Displaying publications 41 - 60 of 69 in total

Abstract:
Sort:
  1. Abd Aziz NAW, Iezhitsa I, Agarwal R, Abdul Kadir RF, Abd Latiff A, Ismail NM
    Neurol Res, 2020 Mar;42(3):189-208.
    PMID: 32013788 DOI: 10.1080/01616412.2020.1716470
    Objective:Trans-resveratrol has been shown to have neuroprotective effects and could be a promising therapeutic agent in the treatment of intracerebral haemorrhage (ICH). This study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in trans-resveratrol-induced neuroprotection in rats with collagenase-induced ICH.Methods: Sixty male Sprague-Dawley rats weighing 330-380 g were randomly divided into five groups (n = 12): (i) control, (ii) sham-operated rats, (iii) ICH rats pretreated with vehicle (0.1% DMSO saline, i.c.v.), (iv) ICH rats pretreated with trans-resveratrol (0.9 µg, i.c.v.) and (v) ICH rats pretreated with trans-resveratrol (0.9 µg) and the A1R antagonist, DPCPX (2.5 µg, i.c.v.). Thirty minutes after pretreatment, ICH was induced by intrastriatal injection of collagenase (0.04 U). Forty-eight hours after ICH, the rats were assessed using a variety of neurobehavioural tests. Subsequently, rats were sacrificed and brains were subjected to gross morphological examination of the haematoma area and histological examination of the damaged area.Results: Severe neurobehavioural deficits and haematoma with diffuse oedema were observed after intrastriatal collagenase injection. Pretreatment with trans-resveratrol partially restored general locomotor activity, muscle strength and coordination, which was accompanied with reduction of haematoma volume by 73.22% (P < 0.05) and damaged area by 60.77% (P < 0.05) in comparison to the vehicle-pretreated ICH group. The trans-resveratrol-induced improvement in neurobehavioural outcomes and morphological features of brain tissues was inhibited by DPCPX pretreatment.Conclusion: This study demonstrates that the A1R activation is possibly the mechanism underlying the trans-resveratrol-induced neurological and neurobehavioural protection in rats with ICH.
  2. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Spasov A, et al.
    Curr Eye Res, 2018 08;43(8):1032-1040.
    PMID: 29676937 DOI: 10.1080/02713683.2018.1467933
    PURPOSE: Retinal ganglion cell apoptosis in glaucoma is associated with elevated levels of endothelin-1 (ET1), a potent vasoconstrictor. ET1-induced retinal ischemia leads to altered expression of nitric oxide synthase (NOS) isoforms leading to increased formation of nitric oxide (NO) and retinal nitrosative stress. Since magnesium (Mg) is known to improve endothelial functions and reduce oxidative stress and taurine (TAU) possesses potent antioxidant properties, we investigated the protective effects of magnesium acetyltaurate (MgAT) against ET1-induced nitrosative stress and retinal damage in rats. We also compared the effects of MgAT with that of TAU alone.

    METHODS: Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining.

    RESULTS: Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone.

    CONCLUSIONS: MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.

  3. Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N
    Int J Neurosci, 2018 Oct;128(10):952-965.
    PMID: 29488424 DOI: 10.1080/00207454.2018.1446953
    PURPOSE: Amyloid beta (Aβ) is known to contribute to the pathophysiology of retinal neurodegenerative diseases such as glaucoma. Effects of intravitreal Aβ(1-42) on retinal and optic nerve morphology in animal models have widely been studied but not those of Aβ(1-40). Hence, we evaluated the time- and dose-related effects of intravitreal Aβ(1-40) on retinal and optic nerve morphology. Since oxidative stress and brain derived neurotrophic factor (BDNF) are associated with Aβ-induced neuronal damage, we also studied dose and time-related effects of Aβ(1-40) on retinal oxidative stress and BDNF levels.

    MATERIALS AND METHODS: Five groups of rats were intravitreally administered with vehicle or Aβ(1-40) in doses of 1.0, 2.5, 5 and 10 nmol. Animals were sacrificed and eyes were enucleated at weeks 1, 2 and 4 post-injection. The retinae were subjected to morphometric analysis and TUNEL staining. Optic nerve sections were stained with toluidine blue and were graded for neurodegenerative effects. The estimation of BDNF and markers of oxidative stress in retina were done using ELISA technique.

