Displaying publications 21 - 40 of 84 in total

Abstract:
Sort:
  1. Deng E, Nguyen NT, Hild F, Hamilton IE, Dimitrakis G, Kingman SW, et al.
    Molecules, 2015 Nov 09;20(11):20131-45.
    PMID: 26569198 DOI: 10.3390/molecules201119681
    Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP's using initiators that were more available to become directly involved with the Sn(Oct)₂ in the "in-situ" formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of "in-situ" catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat.
    Matched MeSH terms: Polyesters/chemistry*
  2. Nizamuddin S, Jadhav A, Qureshi SS, Baloch HA, Siddiqui MTH, Mubarak NM, et al.
    Sci Rep, 2019 Apr 01;9(1):5445.
    PMID: 30931991 DOI: 10.1038/s41598-019-41960-1
    Polymer composites are fabricated by incorporating fillers into a polymer matrix. The intent for addition of fillers is to improve the physical, mechanical, chemical and rheological properties of the composite. This study reports on a unique polymer composite using hydrochar, synthesised by microwave-assisted hydrothermal carbonization of rice husk, as filler in polylactide matrix. The polylactide/hydrochar composites were fabricated by incorporating hydrochar in polylactide at 5%, 10%, 15% and 20 wt% by melt processing in a Haake rheomix at 170 °C. Both the neat polylactide and polylactide/hydrochar composite were characterized for mechanical, structural, thermal and rheological properties. The tensile modulus of polylactide/hydrochar composites was improved from 2.63 GPa (neat polylactide) to 3.16 GPa, 3.33 GPa, 3.54 GPa, and 4.24 GPa after blending with hydrochar at 5%, 10%, 15%, and 20%, respectively. Further, the incorporation of hydrochar had little effect on storage modulus (G') and loss modulus (G″). The findings of this study reported that addition of hydrochar improves some characteristics of polylactide composites suggesting the potential of hydrochar as filler for polymer/hydrochar composites.
    Matched MeSH terms: Polyesters/chemistry*
  3. Huu Phong T, Van Thuoc D, Sudesh K
    Int J Biol Macromol, 2016 Mar;84:361-6.
    PMID: 26708435 DOI: 10.1016/j.ijbiomac.2015.12.037
    A halophilic bacterium isolated from mangrove soil sample in Northern Vietnam, Yangia sp. ND199 was found capable of producing homopolymer poly(3-hydroxybutyrate) [P(3HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from different carbon sources. The presence of 3HB, 3HV, and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance analysis. Only P(3HB) was produced using carbon sources such as fructose or by a combination of fructose with 1,5-pentanediol, 1,6-hexanediol, sodium hexanoate, or sodium octanoate. The biosynthesis of P(3HB-co-3HV) was achieved by adding cosubstrates such as sodium valerate and sodium heptanoate. When 1,4-butanediol, γ-butyrolactone or sodium 4-hydroxybutyrate was added to the culture medium, P(3HB-co-4HB) containing 4.0-7.1mol% 4HB fraction was accumulated. The molecular weights and thermal properties of polyesters were determined by gel permeation chromatography and differential scanning calorimeter, respectively. The results showed that Yangia sp. ND199 is able to produce polyester with high weight average molecular weight ranging from 1.3×10(6) to 2.2×10(6) Dalton and number average molecular weight ranging from 4.2×10(5) to 6.9×10(5) Dalton. The molecular weights, glass transition temperature as well as melting temperature of homopolymer P(3HB) are higher than those of copolymer P(3HB-co-3HV) or P(3HB-co-4HB).
    Matched MeSH terms: Polyesters/chemistry
  4. Goh LK, Purama RK, Sudesh K
    Appl Biochem Biotechnol, 2014 Feb;172(3):1585-98.
