Displaying publications 21 - 40 of 92 in total

Abstract:
Sort:
  1. Al-Shami SA, Salmah MR, Hassan AA, Azizah MN
    Environ Monit Assess, 2011 Jun;177(1-4):233-44.
    PMID: 20697808 DOI: 10.1007/s10661-010-1630-1
    Morphological mentum deformities which represent sublethal effect of exposure to different types of pollutants were evaluated in Chironomus spp. larvae inhabiting three polluted rivers of Juru River Basin in northwestern peninsular Malaysia. Using mentum deformity incidences, the modified toxic score index (MTSI) was developed based on Lenat's toxic score index (TSI). The suggested MTSI was compared with TSI in terms of its effectiveness to identify different pollutants including heavy metals. The MTSI showed stronger relationship to total deformity incidence expressed as percentage. Additionally, the multivariate RDA model showed higher capability of MTSI to explain the variations in heavy metal contents of the river sediments. The MTSI was recommended in bioassessment of water and sediment quality using the mentum deformities of Chironomus spp. larvae from aquatic ecosystems receiving anthropogenic, agricultural, or industrial discharges.
    Matched MeSH terms: Larva/drug effects
  2. Shuhaimi-Othman M, Yakub N, Umirah NS, Abas A
    Toxicol Ind Health, 2011 Nov;27(10):879-86.
    PMID: 21402654 DOI: 10.1177/0748233711399318
    Fourth instars larvae of freshwater midge Chironomus javanus (Diptera, Chironomidae) were exposed for a 4-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al) and manganese (Mn) concentrations. Mortality was assessed and median lethal concentrations (LC(50)) were calculated. LC(50) increased with the decrease in mean exposure times, for all metals. LC(50)s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al and Mn were 0.17, 0.06, 5.57, 0.72, 5.32, 0.62, 1.43 and 5.27 mg/L, respectively. Metals bioconcentration in C. javanus increases with exposure to increasing concentrations and Cd was the most toxic to C. javanus, followed by Cu, Fe, Pb, Al, Mn, Zn and Ni (Cd > Cu > Fe > Pb > Al > Mn > Zn > Ni). Comparison of LC(50) values for metals for this species with those for other freshwater midges reveals that C. javanus is equally or more sensitive to metals than most other tested dipteran.
    Matched MeSH terms: Larva/drug effects*
  3. Al-Shami S, Rawi CS, Nor SA, Ahmad AH, Ali A
    Environ Entomol, 2010 Feb;39(1):210-22.
    PMID: 20146859 DOI: 10.1603/EN09109
    Morphological deformities in parts of the head capsule of Chironomus spp. larvae inhabiting three polluted rivers (Permatang Rawa [PRR], Pasir [PR], and Kilang Ubi [KUR]) in the Juru River Basin, northeastern peninsular Malaysia, were studied. Samples of the fourth-instar larvae at one location in each river were collected monthly from November 2007 to March 2008 and examined for deformities of the mentum, antenna, mandible, and epipharyngis. At each sample location, in situ measurements of water depth, river width, water pH, dissolved oxygen, and water temperature were made. Samples of river water and benthic sediments were also collected monthly from each larval sample location in each river and taken to the laboratory for appropriate analysis. Total suspended solids (TSSs), ammonium-N, nitrate-N, phosphate-P, chloride, sulfate, and aluminum content in water were analyzed. Total organic matter and nonresidual metals in the sediment samples were also analyzed. Among the three rivers, the highest mean deformity (47.17%) was recorded in larvae collected from KUR that received industrial discharges from surrounding garment and rubber factories, followed by PRR (33.71%) receiving primarily residues of fertilizers and pesticides from adjacent rice fields, and PR (30.34%) contaminated primarily by anthropogenic wastes from the surrounding residential areas. Among the various head capsule structures, deformity of the mentum was strongly reflective of environmental stress and amounted to 27.9, 20.87, and 30.19% in the PRR, PR, and KUR, respectively. Calculated Lenat's toxic score index satisfactorily explained the influence of prevailing environmental variables on the severity of mentum deformities. Redundancy analysis and forward selection selected TSSs, sediment Zn, Mn, Cu, and Ni, and water pH, dissolved oxygen, water temperature, total organic matter, nitrate-N, chloride, phosphate-P, ammonium-N, sulfate, and aluminum as parameters that significantly affected some proportion of deformities. The total deformities correlated closely with deformities of mentum but only weakly with deformities in other parts of head. The total deformity incidence was strongly correlated with high contents of sediment Mn and Ni. The mentum and epipharyngis deformities incidence was highly correlated with an increase of TSSs, total aluminum, and ammonium-N and a decrease in pH and dissolved oxygen.
