Displaying publications 21 - 40 of 86 in total

Abstract:
Sort:
  1. Chan SK, Kuzuya A, Choong YS, Lim TS
    SLAS Discov, 2019 01;24(1):68-76.
    PMID: 30063871 DOI: 10.1177/2472555218791743
    The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  2. Khalil I, Hashem A, Nath AR, Muhd Julkapli N, Yehye WA, Basirun WJ
    Mol Cell Probes, 2021 10;59:101758.
    PMID: 34252563 DOI: 10.1016/j.mcp.2021.101758
    Authentication, detection and quantification of ingredients, and adulterants in food, meat, and meat products are of high importance these days. The conventional techniques for the detection of meat species based on lipid, protein and DNA biomarkers are facing challenges due to the poor selectivity, sensitivity and unsuitability for processed food products or complex food matrices. On the other hand, DNA based molecular techniques and nanoparticle based DNA biosensing strategies are gathering huge attention from the scientific communities, researchers and are considered as one of the best alternatives to the conventional strategies. Though nucleic acid based molecular techniques such as PCR and DNA sequencing are getting greater successes in species detection, they are still facing problems from its point-of-care applications. In this context, nanoparticle based DNA biosensors have gathered successes in some extent but not to a satisfactory stage to mark with. In recent years, many articles have been published in the area of progressive nucleic acid-based technologies, however there are very few review articles on DNA nanobiosensors in food science and technology. In this review, we present the fundamentals of DNA based molecular techniques such as PCR, DNA sequencing and their applications in food science. Moreover, the in-depth discussions of different DNA biosensing strategies or more specifically electrochemical and optical DNA nanobiosensors are presented. In addition, the significance of DNA nanobiosensors over other advanced detection technologies is discussed, focusing on the deficiencies, advantages as well as current challenges to ameliorate with the direction for future development.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  3. Thanarajoo SS, Kong LL, Kadir J, Lau WH, Vadamalai G
    J Virol Methods, 2014 Jun;202:19-23.
    PMID: 24631346 DOI: 10.1016/j.jviromet.2014.02.024
    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  4. Piera KA, Aziz A, William T, Bell D, González IJ, Barber BE, et al.
    Malar J, 2017 01 13;16(1):29.
    PMID: 28086789 DOI: 10.1186/s12936-016-1676-9
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection.

    METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs.

    RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL.

    CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.

    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  5. Teoh BT, Sam SS, Tan KK, Johari J, Danlami MB, Hooi PS, et al.
    BMC Infect Dis, 2013;13:387.
    PMID: 23964963 DOI: 10.1186/1471-2334-13-387
    BACKGROUND: Early and rapid detection of dengue virus (DENV) infection during the febrile period is crucial for proper patient management and prevention of disease spread. An easy to perform and highly sensitive method is needed for routine implementation especially in the resource-limited rural healthcare settings where dengue is endemic.
    METHODS: A single-tube reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay with a set of nine primers was developed for the detection of all four DENV serotypes and their different genotypes. The sensitivity and specificity of the RT-LAMP were evaluated. The clinical applicability of RT-LAMP assay for detection of DENV RNA was assessed in a total of 305 sera of clinically-suspected dengue patients. The test results of RT-LAMP were statistically compared to those of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA).
    RESULTS: Acute DENV infection was confirmed in 171 samples (n = 305); 43.3% (74/171) and 46.8% (80/171) of the samples were positive for DENV using RT-LAMP and qRT-PCR, respectively. The combination of RT-LAMP with the dengue IgM and IgG ELISA increased detection of acute DENV infection to 97.7% (167/171), in comparison to only 70.8% (121/171) when dengue IgM and IgG ELISA alone were used. The RT-LAMP assays showed high concordance (κ = 0.939) with the qRT-PCR. The RT-LAMP assay detected up to 10 copies of virus RNA within an hour but 100% reproducibility (12/12) was achieved with 100 copies. There was no cross reactivity of RT-LAMP with other closely related arboviruses.