    PMID: 24233544 DOI: 10.1007/s12010-013-0634-z
    Poly(3-hydroxybutyrate) [P(3HB)], a polymer belonging to the polyhydroxyalkanoate (PHA) family, is accumulated by numerous bacteria as carbon and energy storage material. The mobilization of accumulated P(3HB) is associated with increased stress and starvation tolerance. However, the potential function of accumulated copolymer such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] remained unknown. In this study, Delftia acidovorans DS 17 was used to evaluate the contributions of P(3HB) and P(3HB-co-3HV) granules during simulated exogenous carbon deprivation on cell survival by transferring cells with PHAs to carbon-free mineral salt medium supplemented with 1% (w/v) nitrogen source. By mobilizing the intracellular P(3HB) and P(3HB-co-3HV) at 11 and 40 mol% 3HV compositions, the cells survived starvation. Surprisingly, D. acidovorans containing P(3HB-co-94 mol% 3HV) also survived although the mobilization was not as effective. Similarly, recombinant Escherichia coli pGEM-T::phbCAB(Cn) (harboring the PHA biosynthesis genes of Cupriavidus necator) containing P(3HB) granules had a higher viable cell counts compared to those without P(3HB) granules but without any P(3HB) mobilization when exposed to oxidative stress by photoactivated titanium dioxide. This study provided strong evidence that enhancement of stress tolerance in PHA producers can be achieved without mobilization of the previously accumulated granules. Instead, PHA biosynthesis may improve bacterial survival via multiple mechanisms.
    Matched MeSH terms: Polyesters/chemistry*
  5. Zakaria MR, Ariffin H, Abd-Aziz S, Hassan MA, Shirai Y
    Biomed Res Int, 2013;2013:237806.
    PMID: 24106698 DOI: 10.1155/2013/237806
    This study presents the effect of carbon to nitrogen ratio (C/N) (mol/mol) on the cell growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation by Comamonas sp. EB172 in 2 L fermenters using volatile fatty acids (VFA) as the carbon source. This VFA was supplemented with ammonium sulphate and yeast extract in the feeding solution to achieve C/N (mol/mol) 5, 15, 25, and 34.4, respectively. By extrapolating the C/N and the source of nitrogen, the properties of the polymers can be regulated. The number average molecular weight (M n ) of P(3HB-co-3HV) copolymer reached the highest at 838 × 10(3) Da with polydispersity index (PDI) value of 1.8, when the culture broth was supplemented with yeast extract (C/N 34.4). Tensile strength and Young's modulus of the copolymer containing 6-8 mol% 3HV were in the ranges of 13-14.4 MPa and 0.26-0.34 GPa, respectively, comparable to those of polyethylene (PE). Thus, Comamonas sp. EB172 has shown promising bacterial isolates producing polyhydroxyalkanoates from renewable carbon materials.
    Matched MeSH terms: Polyesters/chemistry*
  6. Ansari NF, Amirul AA
    Appl Biochem Biotechnol, 2013 Jun;170(3):690-709.
    PMID: 23604967 DOI: 10.1007/s12010-013-0216-0
    Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.
    Matched MeSH terms: Polyesters/chemistry
  7. Abdolmohammadi S, Siyamak S, Ibrahim NA, Yunus WM, Rahman MZ, Azizi S, et al.
    Int J Mol Sci, 2012;13(4):4508-22.
    PMID: 22605993 DOI: 10.3390/ijms13044508
    This study investigates the effects of calcium carbonate (CaCO(3)) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO(3) were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO(3) nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO(3). Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO(3). The thermal stability was best enhanced at 1 wt% of CaCO(3) nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO(3) nanocomposite. TEM micrograph displays good dispersion of CaCO(3) at lower nanoparticle loading within the matrix.
    Matched MeSH terms: Polyesters/chemistry*
  8. Kalani M, Yunus R, Abdullah N
    Int J Nanomedicine, 2011;6:1101-5.
    PMID: 21698077 DOI: 10.2147/IJN.S18979
    The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.
    Matched MeSH terms: Polyesters/chemistry*
  9. Idris A, Bukhari A
    Biotechnol Adv, 2012 May-Jun;30(3):550-63.
