Displaying publications 41 - 60 of 291 in total

Abstract:
Sort:
  1. Kadhim A, Salim ET, Fayadh SM, Al-Amiery AA, Kadhum AA, Mohamad AB
    ScientificWorldJournal, 2014;2014:490951.
    PMID: 24737973 DOI: 10.1155/2014/490951
    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
  2. Al-Mekhlafi AM, Mahdy MA, Al-Mekhlafi HM, Azazy AA, Fong MY
    Parasit Vectors, 2011;4:94.
    PMID: 21619624 DOI: 10.1186/1756-3305-4-94
    Malaria remains a significant health problem in Yemen with Plasmodium falciparum being the predominant species which is responsible for 90% of the malaria cases. Despite serious concerns regarding increasing drug resistance, chloroquine is still used for the prevention and treatment of malaria in Yemen. This study was carried out to determine the prevalence of choloroquine resistance (CQR) of P. falciparum isolated from Yemen based on the pfcrt T76 mutation.
  3. Adeyemi KD, Shittu RM, Sabow AB, Abubakar AA, Karim R, Karsani SA, et al.
    J Anim Sci Technol, 2016;58:23.
    PMID: 27307997 DOI: 10.1186/s40781-016-0105-5
    BACKGROUND: The functionality of myofibrillar proteins is a major factor influencing the quality attributes of muscle foods. Nonetheless, the relationships between muscle type and oxidative changes in chevon during ageing are meagrely elucidated. Postmortem changes in antioxidant status and physicochemical properties of glycolytic gluteus medius (GM) and oxidative infraspinatus (IS) muscles in goats were compared.

    METHODS: Twenty Boer bucks (9-10 months old, body weight of 36.9 ± 0.725 kg) were slaughtered and the carcasses were subjected to chill storage (4 ± 0.5 °C). Analyses were conducted on GM and IS muscles sampled on 0, 1, 4 and 7 d postmortem.

    RESULTS: Chill storage did not affect the antioxidant enzyme activities in both muscles. The IS had greater (P  0.05) on free thiol, MRA and TBARS. The GM had lower (P  0.05) on consumer preference for flavour, juiciness and overall acceptability. However, IS had higher (P 

  4. Al-Amiery AA, Binti Kassim FA, Kadhum AA, Mohamad AB
    Sci Rep, 2016 Jan 22;6:19890.
    PMID: 26795066 DOI: 10.1038/srep19890
    The acid corrosion inhibition process of mild steel in 1 M HCl by azelaic acid dihydrazide has been investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). Azelaic acid dihydrazide was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared, nuclear magnetic resonance and mass spectroscopy). Potentiodynamic polarization studies indicate that azelaic acid dihydrazide is a mixed-type inhibitor. The inhibition efficiency increases with increased inhibitor concentration and reaches its maximum of 93% at 5 × 10(-3) M. The adsorption of the inhibitor on a mild steel surface obeys Langmuir's adsorption isotherm. The effect of te perature on corrosion behavior in the presence of 5 × 10(-3) M inhibitor was studied in the temperature range of 30-60 °C. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. To inspect the surface morphology of inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl.
  5. Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB
    PLoS One, 2015;10(7):e0132175.
    PMID: 26147722 DOI: 10.1371/journal.pone.0132175
    New derivatives of 7-hydroxy-4-methylcoumarin were synthesized using a chemical method and a microwave-assisted method to compare the feasibility, reaction times, and yields of the product. The newly synthesized coumarins were characterized by different spectroscopic techniques (FT-IR and NMR) and micro-elemental analysis (CHNS). In vitro antioxidant activities of these compounds were evaluated against hydrogen peroxide and were compared with standard natural antioxidant, vitamin C. Our results reveal that these compounds exhibit excellent radical scavenging activities.
  6. Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB
    Sci Rep, 2015;5:11825.
    PMID: 26134661 DOI: 10.1038/srep11825
    The rational design of 4-hydroxycoumarins with tailor-made antioxidant activities is required nowadays due to the wide variety of pharmacologically significant, structurally interesting of coumarins and researcher orientation toward green chemistry and natural products. A simple and unique coumarins have been achieved by reaction of 4-hydroxycoumarin with aromatic aldehyde accompanied with the creation of a macromolecules have 2-aminothiazolidin-4-one. The molecular structures of the compounds were characterized by the Fourier transformation infrared and Nuclear magnetic resonance spectroscopies, in addition to CHN analysis. The scavenging abilities of new compounds against stable DPPH radical (DPPH•) and hydrogen peroxide were done and the results show that the compounds exhibited high antioxidant activates.
  7. Shaker LM, Al-Amiery AA, Kadhum AAH, Takriff MS
    Nanomaterials (Basel), 2020 Oct 15;10(10).
    PMID: 33076278 DOI: 10.3390/nano10102028
    Many people suffer from myopia or hyperopia due to the refractive errors of the cornea all over the world. The use of high refractive index (RI), Abbe number (νd), and visible light transmittance (T%) polymeric contact lenses (CLs) holds great promise in vision error treatment as an alternative solution to the irreversible laser-assisted in situ keratomileusis (LASIK) surgery. Titanium dioxide nanoparticles (TiO2 NPs) have been suggested as a good candidate to rise the RI and maintain high transparency of a poly(methyl methacrylate) (PMMA)-TiO2 nanocomposite. This work includes a preparation of TiO2 NPs using the sol gel method as well as a synthesis of pure PMMA by free radical polarization and PMMA-TiO2 CLs using a cast molding method of 0.005 and 0.01 w/v concentrations and a study of their effect on the aberrated human eye. ZEMAX optical design software was used for eye modeling based on the Liou and Brennan eye model and then the pure and doped CLs were applied. Ocular performance was evaluated by modulation transfer function (MTF), spot diagram, and image simulation. The used criteria show that the best vision correction was obtained by the CL of higher doping content (p < 0.0001) and that the generated spherical and chromatic aberrations in the eye had been reduced.
  8. Tahir M, Upadhyay DK, Iqbal MZ, Rajan S, Iqbal MS, Albassam AA
    J Pharm Bioallied Sci, 2020 10 08;12(4):436-443.
    PMID: 33679090 DOI: 10.4103/jpbs.JPBS_263_20
    Introduction: Community pharmacist's knowledge about the uses of herbal medicines and its adverse drug reactions reporting can contribute in better therapeutic outcomes and patient safety. Objectives: To evaluate community pharmacists' knowledge about the use of herbal medicines and its adverse drug reactions reporting in Kedah state, Malaysia.