    CONCLUSION: The RT-LAMP assay developed in this study is sensitive, specific and simple to perform. The assay improved the detection of dengue when used in combination with serological methods.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  6. Nakowong P, Chatchawal P, Chaibun T, Boonapatcharoen N, Promptmas C, Buajeeb W, et al.
    Talanta, 2024 Mar 01;269:125495.
    PMID: 38043336 DOI: 10.1016/j.talanta.2023.125495
    Cervical cancer emerges as the third most prevalent types of malignancy among women on a global scale. Cervical cancer is significantly associated with the persistent infection of human papillomavirus (HPV) type 16. The process of diagnosing is crucial in order to prevent the progression of a condition into a malignant state. The early detection of cervical cancer through initial stage screening is of the utmost significance in both the prevention and effective management of this disease. The present detection methodology is dependent on quantitative polymerase chain reaction (qPCR), which necessitates the use of a costly heat cycler instrument. In this study, we report the development of an electrochemical DNA biosensor integrated with an isothermal recombinase polymerase amplification (RPA) reaction for the detection and identification of the high-risk HPV-16 genotype. The electrochemical biosensor exhibited a high degree of specificity and sensitivity, as evidenced by its limit of detection (LOD) of 0.23 copies/μL of HPV-16 DNA. The validity of this electrochemical platform was confirmed through the analysis of 40 cervical tissues samples, and the findings were consistent with those obtained through polymerase chain reaction (PCR) testing. Our straightforward electrochemical detection technology and quick turnaround time at 75 min make the assay suitable for point-of-care testing in low-resource settings.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  7. Fauzi FH, Hamzan NI, Rahman NA, Suraiya S, Mohamad S
    J Zhejiang Univ Sci B, 2021 4 13;21(12):961-976.
    PMID: 33843162 DOI: 10.1631/jzus.B2000161
    Worldwide there has been a significant increase in the incidence of oropharyngeal squamous cell carcinoma (OPSCC) etiologically attributed to oncogenic human papillomavirus (HPV). Reliable and accurate identification and detection tools are important as the incidence of HPV-related cancer is on the rise. Several HPV detection methods for OPSCC have been developed and each has its own advantages and disadvantages in regard to sensitivity, specificity, and technical difficulty. This review summarizes our current knowledge of molecular methods for detecting HPV in OPSCC, including HPV DNA/RNA polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), p16 immunohistochemistry (IHC), and DNA/RNA in situ hybridization (ISH) assays. This summary may facilitate the selection of a suitable method for detecting HPV infection, and therefore may help in the early diagnosis of HPV-related carcinoma to reduce its mortality, incidence, and morbidity.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  8. Mallepaddi PC, Lai MY, Podha S, Ooi CH, Liew JW, Polavarapu R, et al.
    Am J Trop Med Hyg, 2018 09;99(3):704-708.
    PMID: 29943720 DOI: 10.4269/ajtmh.18-0177
    The present study aims to develop a method for rapid diagnosis of malaria using loop-mediated isothermal amplification (LAMP) combined with a lateral flow device (LFD). By adding the biotin-labeled and fluorescein amidite-labeled loop primers to the LAMP reaction solution, the end product can be visualized on a LFD. The entire procedure takes approximately 42 minutes to complete, LAMP assay exhibited high sensitivity, as the detection limit was 0.01 pg/μL for all five Plasmodium species. It was demonstrated that all Plasmodium knowlesi (N = 90) and Plasmodium vivax (N = 56) were positively amplified by LAMP-LFD assay, whereas healthy donor samples (N = 8) were negative. However, not all mixed infections were positive, and other infected nonmalaria samples were negative. Loop-mediated isothermal amplification-LFD represents a robust approach with potential suitability for use in resource-constrained laboratories. We believe that LAMP-LFD has a potential to be developed as point-of-care diagnostic tool in future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  9. Lau YL, Ismail IB, Mustapa NIB, Lai MY, Tuan Soh TS, Haji Hassan A, et al.