    RESULTS AND CONCLUSIONS: It was observed that intravitreal Aβ(1-40) causes significant retinal and optic nerve damage up to day 14 post-injection and there was increasing damage with increase in dose. However, on day 30 post-injection both the retinal and optic nerve morphology showed a trend towards normalization. The observations made for retinal cell apoptosis, retinal glutathione, superoxide dismutase activity and BDNF were in accordance with those of morphological changes with deterioration till day 14 and recovery by day 30 post-injection. The findings of this study may provide a guide for selection of appropriate experimental conditions for future studies.

  4. Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Peresypkina A, Pobeda A, et al.
    Neural Regen Res, 2021 Nov;16(11):2330-2344.
    PMID: 33818520 DOI: 10.4103/1673-5374.310691
    Magnesium acetyltaurate (MgAT) has been shown to have a protective effect against N-methyl-D-aspartate (NMDA)-induced retinal cell apoptosis. The current study investigated the involvement of nuclear factor kappa-B (NF-κB), p53 and AP-1 family members (c-Jun/c-Fos) in neuroprotection by MgAT against NMDA-induced retinal damage. In this study, Sprague-Dawley rats were randomized to undergo intravitreal injection of vehicle, NMDA or MgAT as pre-treatment to NMDA. Seven days after injections, retinal ganglion cells survival was detected using retrograde labelling with fluorogold and BRN3A immunostaining. Functional outcome of retinal damage was assessed using electroretinography, and the mechanisms underlying antiapoptotic effect of MgAT were investigated through assessment of retinal gene expression of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos) using reverse transcription-polymerase chain reaction. Retinal phospho-NF-κB, phospho-p53 and AP-1 levels were evaluated using western blot assay. Rat visual functions were evaluated using visual object recognition tests. Both retrograde labelling and BRN3A immunostaining revealed a significant increase in the number of retinal ganglion cells in rats receiving intravitreal injection of MgAT compared with the rats receiving intravitreal injection of NMDA. Electroretinography indicated that pre-treatment with MgAT partially preserved the functional activity of NMDA-exposed retinas. MgAT abolished NMDA-induced increase of retinal phospho-NF-κB, phospho-p53 and AP-1 expression and suppressed NMDA-induced transcriptional activity of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos). Visual object recognition tests showed that MgAT reduced difficulties in recognizing the visual cues (i.e. objects with different shapes) after NMDA exposure, suggesting that visual functions of rats were relatively preserved by pre-treatment with MgAT. In conclusion, pre-treatment with MgAT prevents NMDA induced retinal injury by inhibiting NMDA-induced neuronal apoptosis via downregulation of transcriptional activity of NF-κB, p53 and AP-1-mediated c-Jun/c-Fos. The experiments were approved by the Animal Ethics Committee of Universiti Teknologi MARA (UiTM), Malaysia, UiTM CARE No 118/2015 on December 4, 2015 and UiTM CARE No 220/7/2017 on December 8, 2017 and Ethics Committee of Belgorod State National Research University, Russia, No 02/20 on January 10, 2020.
  5. Abd Ghapor AA, Abdul Nasir NA, Iezhitsa I, Agarwal R, Razali N
    Neurosci Res, 2023 Aug;193:1-12.
    PMID: 36796452 DOI: 10.1016/j.neures.2023.02.004
    Adenosine A1 receptors (AA1R) have been shown to counteract N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitotoxicity. In the present study, we investigated the role of AA1R in neuroprotection by trans-resveratrol (TR) against NMDA-induced retinal injury. In total, 48 rats were divided into the following four groups: normal rats pretreated with vehicle; rats that received NMDA (NMDA group); rats that received NMDA after pretreatment with TR; and rats that received NMDA after pretreatment with TR and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an AA1R antagonist. Assessment of general and visual behaviour was performed using the open field test and two-chamber mirror test, respectively, on Days 5 and 6 post NMDA injection. Seven days after NMDA injection, animals were euthanized, and eyeballs and optic nerves were harvested for histological parameters, whereas retinae were isolated to determine the redox status and expression of pro- and anti-apoptotic proteins. In the present study, the retinal and optic nerve morphology in the TR group was protected from NMDA-induced excitotoxic damage. These effects were correlated with the lower retinal expression of proapoptotic markers, lipid peroxidation, and markers of nitrosative/oxidative stress. The general and visual behavioural parameters in the TR group showed less anxiety-related behaviour and better visual function than those in the NMDA group. All the findings observed in the TR group were abolished by administration of DPCPX.
  6. Sadikan MZ, Abdul Nasir NA, Bakar NS, Iezhitsa I, Agarwal R
    BMC Complement Med Ther, 2023 Jun 02;23(1):179.
    PMID: 37268913 DOI: 10.1186/s12906-023-04005-9
    BACKGROUND: Diabetic retinopathy (DR) is the second commonest microvascular complication of diabetes mellitus. It is characterized by chronic inflammation and angiogenesis. Palm oil-derived tocotrienol-rich fraction (TRF), a substance with anti-inflammatory and anti-angiogenic properties, may provide protection against DR development. Therefore, in this study, we investigated the effect of TRF on retinal vascular and morphological changes in diabetic rats. The effects of TRF on the retinal expression of inflammatory and angiogenic markers were also studied in the streptozotocin (STZ)-induced diabetic rats.