    Methods: A cross-sectional, questionnaire-based study was conducted among 103 pharmacists from 74 different community pharmacies to assess their knowledge about the use of herbal medicines and its adverse drug reaction reporting by using a pre-validate knowledge questionnaire consisting of 12 questions related to it. The pharmacists' responses were measured at a 3-point Likert scale (Poor=1, Moderate=2, and Good=3) and data was entered in SPSS version 22. The minimum and maximum possible scores for knowledge questionnaires were 12 and 36 respectively. Quantitative data was analyzed by using One Way ANOVA and Paired t-test whereas Chi-square and Fisher exact test were used for qualitative data analysis. A p-value of less than 0.05 was considered statistically significant for all the analyses.

    Results: About 92% of the pharmacist had good knowledge regarding the use of herbal medicines and its adverse drug reaction reporting with a mean knowledge score of 32.88±3.16. One-way ANOVA determined a significant difference of employment setting (p<0.043) and years of experience (<0.008) with mean knowledge scores of Pharmacists. Pharmacists' knowledge was significantly associated with their years of experience with the Chi-square test.

    Conclusion: Pharmacists exhibit good knowledge regarding the use of herbal medicines and its adverse drug reaction reporting. However, with an increasing trend of herbal medicine use and its adverse drug reaction reporting it recalls the empowerment of experienced pharmacists with training programs in this area for better clinical outcomes.

