Displaying publications 21 - 40 of 362 in total

Abstract:
Sort:
  1. Lee JB, Bae JS, Matsumoto T, Yang HM, Min YK
    Int J Biometeorol, 2009 Mar;53(2):149-57.
    PMID: 19048305 DOI: 10.1007/s00484-008-0197-9
    Natives of the tropics are able to tolerate high ambient temperatures. This results from their long-term residence in hot and often humid tropical climates. This study was designed to compare the peripheral mechanisms of thermal sweating in tropical natives with that of their temperate counterparts. Fifty-five healthy male subjects including 20 native Koreans who live in the temperate Korean climate (Temperate-N) and 35 native tropical Malaysian men that have lived all of their lives in Malaysia (Tropical-N) were enrolled in this study after providing written informed consent to participate. Quantitative sudomotor axon reflex testing after iontophoresis (2 mA for 5 min) with 10% acetylcholine (ACh) was used to determine directly activated (DIR) and axon reflex-mediated (AXR) sweating during ACh iontophoresis. The sweat rate, activated sweat gland density, sweat gland output per single gland activated, and oral and skin temperature changes were measured. The sweat onset time of AXR (nicotinic-receptor-mediated) was 56 s shorter in the Temperate-N than in the Tropical-N subjects (P < 0.0001). The nicotinic-receptor-mediated sweating activity AXR (1), and the muscarinic-receptor-mediated sweating activity DIR, in terms of sweat volume, were 103% and 59% higher in the Temperate-N compared to the Tropical-N subjects (P < 0.0001). The Temperate-N group also had a 17.8% (P < 0.0001) higher active sweat gland density, 35.4% higher sweat output per gland, 0.24 degrees C higher resting oral temperature, and 0.62 degrees C higher resting forearm skin temperature compared to the Tropical-N subjects (P < 0.01). ACh iontophoresis did not influence oral temperature, but increased skin temperature near where the ACh was administered, in both groups. These results suggest that suppressed thermal sweating in the Tropical-N subjects was, at least in part, due to suppressed sweat gland sensitivity to ACh through both recruitment of active sweat glands and the sweat gland output per each gland. This physiological trait guarantees a more economical use of body fluids, thus ensuring more efficient protection against heat stress.
    Matched MeSH terms: Tropical Climate
  2. Dantas-Torres F, Ketzis J, Mihalca AD, Baneth G, Otranto D, Tort GP, et al.
    Vet Parasitol, 2020 Jul;283:109167.
    PMID: 32580071 DOI: 10.1016/j.vetpar.2020.109167
    The Tropical Council for Companion Animal Parasites Ltd. (TroCCAP) is a not-for-profit organisation whose mission is to independently inform, guide and make best-practice recommendations for the diagnosis, treatment and control of companion animal parasites in the tropics and sub-tropics, with the aim of protecting animal and human health. In line with this primary mission, TroCCAP recently developed guidelines for the diagnosis, treatment and control of feline and canine parasites in the tropics. The development of these guidelines required unique and complex considerations to be addressed, often inapplicable to developed nations. Much of the tropics encompass middle-to-low income countries in which poor standards of environmental hygiene and large populations of stray dogs and cats coexist. In these regions, a range of parasites pose a high risk to companion animals, which ultimately may place their owners at risk of acquiring parasitic zoonoses. These considerations led to the development of unique recommendations with regard, for example, to deworming and endoparasite testing intervals for the control of both global and 'region-specific' parasites in the tropics. Moreover, the 'off-' or 'extra'-label use of drugs for the treatment and control of parasitic infections is common practice in many tropical countries and many generic products lack manufacturers' information on efficacy, safety, and quality control. Recommendations and advice concerning the use of such drugs and protocols are also addressed in these guidelines. The formation of these guidelines is an important first step towards improving the education of veterinarians specifically regarding best-practice for the diagnosis, treatment and control of canine and feline parasites in the tropics.
    Matched MeSH terms: Tropical Climate
  3. Othman F, M E AE, Mohamed I
    J Environ Monit, 2012 Dec;14(12):3164-73.
    PMID: 23128415 DOI: 10.1039/c2em30676j
    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.
    Matched MeSH terms: Tropical Climate
  4. Gustafsson M, Gustafsson L, Alloysius D, Falck J, Yap S, Karlsson A, et al.
    Data Brief, 2016 Mar;6:466-70.