    METHODS: Male Sprague Dawley rats weighing 200-250 g were grouped into normal rats (N) and diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg body weight) whereas N similarly received citrate buffer. STZ-injected rats with blood glucose of more than 20 mmol/L were considered diabetic and were divided into vehicle-treated (DV) and TRF-treated (DT) groups. N and DV received vehicle, whereas DT received TRF (100 mg/kg body weight) via oral gavage once daily for 12 weeks. Fundus images were captured at week 0 (baseline), week 6 and week 12 post-STZ induction to estimate vascular diameters. At the end of experimental period, rats were euthanized, and retinal tissues were collected for morphometric analysis and measurement of NFκB, phospho-NFκB (Ser536), HIF-1α using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Retinal inflammatory and angiogenic cytokines expression were measured by ELISA and real-time quantitative PCR.

    RESULTS: TRF preserved the retinal layer thickness (GCL, IPL, INL and OR; p 

  7. Abdul Ghani NA, Abdul Nasir NA, Lambuk L, Sadikan MZ, Agarwal R, Ramli N
    Graefes Arch Clin Exp Ophthalmol, 2023 Jun;261(6):1587-1596.
    PMID: 36622408 DOI: 10.1007/s00417-022-05965-3
    PURPOSE: Angiogenesis in diabetic retinopathy (DR) is associated with increased retinal expression of angiopoietin-2 (Ang-2) and protein kinase C (PKC). Tocotrienol-rich fraction (TRF) has been shown to reduce the expression vascular endothelial growth factor (VEGF) in several experimental models. However, its effect against other angiogenic markers such as Ang-2 and PKC in rat model of diabetes remains unknown. Therefore, we investigated the effect of TRF on the retinal vascular changes and Ang-2 and PKC expressions in rats with streptozotocin (STZ)-induced DR.

    METHODS: Sprague-Dawley rats were divided into normal control rats (N) which received vehicle, and diabetic rats which either received vehicle (DV) or 100 mg/kg of TRF (DT). Diabetes was induced with intraperitoneal injection of STZ (60 mg/kg body weight). Treatments were given orally, once daily, for 12 weeks after confirmation of hyperglycaemia. Fundus photographs were captured at baseline, 6- and 12-week post-STZ injection and average diameter of retinal veins and arteries were measured. At 12-week post-STZ injection, rats were euthanised, and retinae were collected for measurement of Ang-2 and PKC gene and protein expressions.

    RESULTS: Retinal venous and arterial diameters were significantly greater in DV compared to DT at week 12 post-STZ injection (p 

  8. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Spasov A, Ozerov A, et al.
    Mol Vis, 2018;24:495-508.
    PMID: 30090013
    Purpose: Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU.

