, and mass spectroscopy. The antibacterial activities of the synthesized compounds were screened against standard strains of six Gram positive and four Gram negative bacteria using the microbroth dilution assay. Most of the compounds studied showed promising activities against both types of bacteria.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  2. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF
    Asian Pac J Trop Biomed, 2012 Jun;2(6):427-9.
    PMID: 23569943 DOI: 10.1016/S2221-1691(12)60069-0
    To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba).
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  3. Zabidi MA, Yusoff NM, Kader ZS
    Indian J Pathol Microbiol, 2012 Jan-Mar;55(1):47-51.
    PMID: 22499300 DOI: 10.4103/0377-4929.94855
    Platelets release more than 30 cytokines to provide primary hemostatic function. In addition, platelets are also known to release antimicrobial peptides upon activation by thrombin.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  4. Din WM, Jin KT, Ramli R, Khaithir TM, Wiart C
    Phytother Res, 2013 Sep;27(9):1313-20.
    PMID: 23109276 DOI: 10.1002/ptr.4876
    The present study served to gain further insight into the bactericidal effects of ellagitannins from Acalypha wilkesiana var. macafeana hort. against pathogenic bacteria. Ellagitannins from the aerial parts of A. wilkesiana var. macafeana hort. (EAW) inhibited the growth of Bacillus cereus (ATCC 11778), Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 11632) and Methicillin-resistant Staphylococcus aureus (MRSA) clinical strain with inhibition zones equal to 11.01 ± 1.53 mm, 16.63 ± 0.11 mm, 11.40 ± 1.10 mm and 8.22 ± 0.19 mm, respectively. The minimal inhibition concentration and the minimal bactericidal concentration of ellagitannins from A. wilkesiana var. macafeana hort. (EAW) against MRSA were 750 µg/mL and 3000 µg/mL, respectively. We then examined the synergistic effect of EAW with three antibiotics, i.e. ampicillin, streptomycin and tetracycline, via the checkerboard assay and time-kill assay and observed that EAW is synergistic with ampicillin against S. aureus (ATCC 11632). Environmental electron scanning microscopy analysis showed cell lysis against S. aureus (ATCC 11632) upon treatment with the ellagitannin fraction. The ellagitannin fraction from A. wilkesiana var. macafeana hort. is bactericidal against gram-positive bacteria tested and works synergistically with ampicillin against S. aureus. Morphology analysis of the cell suggests that the bactericidal property of the ellagitannin fraction mechanism involves lysis of the cell wall. In summary, our studies demonstrate that A. wilkesiana var. macafeana hort. produces bactericidal ellagitannins of clinical and/or cosmetological value.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  5. Hossain MS, Balakrishnan V, Rahman NN, Sarker MZ, Kadir MO
    Int J Environ Res Public Health, 2012 Mar;9(3):855-67.
    PMID: 22690168 DOI: 10.3390/ijerph9030855
    A steam autoclave was used to sterilize bacteria in clinical solid waste in order to determine an alternative to incineration technology in clinical solid waste management. The influence of contact time (0, 5, 15, 30 and 60 min) and temperature (111 °C, 121 °C and 131 °C) at automated saturated steam pressure was investigated. Results showed that with increasing contact time and temperature, the number of surviving bacteria decreased. The optimum experimental conditions as measured by degree of inactivation of bacteria were 121 °C for 15 minutes (min) for Gram negative bacteria, 121 °C and 131 °C for 60 and 30 min for Gram positive bacteria, respectively. The re-growth of bacteria in sterilized waste was also evaluated in the present study. It was found that bacterial re-growth started two days after the inactivation. The present study recommends that the steam autoclave cannot be considered as an alternative technology to incineration in clinical solid waste management.
    Matched MeSH terms: Gram-Positive Bacteria/growth & development
  6. Wiart C, Hannah A, Yusof M, Hamimah H, Sulaiman M
    J Herb Pharmacother, 2005;5(3):97-102.