    PMID: 22041165 DOI: 10.1016/j.biotechadv.2011.10.002
    This work reviews the stripping off, role of water molecules in activity, and flexibility of immobilized Candida antarctica lipase B (CALB). Employment of CALB in ring opening polyester synthesis emphasizing on a polylactide is discussed in detail. Execution of enzymes in place of inorganic catalysts is the most green alternative for sustainable and environment friendly synthesis of products on an industrial scale. Robust immobilization and consequently performance of enzyme is the essential objective of enzyme application in industry. Water bound to the surface of an enzyme (contact class of water molecules) is inevitable for enzyme performance; it controls enzyme dynamics via flexibility changes and has intensive influence on enzyme activity. The value of pH during immobilization of CALB plays a critical role in fixing the active conformation of an enzyme. Comprehensive selection of support and protocol can develop a robust immobilized enzyme thus enhancing its performance. Organic solvents with a log P value higher than four are more suitable for enzymatic catalysis as these solvents tend to strip away very little of the enzyme surface bound water molecules. Alternatively ionic liquid can work as a more promising reaction media. Covalent immobilization is an exclusively reliable technique to circumvent the leaching of enzymes and to enhance stability. Activated polystyrene nanoparticles can prove to be a practical and economical support for chemical immobilization of CALB. In order to reduce the E-factor for the synthesis of biodegradable polymers; enzymatic ring opening polyester synthesis (eROPS) of cyclic monomers is a more sensible route for polyester synthesis. Synergies obtained from ionic liquids and immobilized enzyme can be much effective eROPS.
    Matched MeSH terms: Polyesters/chemistry*
  10. Gumel AM, Annuar MS, Chisti Y, Heidelberg T
    Ultrason Sonochem, 2012 May;19(3):659-67.
    PMID: 22105013 DOI: 10.1016/j.ultsonch.2011.10.016
    Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ~1.44 compared to a value of ~2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ~16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold.
    Matched MeSH terms: Polyesters/chemistry*
  11. Ariffin H, Nishida H, Hassan MA, Shirai Y
    Biotechnol J, 2010 May;5(5):484-92.
    PMID: 20408140 DOI: 10.1002/biot.200900293
    Chemical recycling of bio-based polymers polyhydroxyalkanoates (PHAs) by thermal degradation was investigated from the viewpoint of biorefinery. The thermal degradation resulted in successful transformation of PHAs into vinyl monomers using alkali earth compound (AEC) catalysts. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s (PHBVs) were smoothly and selectively depolymerized into crotonic (CA) and 2-pentenoic (2-PA) acids at lower degradation temperatures in the presence of CaO and Mg(OH)(2) as catalysts. Obtained CA from 3-hydroxybutyrate sequences in PHBV was copolymerized with acrylic acid to produce useful water-soluble copolymers, poly(crotonic acid-co-acrylic acid) that have high glass-transition temperatures. The copolymerization of CA derived from PHA pyrolysis is an example of cascade utilization of PHAs, which meets the idea of sustainable development.
    Matched MeSH terms: Polyesters/chemistry*
  12. Gumel AM, Annuar MS, Chisti Y
    Ultrason Sonochem, 2013 May;20(3):937-47.
    PMID: 23231942 DOI: 10.1016/j.ultsonch.2012.09.015
    Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50°C (7.9×10(-3)Ms(-1)), sonic power intensity of 2.6×10(3)Wm(-2) and dissipated energy of 130.4Jml(-1). Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra™ were lower at 2.4×10(-4), 1.3×10(-4) and 3.5×10(-4)Ms(-1), respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15×10(-3)s(-1)M(-1) for Novozym 435-1.48×10(-3)s(-1)M(-1) for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9×10(3) to 4.5×10(3)Wm(-2) resulted in an increased in acoustic pressure (P(a)) from 3.7×10(8) to 5.7×10(8)Nm(-2) almost 2.4-3.7 times greater than the acoustic pressure (1.5×10(8)Nm(-2)) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6×10(3)-1.5×10(4)ms(-2) was calculated i.e. approximately 984-1500 times greater than under the action of gravity.
    Matched MeSH terms: Polyesters/chemistry
  13. Pathak M, Coombes AGA, Turner MS, Palmer C, Wang D, Steadman KJ
    J Pharm Sci, 2015 Dec;104(12):4217-4222.
    PMID: 26398713 DOI: 10.1002/jps.24652
    Polycaprolactone (PCL) matrices loaded with doxycycline were produced by rapidly cooling suspensions of the drug powder in PCL solution in acetone. Drug loadings of 5%, 10%, and 15% (w/w) of the PCL content were achieved. Exposure of doxycycline powder to matrix processing conditions in the absence of PCL revealed an endothermic peak at 65°C with the main peak at 167°C, suggesting solvatomorph formation. Rapid "burst release" of 24%-32% was measured within 24 h when matrices were immersed in simulated vaginal fluid (SVF) at 37°C, because of the presence of drug at or close to the matrix surface, which is further confirmed by scanning electron microscopy. Gradual release of 66%-76% of the drug content occurred over the following 14 days. SVF containing doxycycline released from drug-loaded PCL matrices retained 81%-90% antimicrobial activity compared with the nonformulated drug. The concentrations of doxycycline predicted to be released into vaginal fluid from a PCL matrix in the form of an intravaginal ring would be sufficient to kill Neisseria gonorrhoea and many other pathogens. These results indicate that PCL may be a suitable polymer for controlled intravaginal delivery of doxycycline for the treatment of sexually transmitted infections.