    Matched MeSH terms: Larva/drug effects
  4. Ee GC, Wen YP, Sukari MA, Go R, Lee HL
    Nat Prod Res, 2009;23(14):1322-9.
    PMID: 19735047 DOI: 10.1080/14786410902753138
    An investigation of Morinda citrifolia roots afforded a new anthraquinone, 2-ethoxy-1-hydroxyanthraquinone (1), along with five other known anthraquinones: 1-hydroxy-2-methylanthraquinone (2), damnacanthal (3), nordamnacanthal (4), 2-formyl-1-hydroxyanthraquinone (5) and morindone-6-methyl-ether (6). This is the first report on the isolation of morindone-6-methyl-ether (6) from this plant. The structures of these compounds were elucidated based on spectroscopic analyses such as NMR, MS and IR. Biological evaluation of five pure compounds and all the extracts against the larvae of Aedes aegypti indicated 1-hydroxy-2-methylanthraquinone (2) and damnacanthal (3) were the extracts to exhibit promising larvicidal activities.
    Matched MeSH terms: Larva/drug effects
  5. Bashir A, Hassan AA, Salmah MR, Rahman WA
    PMID: 18564706
    The efficacy of the larvicidal and pupicidal agent (Agnique) MMF was evaluated against larvae of An. arabiensis and Culex (Diptera: Culicidae) under field conditions in Bahary Locality, Khartoum, Sudan. At an applied dosage of 0.25 ml/m2, MMF resulted in 89.4, 79.8 and 88.2% reductions in L3-L4 instars An. arabiensis and 63.5% in Culex larvae (all stages) 24 to 72 hours post-treatment. Pupae were completely eliminated (100%) within 24 hours posttreatment. The earlier instars (L1-L2) of An. arabiensis were more tolerant with a 62.5% reduction at 72 hours post-treatment compared to (L3-L4) instars and pupae. At 7-days post-treatment Agnique gave a 57.5% reduction in L1-L2 and 92.6% in L3-L4 instar larvae of An. arabiensis and 57.3% and 86.4% in Culex larvae and pupae, respectively. We conclude that Agnique can perform effectively against L3-L4 instars and pupae of An. arabiensis for only 1 week, and 3 to 4 days against L1-L2 instars of Culex spp.
    Matched MeSH terms: Larva/drug effects
  6. Mitchell CL, Yeager RD, Johnson ZJ, D'Annunzio SE, Vogel KR, Werner T
    PLoS One, 2015;10(5):e0127569.
    PMID: 25978397 DOI: 10.1371/journal.pone.0127569
    Insect resistance to toxins exerts not only a great impact on our economy, but also on the ecology of many species. Resistance to one toxin is often associated with cross-resistance to other, sometimes unrelated, chemicals. In this study, we investigated mushroom toxin resistance in the fruit fly Drosophila melanogaster (Meigen). This fruit fly species does not feed on mushrooms in nature and may thus have evolved cross-resistance to α-amanitin, the principal toxin of deadly poisonous mushrooms, due to previous pesticide exposure. The three Asian D. melanogaster stocks used in this study, Ama-KTT, Ama-MI, and Ama-KLM, acquired α-amanitin resistance at least five decades ago in their natural habitats in Taiwan, India, and Malaysia, respectively. Here we show that all three stocks have not lost the resistance phenotype despite the absence of selective pressure over the past half century. In response to α-amanitin in the larval food, several signs of developmental retardation become apparent in a concentration-dependent manner: higher pre-adult mortality, prolonged larva-to-adult developmental time, decreased adult body size, and reduced adult longevity. In contrast, female fecundity nearly doubles in response to higher α-amanitin concentrations. Our results suggest that α-amanitin resistance has no fitness cost, which could explain why the resistance has persisted in all three stocks over the past five decades. If pesticides caused α-amanitin resistance in D. melanogaster, their use may go far beyond their intended effects and have long-lasting effects on ecosystems.