    PMID: 26900591 DOI: 10.1016/j.dib.2015.12.048
    The data presented in this paper is supporting the research article "Life history traits predict the response to increased light among 33 tropical rainforest tree species" [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment.
    Matched MeSH terms: Tropical Climate
  5. Traub RJ, Irwin P, Dantas-Torres F, Tort GP, Labarthe NV, Inpankaew T, et al.
    Parasit Vectors, 2015 May 13;8:271.
    PMID: 25963851 DOI: 10.1186/s13071-015-0884-4
    This letter advises the imminent formation of the Companion Animal Parasites Council for the Tropics (CAPCT). The CAPCT consists of region-specific (e.g., Asia-Pacific, Latin America and Caribbean, Africa) experts comprising academics, veterinarians, parasitologists, physicians and allied industry partners that will work together to inform, guide and develop best-practice recommendations for the optimal diagnosis, treatment and control of companion animal parasites in the tropics, with the aim of protecting the health of pets and that of the public.
    Matched MeSH terms: Tropical Climate
  6. Mustafa RA, Abdul Hamid A, Mohamed S, Bakar FA
    J Food Sci, 2010 Jan-Feb;75(1):C28-35.
    PMID: 20492146 DOI: 10.1111/j.1750-3841.2009.01401.x
    Free radical scavenging activity of 21 tropical plant extracts was evaluated using 1,1-diphenyl-2-picrylhydrazyl assay (DPPH). Total phenolic compounds and flavonoids were determined using Folin-Ciocalteu and HPLC, respectively. Results of the study revealed that all the plants tested exhibited excellent antioxidant activity with IC(50) in the range of 21.3 to 89.6 microg/mL. The most potent activity was demonstrated by Cosmos caudatus (21.3 microg/mL) and Piper betle (23.0 microg/mL) that are not significantly different than that of -tocopherol or BHA. L. inermis extract was found to consist of the highest concentration of phenolics, catechin, epicatechin, and naringenin. High content of quercetin, myricetin, and kaempferol were identified in Vitex negundo, Centella asiatica, and Sesbania grandiflora extracts, respectively. Luteolin and apigenin, on the other hand, were found in Premna cordifolia and Kaempferia galanga extracts. Strong correlation (R = 0.8613) between total phenolic compounds and total flavonoids (R = 0.8430) and that of antioxidant activity of the extracts were observed. The study revealed that phenolic, in particular flavonoids, may be the main contributors to the antioxidant activity exhibited by the plants.
    Matched MeSH terms: Tropical Climate
  7. Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, et al.
    Ecol Lett, 2018 07;21(7):989-1000.
    PMID: 29659115 DOI: 10.1111/ele.12964
    Topography is a key driver of tropical forest structure and composition, as it constrains local nutrient and hydraulic conditions within which trees grow. Yet, we do not fully understand how changes in forest physiognomy driven by topography impact other emergent properties of forests, such as their aboveground carbon density (ACD). Working in Borneo - at a site where 70-m-tall forests in alluvial valleys rapidly transition to stunted heath forests on nutrient-depleted dip slopes - we combined field data with airborne laser scanning and hyperspectral imaging to characterise how topography shapes the vertical structure, wood density, diversity and ACD of nearly 15 km2 of old-growth forest. We found that subtle differences in elevation - which control soil chemistry and hydrology - profoundly influenced the structure, composition and diversity of the canopy. Capturing these processes was critical to explaining landscape-scale heterogeneity in ACD, highlighting how emerging remote sensing technologies can provide new insights into long-standing ecological questions.
    Matched MeSH terms: Tropical Climate*
  8. Banin LF, Raine EH, Rowland LM, Chazdon RL, Smith SW, Rahman NEB, et al.
    Philos Trans R Soc Lond B Biol Sci, 2023 Jan 02;378(1867):20210090.
    PMID: 36373930 DOI: 10.1098/rstb.2021.0090
    Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
    Matched MeSH terms: Tropical Climate*
  9. Lah RA, Benkendorff K, Bucher D
    J Therm Biol, 2017 Feb;64:100-108.