    PLoS One, 2021;16(1):e0245164.
    PMID: 33406112 DOI: 10.1371/journal.pone.0245164
    Rapid diagnosis is an important intervention in managing the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak. Real time reverse transcription polymerase chain reaction (RT-qPCR) remains the primary means for diagnosing the new virus strain but it is time consuming and costly. Recombinase polymerase amplification (RPA) is an isothermal amplification assay that does not require a PCR machine. It is an affordable, rapid, and simple assay. In this study, we developed and optimized a sensitive reverse transcription (RT)-RPA assay for the rapid detection of SARS-CoV-2 using SYBR Green I and/or lateral flow (LF) strip. The analytical sensitivity and specificity of the RT-RPA assay were tested by using 10-fold serial diluted synthetic RNA and genomic RNA of similar viruses, respectively. Clinical sensitivity and specificity of the RT-RPA assay were carried out using 78 positive and 35 negative nasopharyngeal samples. The detection limit of both RPA and RT-qPCR assays was 7.659 and 5 copies/μL RNA, respectively with no cross reactivity with other viruses. The clinical sensitivity and specificity of RT-RPA were 98% and 100%, respectively. Our study showed that RT-RPA represents a viable alternative to RT-qPCR for the detection of SARS-CoV-2, especially in areas with limited infrastructure.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  10. Foo PC, Chan YY, Mohamed M, Wong WK, Nurul Najian AB, Lim BH
    Anal Chim Acta, 2017 May 08;966:71-80.
    PMID: 28372729 DOI: 10.1016/j.aca.2017.02.019
    This study highlighted the development of a four target nitrocellulose-based nucleic acid lateral flow immunoassay biosensor in a dry-reagent strip format for interpretation of double-labelled double-stranded amplicons from thermostabilised triplex loop-mediated isothermal amplification assay. The DNA biosensor contained two test lines which captured biotin and texas red labelled amplicons; a LAMP internal amplification control line that captured digoxigenin labelled amplicon; and a chromatography control line that validated the functionality of the conjugated gold nanoparticles and membrane. The red lines on detection pad were generated when the gold nanoparticles conjugated antibody bound to the fluorescein labelled amplicons, and the capture agents bound to their specific hapten on the other 5' end of the double-stranded amplicon. The applicability of this DNA biosensor was demonstrated using amoebiasis-causing Entamoeba histolytica simultaneously with the non-pathogenic but morphologically identical Entamoeba dispar and Entamoeba moshkovskii. The biosensor detection limit was 10 E. histolytica trophozoites, and revealed 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. Heat stability test showed that the biosensor was stable for at least 181 days at ambient temperature. This ready-to-use and cold-chain-free biosensor facilitated the post-LAMP analysis based on visualisation of lines on strip instead of observation of amplicon patterns in agarose gel.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
  11. Azi Simon Onyema, Leslie Than Thian Lung, Suresh Kumar, Rukman Awang Hamat
    MyJurnal
    Introduction: Group A streptococcus (GAS) is responsible for high morbidity and mortality globally. Hence, the need to develop sensitive, reliable and cost- effective method of detection is crucial. In this study, we developed a visual detection method for the common virulence gene, streptococcal pyrogenic exotoxin B (speB) involved in invasive GAS diseases using loop-mediated isothermal amplification (LAMP) with fluorescent detection dye (calcein). Meth-ods: The LAMP reaction was optimized at 63°C for 35 minutes using five sets of primer designed with LAMP primer V5 software. When the dye was added prior to amplification, samples with speB DNA developed a characteristic green color after the reaction, but no color reactions were observed in samples with DNAs of non-GAS isolates. De-tection of speB by LAMP assay was done among 43 clinical isolates of blood, pus, wound, tissue and throat samples and ATCCs for controls. Our findings were further reconfirmed by subjecting the LAMP products to 0.5% gel electro-phoresis. Results: The detection limit of this LAMP assay for speB was 10-7 ng/μl of genomic DNA per reaction, which was 10,000-fold more sensitive than conventional PCR 10-3 ng/μl. All 100 % samples were positive for speB gene by LAMP, and 93% by conventional PCR method. Conclusion: LAMP assay could offer remarkably high sensitivity, specificity, repeatability, reliability, affordability, and visibility; it is appropriate for rapid detection of speB in Group A streptococci (GAS) as a point of care testing.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  12. Nurul Najian AB, Engku Nur Syafirah EA, Ismail N, Mohamed M, Yean CY
    Anal Chim Acta, 2016 Jan 15;903:142-8.