    Matched MeSH terms: Larva/drug effects
  7. Yu KX, Wong CL, Ahmad R, Jantan I
    Molecules, 2015;20(8):14082-102.
    PMID: 26247928 DOI: 10.3390/molecules200814082
    The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide.
    Matched MeSH terms: Larva/drug effects
  8. Nicolas L, Charles JF, de Barjac H
    FEMS Microbiol Lett, 1993 Oct 01;113(1):23-8.
    PMID: 8243978
    The toxicity of Clostridium bifermentans serovar malaysia to mosquito larvae is due to protein toxins, belonging to a novel class of insecticidal toxins. Toxic extracts contains three major proteins of 66, 18 and 16 kDa. The 18-kDa and 16-kDa proteins are probably involved in toxicity. They are synthesised during sporulation, concomitant with activity. They are absent from non-toxic strains of C. bifermentans and are present at very low levels in non-toxic C. bifermentans serovar malaysia cultures produced at 42 degrees C. The 66-kDa protein is present throughout the growth phases of C. bifermentans serovar malaysia, and an immunologically related 66-kDa protein is present in non-toxic C. bifermentans strains.
    Matched MeSH terms: Larva/drug effects
  9. Lee HL, Chong WL
    PMID: 8525405
    Comparative DDT-susceptibility status and glutathion s-transferase (GST) activity of Malaysian Anopheles maculatus, Culex quinquefasciatus and Aedes aegypti was investigated to ascertain the role of this enzyme in DDT resistance. The standardised WHO dose-mortality bioassay tests were used to determine DDT susceptibility in these mosquitos, whilst GST microassay (Brogdon and Barber, 1990) was conducted to measure the activity of this enzyme in mosquito homogenate. It appeared that DDT susceptibility status of Malaysian mosquitos was not correlated with GST activity.
    Matched MeSH terms: Larva/drug effects
  10. Yap HH, Lau BL, Leong YP
    PMID: 6189198
    The toxic effects of Abate (temephos) on mosquito larvae and non-target organisms were studied in the rice-field and in the laboratory. In the laboratory tests, Culex tritaeniorhychus larvae and cladoceran zooplanktons (predominantly Diaphanosoma and Moinodaphnia species) were found to be highly susceptible to Abate with LC50 values of 0.27 and less than 0.10 parts per billion respectively. Other non-target species in decreasing degree of susceptibility to Abate were copepods (Tropodiaptomus spp.), Aplocheilus panchax and Tubifex worms. In field study, Abate at concentrations 60, 100 and 200 gm hectare-1 is effective in maintaining the rice-fields free of Anopheles and Culex mosquitoes for at least 2 days. No mortality was observed for Aplocheilus panchax and Tubifex worms at the above concentrations; nevertheless, populations of cladoceran zooplanktons and copepods were reduced up to seven days posttreatment.
    Matched MeSH terms: Larva/drug effects
  11. Ahmad R, Chu WL, Ismail Z, Lee HL, Phang SM
    PMID: 15272748
    The effect of ten microalgal chlorophytes isolated from mosquito breeding containers on the survival, larval development and adult body size of the mosquito Aedes aegypti was investigated. All larvae fed with six of the microalgal isolates died after 7 days. These isolates were found to be resistant to digestion by mosquito larvae. Delayed pupation and body size reduction of the mosquitos fed with Chlorococcum UMACC 218 and Scenedesmus UMACC 220 were observed. In contrast, larvae fed with Ankistrodesmus convolutus UMACC 101 and Chlorococcum UMACC 213 were bigger in size than those fed with normal insectory feed. The present study showed that microalgal chlorophytes have the potential to be used as larvicidal agents for mosquitos.
    Matched MeSH terms: Larva/drug effects
  12. Ramli I, Kamarulzaman NH, Shaari K, Ee GC
    Nat Prod Res, 2004 Aug;18(4):289-94.
    PMID: 15214478
    Leaf extracts of Melicope lunu-ankenda were chemically studied and found to contain mixtures of hydrocarbons and squalene, fatty acids and esters. A geranylated coumaric acid was isolated as the major compound. The crude dichloromethane and methanol extracts of the leaves were found to be strongly larvicidal with LC50 values below 20 microg mL(-1). This is a first isolation of p-O-geranylcoumaric acid from this plant.