    PMID: 28166939 DOI: 10.1016/j.jtherbio.2017.01.008
    Predicted global climate change has prompted numerous studies of thermal tolerances of marine species. The upper thermal tolerance is unknown for most marine species, but will determine their vulnerability to ocean warming. Gastropods in the family Turbinidae are widely harvested for human consumption. To investigate the responses of turbinid snails to future conditions we determined critical thermal maxima (CTMax) and preferred temperatures of Turbo militaris and Lunella undulata from the tropical-temperate overlap region of northern New South Wales, on the Australian east coast. CTMax were determined at two warming rates: 1°C/30min and 1°C/12h. The number of snails that lost attachment to the tank wall was recorded at each temperature increment. At the faster rate, T. militaris had a significantly higher CTMax (34.0°C) than L. undulata (32.2°C). At the slower rate the mean of both species was lower and there was no significant difference between them (29.4°C for T. militaris and 29.6°C for L. undulata). This is consistent with differences in thermal inertia possibly allowing animals to tolerate short periods at higher temperatures than is possible during longer exposure times, but other mechanisms are not discounted. The thermoregulatory behaviour of the turban snails was determined in a horizontal thermal gradient. Both species actively sought out particular temperatures along the gradient, suggesting that behavioural responses may be important in ameliorating short-term temperature changes. The preferred temperatures of both species were higher at night (24.0°C and 26.0°C) than during the day (22.0°C and 23.9°C). As the snails approached their preferred temperature, net hourly displacement decreased. Preferred temperatures were within the average seasonal seawater temperature range in this region. However, with future predicted water temperature trends, the species could experience increased periods of thermal stress, possibly exceeding CTMax and potentially leading to range contractions.
    Matched MeSH terms: Tropical Climate
  10. Dahlan ND, Gital YY
    Appl Ergon, 2016 May;54:169-76.
    PMID: 26851476 DOI: 10.1016/j.apergo.2015.12.008
    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p < 0.05). Sensory and affective responses as a consequence of thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal sensation immediately after a down-step thermal transition (≤ 1 min exposure duration) for people living in a hot-humid climate country.
    Matched MeSH terms: Tropical Climate*
  11. Yau YH, Chew BT
    Indoor Air, 2009 Dec;19(6):500-10.
    PMID: 19719535 DOI: 10.1111/j.1600-0668.2009.00617.x
    This article presents findings of the thermal comfort study in hospitals. A field survey was conducted to investigate the temperature range for thermal comfort in hospitals in the tropics. Thermal acceptability assessment was conducted to examine whether the hospitals in the tropics met the ASHRAE Standard-55 80% acceptability criteria. A total of 114 occupants in four hospitals were involved in the study. The results of the field study revealed that only 44% of the examined locations met the comfort criteria specified in ASHRAE Standard 55. The survey also examined the predicted percentage of dissatisfied in the hospitals. The results showed that 49% of the occupants were satisfied with the thermal environments in the hospitals. The field survey analysis revealed that the neutral temperature for Malaysian hospitals was 26.4 degrees C. The comfort temperature range that satisfied 90% of the occupants in the space was in the range of 25.3-28.2 degrees C. The results from the field study suggested that a higher comfort temperature was required for Malaysians in hospital environments compared with the temperature criteria specified in ASHRAE Standard (2003). In addition, the significant deviation between actual mean vote and predicted mean vote (PMV) strongly implied that PMV could not be applied without errors in hospitals in the tropics.
    Matched MeSH terms: Tropical Climate*
  12. Md Din MF, Lee YY, Ponraj M, Ossen DR, Iwao K, Chelliapan S
    J Therm Biol, 2014 Apr;41:6-15.
    PMID: 24679966 DOI: 10.1016/j.jtherbio.2014.01.004
    Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity.
    Matched MeSH terms: Tropical Climate*
  13. Edwards DP, Ansell FA, Ahmad AH, Nilus R, Hamer KC
    Conserv Biol, 2009 Dec;23(6):1628-33.