    PMID: 16520301
    The crude methanol extract of Bearded Argostemma (Argostemma involucratum Hemsl., Rubiaceae) showed a good and broad spectrum of antibacterial activity against both Gram-negative and Gram-positive bacteria. The activity was increased on fractionation (hexane, dichloromethane and water), particularly in the aqueous fraction which was more active than the methanol extract and streptomycin (no activity was shown against tested moulds). Both the hexane and dichloromethane fractions were inactive. The objective of this experiment was to investigate the antibacterial activity of hexane, dichloromethane, and aqueous fractions of Argostemma involucratum Hemsl. The aqueous fraction of Bearded Argostemma may be a possible new option for the treatment of bacterial infections.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  7. Azmi F, Elliott AG, Marasini N, Ramu S, Ziora Z, Kavanagh AM, et al.
    Bioorg Med Chem, 2016 05 15;24(10):2235-41.
    PMID: 27048775 DOI: 10.1016/j.bmc.2016.03.053
    The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*; Gram-Positive Bacterial Infections/drug therapy
  8. Mendes RE, Hogan PA, Jones RN, Sader HS, Flamm RK
    J Antimicrob Chemother, 2016 Jul;71(7):1860-5.
    PMID: 27013481 DOI: 10.1093/jac/dkw052
    OBJECTIVES: The objective of this study was to report the linezolid in vitro activity observed during the Zyvox(®) Annual Appraisal of Potency and Spectrum (ZAAPS) programme for 2014.

    METHODS: In total, 7541 organisms causing documented infections were consecutively collected in 66 centres in 33 countries, excluding the USA. Susceptibility testing was performed by broth microdilution. Isolates displaying linezolid MIC results of ≥4 mg/L were molecularly characterized.

    RESULTS: Linezolid inhibited all Staphylococcus aureus at ≤2 mg/L, with MIC50 results of 1 mg/L, regardless of methicillin resistance. A similar linezolid MIC50 result (i.e. 0.5 mg/L) was observed against CoNS, with the vast majority of isolates (99.4%) also inhibited at ≤2 mg/L. Six CoNS that exhibited elevated linezolid MIC values were found to contain alterations in the 23S rRNA and/or L3 ribosomal protein. Linezolid exhibited consistent modal MIC and MIC50 results (1 mg/L) against enterococci, regardless of species or vancomycin resistance. Three Enterococcus faecalis from Galway and Dublin (Ireland) and Kelantan (Malaysia) showed MIC results of 4 to 8 mg/L and carried optrA. All Streptococcus pneumoniae, viridans-group streptococci and β-haemolytic streptococci were inhibited by linezolid at ≤2, ≤2 and ≤1 mg/L, respectively, with equivalent MIC90 results (1 mg/L for all groups).

    CONCLUSIONS: These results document the continued long-term and stable in vitro potency of linezolid and reveal a limited number of isolates with decreased susceptibility to linezolid (i.e. MIC ≥4 mg/L). The latter isolates primarily showed mutations in the 23S rRNA gene and/or L3 protein, but cfr was not detected. Moreover, this study shows that isolates carrying the newly described ABC transporter optrA are not restricted to China.

    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  9. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2009 Dec;26(3):274-9.
    PMID: 20237441 MyJurnal
    The present study was designed to evaluate the antibacterial activities of Swietenia mahagoni crude methanolic (SMCM) seed extract. The antimicrobial activity of the oily extract against Gram-positive, Gram-negative, yeast and fungus strains was evaluated based on the inhibition zone using disc diffusion assay, minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) values. The crude extract was subjected to various phytochemicals analysis. The demonstrated qualitative phytochemical tests exhibited the presences of common phytocompounds including alkaloids, terpenoids, antraquinones, cardiac glycosides, saponins, and volatile oils as major active constituents. The SMCM seed extract had inhibitory effects on the growth of Candida albicans, Staphylococcus aureus, Pseudomonas aeroginosa, Streptococcus faecalis and Proteus mirabillase and illustrated MIC and MBC values ranging from 25 mg/ml to 50 mg/ml.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  10. Shapi'i RA, Othman SH, Nordin N, Kadir Basha R, Nazli Naim M
    Carbohydr Polym, 2020 Feb 15;230:115602.