    PMID: 26709307 DOI: 10.1016/j.aca.2015.11.015
    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10(-1) genomic equivalent ml(-1). An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  13. Lee DJ, Kim SY, Kim JD, Kim YS, Song HJ, Park CY
    Sains Malaysiana, 2015;44:1693-1699.
    This paper presents a low-cost method of constructing the compact UV illuminator, which is considered as an important
    component of a gel documentation system. The procedure involves using a smallest-possible UV lamp and a motor which
    moves the UV lamp in the UV illuminator instead of conventional 4 UV lamps. A comparative analysis of images produced
    by using the commercial gel documentation system and our prototype was carried out. These comparisons were done
    in real DNA gel as well as a reference plate made of quantum dot. The plate was composed of the chambers filled with
    various densities of the quantum dot instead of the Agarose gel containing the ETBR in order to increase the accuracy of
    comparison and the convenience of experiments. Despite the use of only 1 UV lamp, the proposed system demonstrated
    a similar imaging performance compared with the conventional gel documentation system equipped with 4 UV lamps,
    resulting in the great reduction of the system cost.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  14. Lam JY, Low GK, Chee HY
    PLoS Negl Trop Dis, 2020 02;14(2):e0008074.
    PMID: 32049960 DOI: 10.1371/journal.pntd.0008074
    BACKGROUND: Leptospirosis is often difficult to diagnose because of its nonspecific symptoms. The drawbacks of direct isolation and serological tests have led to the increased development of nucleic acid-based assays, which are more rapid and accurate. A meta-analysis was performed to evaluate the diagnostic accuracy of genetic markers for the detection of Leptospira in clinical samples.

    METHODOLOGY AND PRINCIPLE FINDINGS: A literature search was performed in Scopus, PubMed, MEDLINE and non-indexed citations (via Ovid) by using suitable keyword combinations. Studies evaluating the performance of nucleic acid assays targeting leptospire genes in human or animal clinical samples against a reference test were included. Of the 1645 articles identified, 42 eligible studies involving 7414 samples were included in the analysis. The diagnostic performance of nucleic acid assays targeting the rrs, lipL32, secY and flaB genes was pooled and analyzed. Among the genetic markers analyzed, the secY gene showed the highest diagnostic accuracy measures, with a pooled sensitivity of 0.56 (95% CI: 0.50-0.63), a specificity of 0.98 (95% CI: 0.97-0.98), a diagnostic odds ratio of 46.16 (95% CI: 6.20-343.49), and an area under the curve of summary receiver operating characteristics curves of 0.94. Nevertheless, a high degree of heterogeneity was observed in this meta-analysis. Therefore, the present findings here should be interpreted with caution.

    CONCLUSION: The diagnostic accuracies of the studies examined for each genetic marker showed a significant heterogeneity. The secY gene exhibited higher diagnostic accuracy measures compared with other genetic markers, such as lipL32, flaB, and rrs, but the difference was not significant. Thus, these genetic markers had no significant difference in diagnostic accuracy for leptospirosis. Further research into these genetic markers is warranted.

    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  15. Kabir S, Parash MTH, Emran NA, Hossain ABMT, Shimmi SC
    PLoS One, 2021;16(5):e0251858.