    Matched MeSH terms: Polyesters/chemistry*
  14. Selvakumar M, Srivastava P, Pawar HS, Francis NK, Das B, Sathishkumar G, et al.
    ACS Appl Mater Interfaces, 2016 Feb 17;8(6):4086-100.
    PMID: 26799576 DOI: 10.1021/acsami.5b11723
    Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxicity studies further confirm that no tissue architecture abnormalities were observed in hepatic, cardiac, and renal tissue sections. This finding manifests the feasibility of fabricating a mechanically adequate nanofibrous SPU scaffold by a biomimetic strategy and the advantages of Bi-nHA ornamentation in promoting osteoblast phenotype progression with microbial protection (on-demand) for GBR applications.
    Matched MeSH terms: Polyesters/chemistry
  15. Mohamad N, Mazlan MM, Tawakkal ISMA, Talib RA, Kian LK, Fouad H, et al.
    Int J Biol Macromol, 2020 Nov 15;163:1451-1457.
    PMID: 32738328 DOI: 10.1016/j.ijbiomac.2020.07.209
    The growing global awareness for environmental protection has inspired the exploration on producing active packaging films from bio-based materials. In present work, three types of active agents were studied by incorporating thymol(T), kesum(K), and curry(C) (10% wt.) into polylactic acid (PLA) to produce PLA-10T, PLA-10K, and PLA10-C packaging films via solvent casting method. The morphology, functional chemistry, thermal stability, permeability, and antimicrobial properties were evaluated for PLA films. Functional chemical analysis confirmed the presence of interfacial bonding between aromatic groups of active agents and PLA carbonyl group. PLA-10K exhibited the highest thermal resistance comparing to PLA-10T and PLA-10C while water vapor barrier was enhanced after incorporation of active agents. Qualitative observation had indicated that chicken meat could be preserved in the active films until 15 days, while odourless and firm texture properties retained in food sample. For disc diffusion assay (in vitro), it showed positive results against Gram-positive bacteria (Staphylococcus aureus) whereas with negative results against Gram-negative bacteria (Escherichia coli) and Aspergillus Brasiliensis due to embedded active agents within PLA matrix. We concluded that produced active agents filled PLA films potential to use in food packaging application to enhance the shelf life of meats, fruits and vegetables product.
    Matched MeSH terms: Polyesters/chemistry*
  16. Mohd Sabee MMS, Kamalaldin NA, Yahaya BH, Abdul Hamid ZA
    J Mater Sci Mater Med, 2020 May 04;31(5):45.
    PMID: 32367409 DOI: 10.1007/s10856-020-06380-y
    Recently, surface engineered biomaterials through surface modification are extensively investigated due to its potential to enhance cellular homing and migration which contributes to a successful drug delivery process. This study is focused on osteoblasts response towards surface engineered using a simple sodium hydroxide (NaOH) hydrolysis and growth factors conjugated poly(lactic acid) (PLA) microspheres. In this study, evaluation of the relationship of NaOH concentration with the molecular weight changes and surface morphology of PLA microspheres specifically wall thickness and porosity prior to in vitro studies was investigated. NaOH hydrolysis of 0.1 M, 0.3 M and 0.5 M were done to introduce hydrophilicity on the PLA prior to conjugation with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Morphology changes showed that higher concentration of NaOH could accelerate the hydrolysis process as the highest wall thickness was observed at 0.5 M NaOH with ~3.52 µm. All surface modified and growth factors conjugated PLA microspheres wells enhanced the migration of the cells during wound healing process as wound closure was 100% after 3 days of treatment. Increase in hydrophilicity of the surface engineered and growth factors conjugated PLA microspheres provides favorable surface for cellular attachment of osteoblast, which was reflected by positive DAPI staining of the cells' nucleus. Surface modified and growth factors conjugated PLA microspheres were also able to enhance the capability of the PLA in facilitating the differentiation process of mesenchymal stem cells (MSCs) into osteogenic lineage since only positive stain was observed on surface engineered and growth factors conjugated PLA microspheres. These results indicated that the surface engineered and growth factors conjugated PLA microspheres were non-toxic for biological environments and the improved hydrophilicity made them a potential candidate as a drug delivery vehicle as the cells can adhere, attach and proliferate inside it.