    PMID: 31887886 DOI: 10.1016/j.carbpol.2019.115602
    Chitosan nanoparticles (CNP) were synthesized via ionic gelation and used for the preparation of starch-based nanocomposite films containing different concentration of CNP (0, 5, 10, 15, 20% w/w). Antimicrobial properties of starch/CNP films was evaluated via in vitro (disc diffusion analysis) and in vivo (microbial count in wrapped cherry tomatoes) study. It was found that inhibitory zone of the 15 and 20% of starch/CNP films were clearly observed for all the tested bacteria including Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. In vivo study revealed that the starch/CNP film (15% w/w) was more efficient to inhibit the microbial growth in cherry tomatoes (7 × 102 CFU/g) compared to neat starch film (2.15 × 103 CFU/g) thus confirmed the potential application of the films as antimicrobial food packaging.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects
  11. Karimi E, Jaafar HZ, Ahmad S
    Molecules, 2011 May 27;16(6):4438-50.
    PMID: 21623314 DOI: 10.3390/molecules16064438
    A local herb, Kacip Fatimah, is famous amongst Malay women for its uses in parturition; however, its phytochemical contents have not been fully documented. Therefore, a study was performed to evaluate the phenolics, flavonoids, and total saponin contents, and antibacterial and antifungal properties of the leaf, stem and root of three varieties of Labisia pumila Benth. Total saponins were found to be higher in the leaves of all three varieties, compared to the roots and stems. Leaves of var. pumila exhibited significantly higher total saponin content than var. alata and lanceolata, with values of 56.4, 43.6 and 42.3 mg diosgenin equivalent/g dry weight, respectively. HPLC analyses of phenolics and flavonoids in all three varieties revealed the presence of gallic acid, caffeic acid, rutin, and myricetin in all plant parts. Higher levels of flavonoids (rutin, quercitin, kaempferol) were observed in var. pumila compared with alata and lanceolata, whereas higher accumulation of phenolics (gallic acid, pyrogallol) was recorded in var. alata, followed by pumila and lanceolata. Antibacterial activities of leaf, stem and root extracts of all varieties determined against both Gram positive (Micrococcus luteus, Bacillus subtilis B145, Bacillus cereus B43, Staphylococcus aureus S1431) and Gram negative (Enterobacter aerogenes, Klebsiella pneumonia K36, Escherichia coli E256, Pseudomonas aeruginosa PI96) pathogens showed that crude methanolic extracts are active against these bacteria at low concentrations, albeit with lower antibacterial activity compared to kanamycin used as the control. Antifungal activity of methanolic extracts of all plant parts against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc exhibited moderate to appreciable antifungal activities compared to streptomycin used as positive control.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  12. Latha LY, Darah I, Jain K, Sasidharan S
    Asian Pac J Trop Biomed, 2012 Feb;2(2):149-51.
    PMID: 23569886 DOI: 10.1016/S2221-1691(11)60210-4
    OBJECTIVE: To investigate the antimicrobial activity of methanolic extracts of different parts of Ixora species.

    METHODS: Antimicrobial activity was carried out using disc diffusion assay against fungi, gram-positive and gram-negative bacteria.

    RESULTS: All methanolic extracts of different parts of Ixora species showed a broad-spectrum of antibacterial and antiyeast activities, which inhibited the growth of at least one bacterium or yeast. There was no remarkable difference between different Ixora species observed in this study.