    PMID: 19775274 DOI: 10.1111/j.1523-1739.2009.01330.x
    The recent advent of carbon crediting has led to a rapid rise in biosequestration projects that seek to remove carbon from the atmosphere through afforestation and forest rehabilitation. Such projects also present an important potential opportunity to reverse biodiversity losses resulting from deforestation and forest degradation, but the biodiversity benefits of different forms of biosequestration have not been considered adequately. We captured birds in mist nets to examine the effects of rehabilitation of logged forest on birds in Sabah, Borneo, and to test the hypothesis that rehabilitation restores avian assemblages within regenerating forest to a condition closer to that seen in unlogged forest. Species richness and diversity were similar in unlogged and rehabilitated forest, but significantly lower in naturally regenerating forest. Rehabilitation resulted in a relatively rapid recovery of populations of insectivores within logged forest, especially those species that forage by sallying, but had a marked adverse effect on frugivores and possibly reduced the overall abundance of birds within regenerating forest. In view of these results, we advocate increased management for heterogeneity within rehabilitated forests, but we strongly urge an increased role for forest rehabilitation in the design and implementation of a biodiversity-friendly carbon-offsetting market.
    Matched MeSH terms: Tropical Climate
  14. Tuck SL, O'Brien MJ, Philipson CD, Saner P, Tanadini M, Dzulkifli D, et al.
    Proc Biol Sci, 2016 Dec 14;283(1844).
    PMID: 27928046
    One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning.
    Matched MeSH terms: Tropical Climate*
  15. Sandosham AA
    Med J Malaya, 1969 Mar;23(3):189-91.
    PMID: 4240072
    Matched MeSH terms: Tropical Climate
  16. Peyman N, Tavakoly Sany SB, Tajfard M, Hashim R, Rezayi M, Karlen DJ
    Environ Sci Process Impacts, 2017 Aug 16;19(8):1086-1103.
    PMID: 28776620 DOI: 10.1039/c7em00200a
    A set of methodological tools was tested to assess the sensitivity of several ecological and biological indices to eutrophication while at the same time attempting to explore a linkage among pressures, classification assessment and drivers. Industrial discharges, harbor activities, natural interactions and river discharges are the pressures most related to the eutrophication process in tropical coastal water bodies. Among the eutrophication indices used, TRIX and operational indicators overestimated the eutrophication status in the study area, but EI and chl-a seems to be a rather responsive index to reflect the first stage of eutrophication. It is noteworthy that EI and chl-a showed better overall agreement with the ecological quality status (EcoQ) showing that probably it reflects the indirect relation of macrobenthic with water eutrophication in a better way. An ecological boundary of EI and chl-a from moderate to poor may be needed in order to explain the poor status of relatively eutrophic Klang Strait coastal sites.
    Matched MeSH terms: Tropical Climate
  17. Feeley KJ, Davies SJ, Ashton PS, Bunyavejchewin S, Nur Supardi MN, Kassim AR, et al.
    Proc Biol Sci, 2007 Nov 22;274(1627):2857-64.
    PMID: 17785266
    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.
    Matched MeSH terms: Tropical Climate*
  18. Douglas I, Bidin K, Balamurugan G, Chappell NA, Walsh RP, Greer T, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1749-61.
    PMID: 11605619
    Ten years' hydrological investigations at Danum have provided strong evidence of the effects of extremes of drought, as in the April 1992 El Niño southern oscillation event, and flood, as in January 1996. The 1.5 km2 undisturbed forest control catchment experienced a complete drying out of the stream for the whole 1.5 km of defined channel above the gauging station in 1992, but concentrated surface flow along every declivity from within a few metres of the catchment divide after the exceptional rains of 19 January 1996. Under these natural conditions, erosion is episodic. Sediment is discharged in pulses caused by storm events, collapse of debris dams and occasional landslips. Disturbance by logging accentuates this irregular regime. In the first few months following disturbance, a wave of sediment is moved by each storm, but over subsequent years, rare events scour sediment from bare areas, gullies and channel deposits. The spatial distribution of sediment sources changes with time after logging, as bare areas on slopes are revegetated and small gullies are filled with debris. Extreme storm events, as in January 1996, cause logging roads to collapse, with landslides leading to surges of sediment into channels, reactivating the pulsed sediment delivery by every storm that happened immediately after logging. These effects are not dampened out with increasing catchment scale. Even the 721 km2 Sungai Segama has a sediment yield regime dominated by extreme events, the sediment yield in that single day on 19 January 1996 exceeding the annual sediment load in several previous years. In a large disturbed catchment, such road failures and logging-activity-induced mass movements increase the mud and silt in floodwaters affecting settlements downstream. Management systems require long-term sediment reduction strategies. This implies careful road design and good water movement regulation and erosion control throughout the logging process.
    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links