    PMID: 34015016 DOI: 10.1371/journal.pone.0251858
    The incidence of pulmonary tuberculosis (PTB) can be reduced by preventing transmission with rapid and precise case detection and early treatment. The Gene-Xpert MTB/RIF assay is a useful tool for detecting Mycobacterium tuberculosis (MTB) with rifampicin resistance within approximately two hours by using a nucleic acid amplification technique. This study was designed to reduce the underdiagnosis of smear-negative pulmonary TB and to assess the clinical and radiological characteristics of PTB patients. This cross-sectional study included 235 participants who went to the Luyang primary health care clinic from September 2016 to June 2017. The demographic data were analyzed to investigate the association of patient gender, age group, and ethnicity by chi-square test. To assess the efficacy of the diagnostic test, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated. The area under the curve for sputum for both AFB and gene-Xpert was analyzed to compare their accuracy in diagnosing TB. In this study, TB was more common in males than in females. The majority (50.71%) of the cases belonged to the 25-44-year-old age group and the Bajau ethnicity (57.74%). Out of 50 pulmonary TB cases (smear-positive with AFB staining), 49 samples were positive according to the Gene-Xpert MTB/RIF assay and was confirmed by MTB culture. However, out of 185 smear-negative presumptive cases, 21 cases were positive by Gene-Xpert MTB/RIF assay in that a sample showed drug resistance, and these results were confirmed by MTB culture, showing resistance to isoniazid. In comparison to sputum for AFB, Gene-Xpert showed more sensitivity and specificity with almost complete accuracy. The additional 21 PTB cases detection from the presumptive cases by GeneXpert had significant impact compared to initial observation by the routine tests which overcame the diagnostic challenges and ambiguities.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  16. Amir A, Cheong FW, De Silva JR, Lau YL
    Parasit Vectors, 2018 01 23;11(1):53.
    PMID: 29361963 DOI: 10.1186/s13071-018-2617-y
    Every year, millions of people are burdened with malaria. An estimated 429,000 casualties were reported in 2015, with the majority made up of children under five years old. Early and accurate diagnosis of malaria is of paramount importance to ensure appropriate administration of treatment. This minimizes the risk of parasite resistance development, reduces drug wastage and unnecessary adverse reaction to antimalarial drugs. Malaria diagnostic tools have expanded beyond the conventional microscopic examination of Giemsa-stained blood films. Contemporary and innovative techniques have emerged, mainly the rapid diagnostic tests (RDT) and other molecular diagnostic methods such as PCR, qPCR and loop-mediated isothermal amplification (LAMP). Even microscopic diagnosis has gone through a paradigm shift with the development of new techniques such as the quantitative buffy coat (QBC) method and the Partec rapid malaria test. This review explores the different diagnostic tools available for childhood malaria, each with their characteristic strengths and limitations. These tools play an important role in making an accurate malaria diagnosis to ensure that the use of anti-malaria are rationalized and that presumptive diagnosis would only be a thing of the past.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  17. Balachandra D, Ahmad H, Arifin N, Noordin R
    Eur J Clin Microbiol Infect Dis, 2021 Jan;40(1):27-37.
    PMID: 32729057 DOI: 10.1007/s10096-020-03949-x
    Laboratory diagnosis of Strongyloides infections can be grouped into direct and indirect detection methods, and a combination of the two methods is often needed to reach an accurate and timely diagnosis. This review focuses on non-conventional direct detection via molecular and antigen detection assays. Conventional PCR is the most commonly used molecular diagnostic for Strongyloides. Real-time PCR is accurate and highly sensitive for quantitative and qualitative analysis. Meanwhile, PCR-RFLP can efficiently distinguish human and dog isolates of S. stercoralis, S. fuelleborni (from monkey), and S. ratti (from rodent). Loop-mediated isothermal amplification (LAMP) amplifies DNA isothermally with high specificity, efficiency, and rapidity, and has potential for point-of-care (POC) translation. As for antigen detection assay, coproantigen detection ELISAs for strongyloidiasis traditionally relied on raising rabbit polyclonal antibodies against the parasite antigens for use as capture or detection reagents. Subsequently, hybridoma technology using animals has enabled the discovery of monoclonal antibodies specific to Strongyloides antigens and was utilised to develop antigen detection assays. In recent times, phage display technology has facilitated the discovery of scFv antibody against Strongyloides protein that can accelerate the development of such assays. Improvements in both direct detection methods are being made. Strongyloides molecular diagnostics is moving from the detection of a single infection to the simultaneous detection of soil-transmitted helminths. Meanwhile, antigen detection assays can also be multiplexed and aptamers can be used as antigen binders. In the near future, these two direct detection methods may be more widely used as diagnostic tools for strongyloidiasis.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  18. Qiao Z, Xue L, Sun M, Ma N, Shi H, Yang W, et al.