    CONCLUSIONS: The significant antimicrobial activity shown by this Ixora species suggests its potential against infections caused by pathogens. The extract may be developed as an antimicrobial agent.

    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  13. Ong SM, Voo LY, Lai NS, Stark MJ, Ho CC
    J Appl Microbiol, 2007 Mar;102(3):680-92.
    PMID: 17309617
    To identify novel microbial inhibitors of protein phosphatase 1 (PP1).
    Matched MeSH terms: Gram-Positive Bacteria/enzymology*; Gram-Positive Bacteria/genetics
  14. Modarresi-Chahardehi A, Ibrahim D, Fariza-Sulaiman S, Mousavi L
    Rev. Biol. Trop., 2012 Dec;60(4):1567-76.
    PMID: 23342511
    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.
    Matched MeSH terms: Gram-Positive Bacteria/classification; Gram-Positive Bacteria/drug effects*
  15. Moreno MR, Leisner JJ, Tee LK, Ley C, Radu S, Rusul G, et al.
    J Appl Microbiol, 2002;92(1):147-57.
    PMID: 11849339
    Isolation of bacteriocinogenic lactic acid bacteria (LAB) from the Malaysian mould-fermented product tempeh and characterization of the produced bacteriocin(s).
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*; Gram-Positive Bacteria/growth & development
  16. McNeil HC, Lean SS, Lim V, Clarke SC
    Int J Antimicrob Agents, 2016 Nov;48(5):578-579.
    PMID: 27742200 DOI: 10.1016/j.ijantimicag.2016.08.011
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*; Gram-Positive Bacteria/isolation & purification; Gram-Positive Bacterial Infections/microbiology; Gram-Positive Bacterial Infections/epidemiology*
  17. Kumar GP, Phani AR, Prasad RG, Sanganal JS, Manali N, Gupta R, et al.
    Int J Pharm, 2014 Aug 25;471(1-2):146-52.
    PMID: 24858388 DOI: 10.1016/j.ijpharm.2014.05.033
    Enrofloxacin is a fluoroquinolone derivative used for treating urinary tract, respiratory and skin infections in animals. However, low solubility and low bioavailability prevented it from using on humans. Polyvinylpyrrolidone (PVP) is an inert, non toxic polymer with excellent hydrophilic properties, besides it can enhance bioavailability by forming drug polymer conjugates. With the aim of increasing solubility and bioavailability, enrofloxacin thin films were prepared using PVP as a polymer matrix. The obtained oral thin films exhibited excellent uniformity and mechanical properties. Swelling properties of the oral thin films revealed that the water uptake was enhanced by 21%. The surface pH has been found to be 6.8±0.1 indicating that these films will not cause any irritation to oral mucosa. FTIR data of the oral thin films indicated physical interaction between drug and polymer. SEM analysis revealed uniform distribution of drug in polymer matrix. In vitro drug release profiles showed enhanced release profiles (which are also pH dependant) for thin films compared to pure drug. Antibacterial activity was found to be dose dependent and maximum susceptibility was found on Klebsiella pneumonia making this preparation more suitable for respiratory infections.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects; Gram-Positive Bacteria/growth & development
  18. Barbour A, Tagg J, Abou-Zied OK, Philip K
    Sci Rep, 2016 08 16;6:31749.