    Matched MeSH terms: Larva/drug effects
  13. Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, et al.
    Nat Commun, 2019 06 28;10(1):2869.
    PMID: 31253776 DOI: 10.1038/s41467-019-10732-w
    Clostridial neurotoxins, including tetanus and botulinum neurotoxins, generally target vertebrates. We show here that this family of toxins has a much broader host spectrum, by identifying PMP1, a clostridial-like neurotoxin that selectively targets anopheline mosquitoes. Isolation of PMP1 from Paraclostridium bifermentans strains collected in anopheline endemic areas on two continents indicates it is widely distributed. The toxin likely evolved from an ancestral form that targets the nervous system of similar organisms, using a common mechanism that disrupts SNARE-mediated exocytosis. It cleaves the mosquito syntaxin and employs a unique receptor recognition strategy. Our research has an important impact on the study of the evolution of clostridial neurotoxins and provides the basis for the use of P. bifermentans strains and PMP1 as innovative, environmentally friendly approaches to reduce malaria through anopheline control.
    Matched MeSH terms: Larva/drug effects
  14. Han HS, Yasmin L
    Vet Dermatol, 2020 Aug;31(4):335-e87.
    PMID: 32323413 DOI: 10.1111/vde.12855
    The most common fly species associated with screwworm myiasis in Southeast Asia is Chrysomya bezziana (Ch. bezziana), the Old-World screwworm. Treatment of screwworm myiasis in cats traditionally has comprised subcutaneous injection of ivermectin or oral administration of nitenpyram, combined with aggressive tissue debridement and larval removal under general anaesthesia. Two cats diagnosed with cutaneous myiasis caused by the larvae of Ch. bezziana were treated with lotilaner. In both cats, a single dose of lotilaner at 6-26 mg/kg, killed all larvae within 24 h, negating the need for general anaesthesia. Both cats were simultaneously infested with Lynxacarus radovskyi (L. radovskyi) which also was eradicated with lotilaner. No adverse reactions were observed and both cats recovered without complications.
    Matched MeSH terms: Larva/drug effects
  15. Owen-Smith P, Perry R, Wise J, Jamil RZR, Gut L, Sundin G, et al.
    Pest Manag Sci, 2019 Nov;75(11):3050-3059.
    PMID: 30895726 DOI: 10.1002/ps.5421
    BACKGROUND: Air blast sprayers are not optimized for spraying the short statured trees in modern apple orchards, resulting in off target drift and variable coverage. A solid set canopy delivery system (SSCDS) consisting of a microsprayer array distributed throughout the orchard was investigated as a replacement agrochemical application method in this study. SSCDS's have the potential to optimize coverage, rapidly spray applications, and remove the operator and tractor from the orchard.

    RESULTS: Air blast and SSCDS applications were compared using water sensitive paper, bioassays, and pest damage assessments. Pest management and coverage were compared using application volumes of 700 and 795 L ha-1 , respectively. In 2013, adaxial coverage measurements showed no difference between the treatments, but air blast sprayers had higher coverage levels on the abaxial surfaces. There were no significant differences in coverage in 2014. Bioassays using Choristoneura rosaceana fed on leaf discs treated by the SSCDS displayed 95.8% mortality in 2013 and 94.2% mortality in 2014, and air blast treated larval mortality was 95% in 2013 and 100% in 2014. Damage evaluations in both years generally showed no significant differences between the air blast plots and the SSCDS plots, but significant differences between the treated plots and untreated control.

    CONCLUSIONS: The prototype SSCDS was an effective pest management tool in high density apples, and offered a number of advantages over an air blast. Further engineering and research into coverage optimization would offer producers a novel tool for foliar agrochemical applications. © 2019 Society of Chemical Industry.

    Matched MeSH terms: Larva/drug effects
  16. Rosilawati R, Baharudin O, Syamsa RA, Lee HL, Nazni WA
    Trop Biomed, 2014 Dec;31(4):785-91.