  9. Radell ML, Abo Hamza EG, Daghustani WH, Perveen A, Moustafa AA
    Depress Res Treat, 2021;2021:6654503.
    PMID: 33936814 DOI: 10.1155/2021/6654503
    Despite a large amount of research on depression and abuse, there is still a controversy on how abuse is measured and on childhood trauma's effect on the physiological function of adults. Here, we attempt to clarify the relationship between different types of abuse and depression while focusing on childhood abuse. This article, unlike prior research, provides an overview that addresses physical, psychological, and sexual abuse and their psychological impact on the victims. Results show that abuse is a vulnerability factor for a variety of mental and physical health problems and that psychological abuse is strongly associated with depression. More research is needed to understand (a) the role of abuse in the development and maintenance of depression and, in particular, longitudinal studies that also account for the large number of risk and protective factors that influence this relationship and (b) how different types of abuse can influence response to treatment among survivors with depression, in order to provide effective trauma-focused approaches to manage depressive symptoms.
  10. Jasim AA, Idris MYI, Razalli Bin Azzuhri S, Issa NR, Rahman MT, Khyasudeen MFB
    Sensors (Basel), 2021 Jan 25;21(3).
    PMID: 33503903 DOI: 10.3390/s21030784
    A hot spot problem is a problem where cluster nodes near to the base station (BS) tend to drain their energy much faster than other nodes due to the need to perform more communication. Unequal clustering methods such as unequal clustering routing (UDCH) and energy-efficient fuzzy logic for unequal clustering (EEFUC) have been proposed to address this problem. However, these methods only concentrate on utilizing residual energy and the distance of sensor nodes to the base station, while limited attention is given to enhancing the data transmission process. Therefore, this paper proposes an energy-efficient unequal clustering scheme based on a balanced energy method (EEUCB) that utilizes minimum and maximum distance to reduce energy wastage. Apart from that, the proposed EEUCB also utilizes the maximum capacity of node energy and double cluster head technique with a sleep-awake mechanism. Furthermore, EEUCB has devised a clustering rotation strategy based on two sub-phases, namely intra- and inter-clustering techniques, that considers the average energy threshold, average distance threshold, and BS layering node. The performance of the proposed EEUCB protocol is then compared with various prior techniques. From the result, it can be observed that the proposed EEUCB protocol shows lifetime improvements of 57.75%, 19.63%, 14.7%, and 13.06% against low-energy adaptive clustering hierarchy (LEACH), factor-based LEACH FLEACH, EEFUC, and UDCH, respectively.
  11. Benacer D, Mohd Zain SN, Ahmed AA, Mohd Khalid MKN, Hartskeerl RA, Thong KL
    J Med Microbiol, 2016 Jun;65(6):574-577.
    PMID: 27058766 DOI: 10.1099/jmm.0.000262
  12. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    Biomed Res Int, 2016;2016:5891703.
    PMID: 27563671 DOI: 10.1155/2016/5891703
    The problem of bacteria resistance to many known agents has inspired scientists and researchers to discover novel efficient antibacterial drugs. Three rapid, clean, and highly efficient methods were developed for one-pot synthesis of 7-(aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Three components are condensed in the synthesis, 4-hydroxycoumarin, 5,5-dimethyl-1,3-cyclohexanedione, and aromatic aldehydes, using tetrabutylammonium bromide (TBAB), diammonium hydrogen phosphate (DAHP), or ferric chloride (FeCl3), respectively. Each method has different reaction mechanisms according to the catalyst. The present methods have advantages, including one-pot synthesis, excellent yields, short reaction times, and easy isolation of product. All catalysts utilized in our study could be reused several times without losing their catalytic efficiency. All synthesized compounds were fully characterized and evaluated for their antibacterial activity.
  13. Jaaz AH, Hasan HA, Sopian K, Kadhum AAH, Gaaz TS, Al-Amiery AA
    Materials (Basel), 2017 Aug 01;10(8).
    PMID: 28763048 DOI: 10.3390/ma10080888
    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.
  14. Contreras-Jodar A, Nayan NH, Hamzaoui S, Caja G, Salama AAK
    PLoS One, 2019;14(2):e0202457.
    PMID: 30735497 DOI: 10.1371/journal.pone.0202457
    The aim of the study is to identify the candidate biomarkers of heat stress (HS) in the urine of lactating dairy goats through the application of proton Nuclear Magnetic Resonance (1H NMR)-based metabolomic analysis. Dairy does (n = 16) in mid-lactation were submitted to thermal neutral (TN; indoors; 15 to 20°C; 40 to 45% humidity) or HS (climatic chamber; 37°C day, 30°C night; 40% humidity) conditions according to a crossover design (2 periods of 21 days). Thermophysiological traits and lactational performances were recorded and milk composition analyzed during each period. Urine samples were collected at day 15 of each period for 1H NMR spectroscopy analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) assessment with cross validation were used to identify the goat urinary metabolome from the Human Metabolome Data Base. HS increased rectal temperature (1.2°C), respiratory rate (3.5-fold) and water intake (74%), but decreased feed intake (35%) and body weight (5%) of the lactating does. No differences were detected in milk yield, but HS decreased the milk contents of