    Methods: Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining.

    Results: As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01).

    Conclusions: MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.

  9. Abdul Nasir NA, Agarwal R, Vasudevan S, Tripathy M, Alyautdin R, Ismail NM
    Mol Vis, 2014;20:822-35.
    PMID: 24940038
    Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular oxidative and nitrosative stress in galactosemic rats.
  10. Dongare S, Gupta SK, Mathur R, Saxena R, Mathur S, Agarwal R, et al.
    Mol Vis, 2016;22:599-609.
    PMID: 27293376
    PURPOSE: Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes.

    METHODS: Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels.

    RESULTS: Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract-treated group compared to the vehicle-treated group.

    CONCLUSIONS: The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation.

  11. Hassan MDS, Razali N, Abu Bakar AS, Abu Hanipah NF, Agarwal R
    Exp Biol Med (Maywood), 2023 Aug;248(16):1425-1436.
    PMID: 37873757 DOI: 10.1177/15353702231199466
    Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-β) and is regulated via TGF-β SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-β avoids the consequences of interfering with the pleotropic effects of TGF-β. Both CTGF and its upstream mediator, TGF-β, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.
  12. Lambuk L, Jafri AJA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, et al.
    Int J Ophthalmol, 2019;12(5):746-753.
    PMID: 31131232 DOI: 10.18240/ijo.2019.05.08
    AIM: To investigate dose-dependent effects of N-methyl-D-aspartate (NMDA) on retinal and optic nerve morphology in rats.

    METHODS: Sprague Dawley rats, 180-250 g in weight were divided into four groups. Groups 1, 2, 3 and 4 were intravitreally administered with vehicle and NMDA at the doses 80, 160 and 320 nmol respectively. Seven days after injection, rats were euthanized, and their eyes were taken for optic nerve toluidine blue and retinal hematoxylin and eosin stainings. The TUNEL assay was done for detecting apoptotic cells.

    RESULTS: All groups treated with NMDA showed significantly reduced ganglion cell layer (GCL) thickness within inner retina, as compared to control group. Group NMDA 160 nmol showed a significantly greater GCL thickness than the group NMDA 320 nmol. Administration of NMDA also resulted in a dose-dependent decrease in the number of nuclei both per 100 µm GCL length and per 100 µm2 of GCL. Intravitreal NMDA injection caused dose-dependent damage to the optic nerve. The degeneration of nerve fibres with increased clearing of cytoplasm was observed more prominently as the NMDA dose increased. In accordance with the results of retinal morphometry analysis and optic nerve grading, TUNEL staining demonstrated NMDA-induced excitotoxic retinal injury in a dose-dependent manner.

    CONCLUSION: Our results demonstrate dose-dependent effects of NMDA on retinal and optic nerve morphology in rats that may be attributed to differences in the severity of excitotoxicity and oxidative stress. Our results also suggest that care should be taken while making dose selections experimentally so that the choice might best uphold study objectives.