    J Agric Food Chem, 2024 Jan 10;72(1):857-864.
    PMID: 38134022 DOI: 10.1021/acs.jafc.3c07582
    Salmonellosis continues to impose a significant economic burden globally. Rapid and sensitive detection of Salmonella is crucial to preventing the outbreaks of foodborne illnesses, yet it remains a formidable challenge. Herein, a dual-functional tetrahedron multivalent aptamer assisted amplification-free CRISPR/Cas12a assay was developed for Salmonella detection. In the system, the aptamer was programmatically assembled on the tetrahedral DNA nanostructure to fabricate a multivalent aptamer (TDN-multiApt), which displayed a 3.5-fold enhanced avidity over the monovalent aptamer and possessed four CRISPR/Cas12a targeting fragments to amplify signal. Therefore, TDN-multiApt could directly activate Cas12a to achieve the second signal amplification without any nucleic acid amplification. By virtue of the synergism of high avidity and cascaded signal amplifications, the proposed method allowed the ultrasensitive detection of Salmonella as low as 7 cfu mL-1. Meanwhile, this novel platform also exhibited excellent specificity against target bacteria and performed well in the detection of various samples, indicating its potential application in real samples.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  19. Lai MY, Ooi CH, Jaimin JJ, Lau YL
    Am J Trop Med Hyg, 2020 06;102(6):1370-1372.
    PMID: 32228783 DOI: 10.4269/ajtmh.20-0001
    The incidence of zoonotic malaria, Plasmodium knowlesi, infection is increasing and now is the major cause of malaria in Malaysia. Here, we describe a WarmStart colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Plasmodium spp. The detection limit for this assay was 10 copies/µL for P knowlesi and Plasmodium ovale and 1 copy/µL for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae. To test clinical sensitivity and specificity, 100 microscopy-positive and 20 malaria-negative samples were used. The WarmStart colorimetric LAMP was 98% sensitive and 100% specific. Amplification products were visible for direct observation, thereby eliminating the need for post-amplification processing steps. Therefore, WarmStart colorimetric LAMP is suitable for use in resource-limited settings.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods*
  20. Gunasegar S, Neela VK
    Diagn Microbiol Infect Dis, 2021 Jul;100(3):115369.
    PMID: 33845305 DOI: 10.1016/j.diagmicrobio.2021.115369
    Loop-mediated isothermal amplification (LAMP) test is widely used in molecular diagnostics as a point-of-care technique alternative to traditional PCR especially in resource-limited countries. LAMP has been recently used to diagnose leptospirosis. Therefore, we undertook a systematic review and meta-analysis to compare the accuracy of LAMP with PCR in the diagnosis of leptospirosis. Sixty-one studies were extracted from three international databases and analyzed throughout using the PRISMA guideline. The pooled sensitivity of LAMP and PCR technique was 0.80 (95% CI: 0.58-0.90) and 0.54 (95% CI: 0.35-0.67) respectively indicating that LAMP is more sensitive than PCR. The Q* value of LAMP and PCR-based technique is 274.61 and 397.95, respectively. Among the analyzed studies, significant heterogeneity was observed where I2 is 90.90% for LAMP-based and 86.18% for PCR-based. Our study suggests that LAMP has better diagnostic accuracy than PCR. However, future work should be carried out to reduce heterogeneity as well as to improve and develop effective intervention strategies.
    Matched MeSH terms: Nucleic Acid Amplification Techniques*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links