fat (9%), protein (16%) and lactose (5%). Metabolomics allowed separating TN and HS urinary clusters by PLS-DA. Most discriminating metabolites were hippurate and other phenylalanine (Phe) derivative compounds, which increased in HS vs. TN does. The greater excretion of these gut-derived toxic compounds indicated that HS induced a harmful gastrointestinal microbiota overgrowth, which should have sequestered aromatic amino acids for their metabolism and decreased the synthesis of neurotransmitters and thyroid hormones, with a negative impact on milk yield and composition. In conclusion, HS markedly changed the thermophysiological traits and lactational performances of dairy goats, which were translated into their urinary metabolomic profile through the presence of gut-derived toxic compounds. Hippurate and other Phe-derivative compounds are suggested as urinary biomarkers to detect heat-stressed dairy animals in practice.
  15. Abudula T, Gauthaman K, Hammad AH, Joshi Navare K, Alshahrie AA, Bencherif SA, et al.
    Polymers (Basel), 2020 May 29;12(6).
    PMID: 32485817 DOI: 10.3390/polym12061233
    Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply in the wounded and implanted engineered tissues, caused by circulatory problems and insufficient angiogenesis, has been a rate-limiting step in translation of tissue-engineered grafts. To address this issue, we designed oxygen-releasing electrospun composite scaffolds, based on a previously developed hybrid polymeric matrix composed of poly(glycerol sebacate) (PGS) and poly(ε-caprolactone) (PCL). By performing ball-milling, we were able to embed a large percent of calcium peroxide (CP) nanoparticles into the PGS/PCL nanofibers able to generate oxygen. The composite scaffold exhibited a smooth fiber structure, while providing sustainable oxygen release for several days to a week, and significantly improved cell metabolic activity due to alleviation of hypoxic environment around primary bone-marrow-derived mesenchymal stem cells (BM-MSCs). Moreover, the composite scaffolds also showed good antibacterial performance. In conjunction to other improved features, such as degradation behavior, the developed scaffolds are promising biomaterials for various tissue-engineering and wound-healing applications.
  16. Al-Qaness MAA, Ewees AA, Abualigah L, AlRassas AM, Thanh HV, Abd Elaziz M
    Entropy (Basel), 2022 Nov 17;24(11).
    PMID: 36421530 DOI: 10.3390/e24111674
    The forecasting and prediction of crude oil are necessary in enabling governments to compile their economic plans. Artificial neural networks (ANN) have been widely used in different forecasting and prediction applications, including in the oil industry. The dendritic neural regression (DNR) model is an ANNs that has showed promising performance in time-series prediction. The DNR has the capability to deal with the nonlinear characteristics of historical data for time-series forecasting applications. However, it faces certain limitations in training and configuring its parameters. To this end, we utilized the power of metaheuristic optimization algorithms to boost the training process and optimize its parameters. A comprehensive evaluation is presented in this study with six MH optimization algorithms used for this purpose: whale optimization algorithm (WOA), particle swarm optimization algorithm (PSO), genetic algorithm (GA), sine-cosine algorithm (SCA), differential evolution (DE), and harmony search algorithm (HS). We used oil-production datasets for historical records of crude oil production from seven real-world oilfields (from Tahe oilfields, in China), provided by a local partner. Extensive evaluation experiments were carried out using several performance measures to study the validity of the DNR with MH optimization methods in time-series applications. The findings of this study have confirmed the applicability of MH with DNR. The applications of MH methods improved the performance of the original DNR. We also concluded that the PSO and WOA achieved the best performance compared with other methods.
  17. Gaaz TS, Sulong AB, Ansari MNM, Kadhum AAH, Al-Amiery AA, Nassir MH
    Materials (Basel), 2017 Jul 10;10(7).
    PMID: 28773134 DOI: 10.3390/ma10070777
    The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10(-3) J/mm², respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%.
  18. Gaaz TS, Sulong AB, Kadhum AAH, Nassir MH, Al-Amiery AA
    Materials (Basel), 2016 Jul 26;9(8).
    PMID: 28773741 DOI: 10.3390/ma9080620
    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO₆ octahedral layers and induces the disintegration of SiO₄ tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO₆ octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO₄. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.
  19. Al-Amiery AA, Kadhum AAH, Kadihum A, Mohamad AB, How CK, Junaedi S
    Materials (Basel), 2014 Jan 28;7(2):787-804.
    PMID: 28788488 DOI: 10.3390/ma7020787
    The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PD) and electrochemical frequently modulation (EFM) in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene)hydrazinecarbothioamide was also verified by scanning electron microscope (SEM).
  20. Kadhum AAH, Mohamad AB, Hammed LA, Al-Amiery AA, San NH, Musa AY
    Materials (Basel), 2014 Jun 05;7(6):4335-4348.
    PMID: 28788680 DOI: 10.3390/ma7064335
    A new coumarin derivative, N,N'-((2E,2'E)-2,2'-(1,4-phenylenebis (methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, (1)H-NMR and carbon-13 nuclear magnetic resonance (13)C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links