  13. Razali N, Agarwal R, Agarwal P, Tripathy M, Kapitonova MY, Kutty MK, et al.
    Exp Eye Res, 2016 Feb;143:9-16.
    PMID: 26424219 DOI: 10.1016/j.exer.2015.09.014
    Steroid-induced hypertension and glaucoma is associated with increased extracellular meshwork (ECM) deposition in trabecular meshwork (TM). Previous studies have shown that single drop application of trans-resveratrol lowers IOP in steroid-induced ocular hypertensive (SIOH) rats. This IOP lowering is attributed to activation of adenosine A1 receptors, which may lead to increased matrix metalloproteinase (MMP)-2 activity. This study evaluated the effect of repeated topical application of trans-resveratrol for 21 days in SIOH animals on IOP, changes in MMP-2 level in aqueous humor, trabecular meshwork and retinal morphology and retinal redox status. We observed that treatment with trans-resveratrol results in significant and sustained IOP reduction in SIOH rats. This IOP reduction is associated with significantly higher aqueous humor total MMP-2 level; significantly reduced TM thickness and increased number of TM cells. Treatment with trans-resveratrol also significantly increased ganglion cell layer (GCL) thickness, the linear cell density in the GCL and inner retina thickness; and significantly reduced retinal oxidative stress compared to the SIOH vehicle-treated group. In conclusion, repeated dose topical application of trans-resveratrol produces sustained IOP lowering effect, which is associated with increased level of aqueous humor MMP-2, normalization of TM and retinal morphology and restoration of retinal redox status.
  14. Abdul Nasir NA, Agarwal P, Agarwal R, Iezhitsa I, Alyautdin R, Nukolova NN, et al.
    Drug Deliv, 2016 Oct;23(8):2765-71.
    PMID: 26289215
    Topical administration is the preferred route of drug delivery for ophthalmic ailments. However, poor permeation through ocular surface and significant systemic absorption, makes the topical drug delivery challenging. Furthermore, distribution of topically delivered drugs varies with their physicochemical properties and the type of formulation used. Hence, this study was done to understand the pattern of ocular drug distribution of topically applied hydrophilic and lipophilic substances in two different formulations.
  15. Fazel MF, Abu IF, Mohamad MHN, Agarwal R, Iezhitsa I, Bakar NS, et al.
    PLoS One, 2020;15(7):e0236450.
    PMID: 32706792 DOI: 10.1371/journal.pone.0236450
    Retinal ganglion cell (RGC) loss and optic neuropathy, both hallmarks of glaucoma, have been shown to involve N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxicity. This study investigated the neuroprotective effects of Philanthotoxin (PhTX)-343 in NMDA-induced retinal injury to alleviate ensuing visual impairments. Sprague-Dawley rats were divided into three; Group I was intravitreally injected with phosphate buffer saline as the control, Group II was injected with NMDA (160 nM) to induce retinal excitotoxic injury, while Group III was injected with PhTX-343 (160 nM) 24 h prior to excitotoxicity induction with NMDA. Rats were subjected to visual behaviour tests seven days post-treatment and subsequently euthanized. Rat retinas and optic nerves were subjected to H&E and toluidine blue staining, respectively. Histological assessments showed that NMDA exposure resulted in significant loss of retinal cell nuclei and thinning of ganglion cell layer (GCL). PhTX-343 pre-treatment prevented NMDA-induced changes where the RGC layer morphology is similar to the control. The numbers of nuclei in the NMDA group were markedly lower compared to the control (p<0.05). PhTX-343 group had significantly higher numbers of nuclei within 100 μm length and 100 μm2 area of GCL (2.9- and 1.7-fold, respectively) compared to NMDA group (p<0.05). PhTX-343 group also displayed lesser optic nerve fibres degeneration compared to NMDA group which showed vacuolation in all sections. In the visual behaviour test, the NMDA group recorded higher total distance travelled, and lower total immobile time and episodes compared to the control and PhTX-343 groups (p<0.05). Object recognition tests showed that the rats in PhTX-343 group could recognize objects better, whereas the same objects were identified as novel by NMDA rats despite multiple exposures (p<0.05). Visual performances in the PhTX-343 group were all comparable with the control (p>0.05). These findings suggested that PhTX-343 inhibit retinal cell loss, optic nerve damage, and visual impairments in NMDA-induced rats.
  16. Singh S, Agarwal R, Razak ZA, Ngu R, Nyein LL, Vasudevan S, et al.
    J Ocul Pharmacol Ther, 2018 01 17;34(1-2):214-223.
    PMID: 29341837 DOI: 10.1089/jop.2017.0098
    PURPOSE: Pseudomonas aeruginosa is the most common causative organism for contact lens-associated corneal ulcer and is commonly treated with fluoroquinolones. With the emergence of resistant strains, it is important to investigate alternative therapies. Despite well-established efficacy of tazocin against systemic Pseudomonas infections, its topical use for the treatment of Pseudomonas keratitis has not been described, hence this study was aimed to find the ocular permeation of Tazocin and its efficacy in treating keratitis in rabbit eyes.