    PMID: 25776605 MyJurnal
    Preservation of larvae retrieved from cadavers is important in ensuring the quality and integrity of entomological specimens used for the estimation of post-mortem interval (PMI). The process of killing and preserving larvae could distort the larvae leading to inaccurate estimation of PMI. In this study, the effects of killing Chrysomya megacephala larvae with hot water at different temperatures and subsequent maintenance in various preservatives were determined. Larvae not killed by hot water but preserved directly were used as control. The types of preservative used were 10% formalin, 70% ethanol and Kahle's solution. The morphological features examined were length, turgidity, curvature and coloration of larvae. Larvae killed in 80ºC hot water have shorter mean length (12.47 ± 2.86 mm) compared to those in 60ºC hot water (12.95 ± 2.69 mm). Increasing the duration of preservation in all types of preservative caused elongations of larvae treated or untreated with hot water. There were no significant changes in larval turgidity preserved in Kahle's solution compared to other two preservatives and were unaffected by the duration of storage. Larvae preserved in Kahle's solution experienced the least changes in coloration and shape compared to other preserved larvae in 70% ethanol or 10% formalin. Larvae directly immersed alive in 70% ethanol experienced the most changes in curvature, coloration and turgidity. This study suggested that killing larvae with hot water at 80ºC and preservation in Kahle's solution is the optimum method resulting in least changes in morphological features of Ch. megacephala larvae.
    Matched MeSH terms: Larva/drug effects
  17. Thiagaletchumi M, Zuharah WF, Ahbi Rami R, Fadzly N, Dieng H, Ahmad AH, et al.
    Trop Biomed, 2014 Sep;31(3):466-76.
    PMID: 25382473 MyJurnal
    Specification on residual action of a possible alternative insecticide derived from plant materials is important to determine minimum interval time between applications and the environmental persistence of the biopesticides. The objective of this study is to evaluate crude acethonilic extract of Ipomoea cairica leaves for its residual and persistence effects against Culex quinquefasciatus larvae. Wild strain of Cx. quinquefasciatus larvae were used for the purpose of the study. Two test designs, replenishment of water and without replenishment of water were carried out. For the first design, a total of 10 ml of test solution containing Ip. cairica extracts was replenished daily and replaced with 10 ml of distilled water. For the second design, treatment water was maintained at 1500 ml and only evaporated water was refilled. Larval mortality was recorded at 24 hours post-treatment after each introduction period and trials were terminated when mortality rate falls below 50%. Adult emergences from survived larvae were observed and number of survivals was recorded. For the non-replenishment design, mortality rate significantly reduced to below 50% after 28 days, meanwhile for replenishment of water declined significantly after 21 days (P < 0.05). There was no adult emergence observed up to seven days for non-replenishment and first two days for replenishment of water design. The short period of residual effectiveness of crude acethonilic extract of Ip. cairica leaves with high percentage of larval mortality on the first few days, endorses fewer concerns of having excess residues in the environment which may carry the risk of insecticide resistance and environmental pollution.
    Matched MeSH terms: Larva/drug effects
  18. Chen CD, Nazni WA, Lee HL, Norma-Rashid Y, Lardizabal ML, Sofian-Azirun M
    Trop Biomed, 2013 Jun;30(2):220-30.
    PMID: 23959487 MyJurnal
    Larvae of Aedes albopictus obtained from dengue endemic areas in Selangor, Malaysia were evaluated for their susceptibility to operational dosage of temephos (1 mg/L). Larval bioassays were carried out in accordance to modified WHO standard methods. Biochemical microassay of enzymes in Ae. albopictus was conducted to detect the emergence of insecticide resistance and to define the mechanisms involved in temephos resistance. The 50% mortality lethal time (LT50) for Ae. albopictus tested against temephos ranged between 58.65 to 112.50 minutes, with resistance ratio ranging from 0.75 - 1.45. This study addressed the fluctuation of time-related susceptibility status of Ae. albopictus towards insecticide. Significant difference on the weekly enzyme levels of non-specific esterases, mixed function oxidases and glutathione S-transferases was detected (p ≤ 0.05). No significant correlation was found between temephos resistance and enzyme activity (p > 0.05). Only glutathione S-transferases displayed high level of activity, indicating that Ae. albopictus may be resistant to other groups of insecticide. The insensitive acetylcholinesterase was detected in some field collected Ae. albopictus populations, indicating the possibility of emergence of carbamate or other organophosphate resistance in the field populations. Continuous resistance monitoring should be conducted regularly to confirm the efficacy of insecticides for dengue control.
    Matched MeSH terms: Larva/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links