    PMID: 27526944 DOI: 10.1038/srep31749
    Salivaricin B is a 25 amino acid polycyclic peptide belonging to the type AII lantibiotics and first shown to be produced by Streptococcus salivarius. In this study we describe the bactericidal mode of action of salivaricin B against susceptible Gram-positive bacteria. The killing action of salivaricin B required micro-molar concentrations of lantibiotic whereas the prototype lantibiotic nisin A was shown to be potent at nano-molar levels. Unlike nisin A, salivaricin B did not induce pore formation or dissipate the membrane potential in susceptible cells. This was established by measuring the fluorescence of the tryptophan residue at position 17 when salivaricin B interacted with bacterial membrane vesicles. The absence of a fluorescence blue shift indicates a failure of salivaricin B to penetrate the membranes. On the other hand, salivaricin B interfered with cell wall biosynthesis, as shown by the accumulation of the final soluble cell wall precursor UDP-MurNAc-pentapeptide which is the backbone of the bacterial peptidoglycan. Transmission electron microscopy of salivaricin B-treated cells showed a reduction in cell wall thickness together with signs of aberrant septum formation in the absence of visible changes to cytoplasmic membrane integrity.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*; Gram-Positive Bacteria/ultrastructure
  19. Abbasi MA, Nazeer MM, Rehman A, Siddiqui SZ, Hussain G, Shah SA, et al.
    Pak J Pharm Sci, 2018 Nov;31(6):2477-2485.
    PMID: 30473521
    The aim of the present research work was synthesis of some 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives and to ascertain their antibacterial potential. The cytotoxicity of these molecules was also checked to find out their utility as possible therapeutic agents. The synthesis was initiated by reacting furyl(-1-piperazinyl)methanone (1) in N,N-dimethylformamide (DMF) and lithium hydride with different aralkyl halides (2a-j) to afford 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives (3a-j). The structural confirmation of all the synthesized compounds was done by IR, EI-MS, 1H-NMR and 13C-NMR spectral techniques and through elemental analysis. The results of in vitro antibacterial activity of all the synthesized compounds were screened against Gram-negative (S. typhi, E. coli, P. aeruginosa) and Gram-positive (B. subtilis, S. aureus) bacteria and were found to be decent inhibitors. Amongst the synthesized molecules, 3e showed lowest minimum inhibitory concentration MIC = 7.52±0.μg/mL against S. Typhi, credibly due to the presence of 2-bromobenzyl group, relative to the reference standard, ciprofloxacin, having MIC = 7.45±0.58μg/mL.
    Matched MeSH terms: Gram-Positive Bacteria/drug effects*; Gram-Positive Bacteria/growth & development
  20. Pulingam T, Thong KL, Ali ME, Appaturi JN, Dinshaw IJ, Ong ZY, et al.
    Colloids Surf B Biointerfaces, 2019 Sep 01;181:6-15.
    PMID: 31103799 DOI: 10.1016/j.colsurfb.2019.05.023
    The antibacterial nature of graphene oxide (GO) has stimulated wide interest in the medical field. Although the antibacterial activity of GO towards bacteria has been well studied, a deeper understanding of the mechanism of action of GO is still lacking. The objective of the study was to elucidate the difference in the interactions of GO towards Gram-positive and Gram-negative bacteria. The synthesized GO was characterized by Ultraviolet-visible spectroscopy (UV-vis), Raman and Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR). Viability, time-kill and Lactose Dehydrogenase (LDH) release assays were carried out along with FESEM, TEM and ATR-FTIR analysis of GO treated bacterial cells. Characterizations of synthesized GO confirmed the transition of graphene to GO and the antibacterial activity of GO was concentration and time-dependent. Loss of membrane integrity in bacteria was enhanced with increasing GO concentrations and this corresponded to the elevated release of LDH in the reaction medium. Surface morphology of GO treated bacterial culture showed apparent differences in the mechanism of action of GO towards Gram-positive and Gram-negative bacteria where cell entrapment was mainly observed for Gram-positive Staphylococcus aureus and Enterococcus faecalis whereas membrane disruption due to physical contact was noted for Gram-negative Escherichia coli and Pseudomonas aeruginosa. ATR-FTIR characterizations of the GO treated bacterial cells showed changes in the fatty acids, amide I and amide II of proteins, peptides and amino acid regions compared to untreated bacterial cells. Therefore, the data generated further enhance our understanding of the antibacterial activity of GO towards bacteria.
    Matched MeSH terms: Gram-Positive Bacteria/cytology; Gram-Positive Bacteria/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links