    METHODS: We investigated the ocular permeation of topical tazocin after single drop application in normal rabbit eyes by estimating piperacillin and tazobactam concentrations in cornea, aqueous, and vitreous using a validated LC-MS/MS method. Furthermore, we determined the efficacy of repeated dose administration of tazocin against experimentally induced P. aeruginosa keratitis in rabbits in comparison to moxifloxacin. To determine the efficacy, clinical examination, histopathological examination, and estimation of bacterial load and inflammatory cytokines in cornea were done.

    RESULTS: Significant corneal concentration of piperacillin and tazobactam was detected in normal rabbit corneas after single dose treatment with tazocin. In rabbits with Pseudomonas-induced keratitis, topical tazocin caused significant clinical and histopathological improvement. This improvement was associated with reduction in corneal bacterial load and inflammatory cytokines. Compared to moxifloxacin 0.5%, tazocin treated group showed greater clinical response which was associated with higher interleukin (IL)-1β, lower tumor necrosis factor (TNF)-α, a comparable level of IL-8, greater reduction in corneal bacterial load, and lesser inflammatory cell infiltration.

    CONCLUSION: Tazocin showed good ocular penetration and was effective in treatment of Pseudomonas induced keratitis in rabbits.

  17. Marcus AJ, Iezhitsa I, Agarwal R, Vassiliev P, Spasov A, Zhukovskaya O, et al.
    Eur J Pharm Sci, 2018 Mar 01;114:245-254.
    PMID: 29274441 DOI: 10.1016/j.ejps.2017.12.015
    In an effort to find new ocular hypotensive drug candidates, a total of 27 condensed benzimidazoles based compounds were screened. This study was done in normotensive rats and rebound tonometry was used to estimate IOP. All compounds were topically applied as a single drop, unilaterally, at 3 different concentrations (0.1%, 0.2% and 0.4%). The contralateral eye was instilled with vehicle and served as control. The IOP reduction was measured up to 6h. It was observed that with a single topical instillation, compounds RU 551, RU 555, RU839 (pyrimido[1,2-a]benzimidazole derivatives), and RU 615 (imidazo[1,2-a]benzimidazole derivative) showed significant IOP lowering activities in ocular normotensive rats. All other compounds showed none, weak and inconsistent IOP lowering effect. The relationship between ability of IOP lowering and hypotensive activities was studied. According to the pharmacophore analysis, the class of pyrimido[1,2-a]benzimidazole is more promising than the class of imidazo[1,2-a]benzimidazole as a source of compounds with high IOP lowering activity. Pharmacophore analysis also showed that the critical features of high IOP lowering activity are methoxyphenyl and [phenyl]alkyl fragments, and non-conjugated six-membered heterocyclic ring.
  18. Agarwal R, Iezhitsa I, Awaludin NA, Ahmad Fisol NF, Bakar NS, Agarwal P, et al.
    Exp Eye Res, 2013 May;110:35-43.
    PMID: 23428743 DOI: 10.1016/j.exer.2013.02.011
    Cataract, a leading cause of blindness, is characterized by lenticular opacities resulting from denaturation of lens proteins due to activation of calcium-dependent enzyme, calpain. Magnesium (Mg(2+)) plays an important role not only in maintaining a low lenticular calcium (Ca(2+)) and sodium concentration but also in preserving the lens redox status. Taurine has also been shown to reduce lenticular oxidative stress. Present study evaluated the anticataract effects of magnesium taurate in vivo and in vitro. Among the five groups of 9 Sprague Dawley rats each, two groups received 30% galactose diet with topical (GDMT) or oral treatment (GDMO) with magnesium taurate. Two groups received 30% galactose diet with topical (GDT) or oral vehicle (GDO). Remaining 1 group received normal diet (ND). Weekly slit lamp examination was done during 21 days experimental period and then all rats were sacrificed; Ca/Mg ratio and antioxidant parameters including reduced glutathione (GSH), catalase and superoxide dismutase (SOD) activities were measured in the isolated lenses using ELISA. In the in vitro study, 2 groups of 10 normal rat lenses were