    Matched MeSH terms: Polyesters/chemistry*
  17. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
    Matched MeSH terms: Polyesters/chemistry*
  18. Syafiq IM, Huong KH, Shantini K, Vigneswari S, Aziz NA, Amirul AA, et al.
    Enzyme Microb Technol, 2017 Mar;98:1-8.
    PMID: 28110659 DOI: 10.1016/j.enzmictec.2016.11.011
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is noted for its high biocompatibility, which makes it an excellent candidate for biopharmaceutical applications. The wild-type Cupriavidus sp. USMAA1020 strain is able to synthesize P(3HB-co-4HB) copolymers with different 4HB monomer compositions (up to 70mol%) in shaken flask cultures. Combinations of 4HB carbon precursors consisting of 1,6-hexanediol and γ-butyrolactone were applied for the production of P(3HB-co-4HB) with different 4HB molar fraction. A sharp increase in 4HB monomer composition was attained by introducing additional copies of PHA synthase gene (phaC), responsible for P(3HB-co-4HB) polymerization. The phaC of Cupriavidus sp. USMAA1020 and Cupriavidus sp. USMAA2-4 were cloned and heterologously introduced into host, wild-type Cupriavidus sp. USMAA1020. The gene dosage treatment resulted in the accumulation of 93mol% 4HB by the transformant strains when grown in similar conditions as the wild-type USMAA1020. The PHA synthase activities for both transformants were almost two-fold higher than the wild-type. The ability of the transformants to produce copolymers with high 4HB monomer composition was also tested in large scale production system using 5L and 30L bioreactors with a constant oxygen mass transfer rate. The 4HB monomer composition could be maintained at a range of 83-89mol%. The mechanical and thermal properties of copolymers improved with increasing 4HB monomer composition. The copolymers produced could be tailored for specific biopharmaceutical applications based on their properties.
    Matched MeSH terms: Polyesters/chemistry
  19. Trakunjae C, Boondaeng A, Apiwatanapiwat W, Kosugi A, Arai T, Sudesh K, et al.
    Sci Rep, 2021 01 21;11(1):1896.
    PMID: 33479335 DOI: 10.1038/s41598-021-81386-2
    Poly-β-hydroxybutyrate (PHB) is a biodegradable polymer, synthesized as carbon and energy reserve by bacteria and archaea. To the best of our knowledge, this is the first report on PHB production by a rare actinomycete species, Rhodococcus pyridinivorans BSRT1-1. Response surface methodology (RSM) employing central composite design, was applied to enhance PHB production in a flask scale. A maximum yield of 3.6 ± 0.5 g/L in biomass and 43.1 ± 0.5 wt% of dry cell weight (DCW) of PHB were obtained when using RSM optimized medium, which was improved the production of biomass and PHB content by 2.5 and 2.3-fold, respectively. The optimized medium was applied to upscale PHB production in a 10 L stirred-tank bioreactor, maximum biomass of 5.2 ± 0.5 g/L, and PHB content of 46.8 ± 2 wt% DCW were achieved. Furthermore, the FTIR and 1H NMR results confirmed the polymer as PHB. DSC and TGA analysis results revealed the melting, glass transition, and thermal decomposition temperature of 171.8, 4.03, and 288 °C, respectively. In conclusion, RSM can be a promising technique to improve PHB production by a newly isolated strain of R. pyridinivorans BSRT1-1 and the properties of produced PHB possessed similar properties compared to commercial PHB.
    Matched MeSH terms: Polyesters/chemistry*
  20. Huong KH, Teh CH, Amirul AA
    Int J Biol Macromol, 2017 Aug;101:983-995.
    PMID: 28373050 DOI: 10.1016/j.ijbiomac.2017.03.179
    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, Mwof 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched.
    Matched MeSH terms: Polyesters/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links