incubated in Dulbecco's Modified Eagle's Medium (DMEM) with galactose while 1 similar group was incubated in DMEM without galactose. In one of the groups, galactose containing medium was supplemented with magnesium taurate. After 48 h of incubation, lenses were photographed and Ca(2+)/Mg(2+) ratio and antioxidant parameters were measured as for in vivo study. The in vivo study, at the end of experimental period, demonstrated delay in the development of cataract with a mean opacity index of 0.53 ± 0.04 and 0.51 ± 0.03 in GDMO (p < 0.05 versus GDO) and GDMT (p < 0.01 versus GDT) respectively. Histopathological grading showed a lower mean value in treated groups, however, the differences from corresponding controls were not significant. Lenticular Ca(2+)/Mg(2+) ratio with a mean value of 1.20 ± 0.26 and 1.05 ± 0.26 in GDMO and GDMT was significantly lower than corresponding controls (p < 0.05) and in GDMT no significant difference was observed from ND. Lenticular GSH and catalase activities were significantly lower and SOD activity was significantly higher in all galactose fed groups. However, in GDMT, GSH and catalase were significantly higher than corresponding control with mean values of 0.96 ± 0.30 μmol/gm lens weight and 56.98 ± 9.86 μmol/g lens protein respectively (p < 0.05 for GSH and p < 0.01 for catalase). SOD activity with mean values of 13.05 ± 6.35 and 13.27 ± 7.61 units/mg lens protein in GDMO and GDMT respectively was significantly lower compared to corresponding controls (p < 0.05) signifying lesser upregulation of SOD due to lesser oxidative stress in treated groups. In the in vitro study, lenses incubated in magnesium taurate containing medium showed less opacity and a lower mean Ca(2+)/Mg(2+) ratio of 1.64 ± 0.03, which was not significantly different from lenses incubated in DMEM without galactose. Lens GSH and catalase activities were restored to normal in lenses incubated in magnesium taurate containing medium. Both in vivo and in vitro studies demonstrated that treatment with magnesium taurate delays the onset and progression of cataract in galactose fed rats by restoring the lens Ca(2+)/Mg(2+) ratio and lens redox status.
  19. Arfuzir NN, Lambuk L, Jafri AJ, Agarwal R, Iezhitsa I, Sidek S, et al.
    Neuroscience, 2016 06 14;325:153-64.
    PMID: 27012609 DOI: 10.1016/j.neuroscience.2016.03.041
    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
  20. Abdullah F, Khan Nor-Ashikin MN, Agarwal R, Kamsani YS, Abd Malek M, Bakar NS, et al.
    Asian J Androl, 2021 1 22;23(3):281-287.
    PMID: 33473013 DOI: 10.4103/aja.aja_81_20
    Diabetes mellitus (DM) is known to cause reproductive impairment. In men, it has been linked to altered sperm quality and testicular damage. Oxidative stress (OS) plays a pivotal role in the development of DM complications. Glutathione (GSH) is a part of a nonenzymatic antioxidant defense system that protects lipid, protein, and nucleic acids from oxidative damage. However, the protective effects of exogenous GSH on the male reproductive system have not been comprehensively examined. This study determined the impact of GSH supplementation in ameliorating the adverse effect of type 1 DM on sperm quality and the seminiferous tubules of diabetic C57BL/6NTac mice. GSH at the doses of 15 mg kg-1 and 30 mg kg-1 was given intraperitoneally to mice weekly for 6 consecutive weeks. The mice were then weighed, euthanized, and had their reproductive organs excised. The diabetic (D Group) showed significant impairment of sperm quality and testicular histology compared with the nondiabetic (ND Group). Diameters of the seminiferous lumen in diabetic mice treated with 15 mg kg-1 GSH (DGSH15) were decreased compared with the D Group. Sperm motility was also significantly increased in the DGSH15 Group. Improvement in testicular morphology might be an early indication of the protective roles played by the exogenous GSH in protecting sperm quality from effects of untreated type 1 DM or diabetic complications. Further investigation using different doses and different routes of GSH is necessary to confirm this suggestion.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links