Displaying publications 41 - 60 of 156 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Jan 18;122(2):021801.
    PMID: 30720313 DOI: 10.1103/PhysRevLett.122.021801
    A search for the Higgs boson decaying to two oppositely charged muons is presented using data recorded by the CMS experiment at the CERN LHC in 2016 at a center-of-mass energy sqrt[s]=13  TeV, corresponding to an integrated luminosity of 35.9  fb^{-1}. Data are found to be compatible with the predicted background. For a Higgs boson with a mass of 125.09 GeV, the 95% confidence level observed (background-only expected) upper limit on the production cross section times the branching fraction to a pair of muons is found to be 3.0 (2.5) times the standard model expectation. In combination with data recorded at center-of-mass energies sqrt[s]=7 and 8 TeV, the background-only expected upper limit improves to 2.2 times the standard model value with a standard model expected significance of 1.0 standard deviation. The corresponding observed upper limit is 2.9 with an observed significance of 0.9 standard deviation. This corresponds to an observed upper limit on the standard model Higgs boson branching fraction to muons of 6.4×10^{-4} and to an observed signal strength of 1.0±1.0(stat)±0.1(syst).
  2. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(2):90.
    PMID: 30814908 DOI: 10.1140/epjc/s10052-019-6556-3
    A search is presented for the single production of vector-like quarks in proton-proton collisions at


    s

    =
    13

    TeV

    . The data, corresponding to an integrated luminosity of 35.9



    fb

    -
    1



    , were recorded with the CMS experiment at the LHC. The analysis focuses on the vector-like quark decay into a top quark and a
    W
    boson, with one muon or electron in the final state. The mass of the vector-like quark candidate is reconstructed from hadronic jets, the lepton, and the missing transverse momentum. Methods for the identification of
    b
    quarks and of highly Lorentz boosted hadronically decaying top quarks and
    W
    bosons are exploited in this search. No significant deviation from the standard model background expectation is observed. Exclusion limits at 95% confidence level are set on the product of the production cross section and branching fraction as a function of the vector-like quark mass, which range from 0.3 to 0.03


    pb

    for vector-like quark masses of 700 to 2000


    GeV

    . Mass exclusion limits up to 1660


    GeV

    are obtained, depending on the vector-like quark type, coupling, and decay width. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel.
  3. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Apr 03;124(13):131802.
    PMID: 32302170 DOI: 10.1103/PhysRevLett.124.131802
    A search is presented for a narrow resonance decaying to a pair of oppositely charged muons using sqrt[s]=13  TeV proton-proton collision data recorded at the LHC. In the 45-75 and 110-200 GeV resonance mass ranges, the search is based on conventional triggering and event reconstruction techniques. In the 11.5-45 GeV mass range, the search uses data collected with dimuon triggers with low transverse momentum thresholds, recorded at high rate by storing a reduced amount of trigger-level information. The data correspond to integrated luminosities of 137 and 96.6  fb^{-1} for conventional and high-rate triggering, respectively. No significant resonant peaks are observed in the probed mass ranges. The search sets the most stringent constraints to date on a dark photon in the ∼30-75 and 110-200 GeV mass ranges.
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(11):969.
    PMID: 31886778 DOI: 10.1140/epjc/s10052-019-7451-7
    Measurements are presented of the triple-differential cross section for inclusive isolated-photon+jet events in

    p
    p

    collisions at


    s

    =
    8

    TeV as a function of photon transverse momentum (

    p

    T


    γ




    ), photon pseudorapidity (

    η

    γ




    ), and jet pseudorapidity (

    η
    jet

    ). The data correspond to an integrated luminosity of

    19.7



    fb

    -
    1




    that probe a broad range of the available phase space, for


    |


    η

    γ





    |
    <
    1.44


    and


    1.57
    <
    |


    η

    γ





    |
    <
    2.50


    ,


    |


    η
    jet


    |
    <
    2.5


    ,

    40
    <

    p

    T


    γ




    <
    1000




    GeV

    , and jet transverse momentum,

    p

    T

    jet

    , > 25


    GeV

    . The measurements are compared to next-to-leading order perturbative quantum chromodynamics calculations, which reproduce the data within uncertainties.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 13;123(24):241801.
    PMID: 31922872 DOI: 10.1103/PhysRevLett.123.241801
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at sqrt[s]=13  TeV, and correspond to an integrated luminosity of 35.9  fb^{-1}. The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.
  6. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(12):845.
    PMID: 31985736 DOI: 10.1140/epjc/s10052-017-5317-4
    A search is presented for an excess of events with heavy-flavor quark pairs (

    t

    t
    ¯


    and

    b

    b
    ¯


    ) and a large imbalance in transverse momentum in data from proton-proton collisions at a center-of-mass energy of 13


    TeV

    . The data correspond to an integrated luminosity of 2.2



    fb

    -
    1



    collected with the CMS detector at the CERN LHC. No deviations are observed with respect to standard model predictions. The results are used in the first interpretation of dark matter production in

    t

    t
    ¯


    and

    b

    b
    ¯


    final states in a simplified model. This analysis is also the first to perform a statistical combination of searches for dark matter produced with different heavy-flavor final states. The combination provides exclusions that are stronger than those achieved with individual heavy-flavor final states.
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2020 May 22;124(20):202001.
    PMID: 32501048 DOI: 10.1103/PhysRevLett.124.202001
    A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at sqrt[s]=13  TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9  fb^{-1}. The measurement is performed in the lepton+jets channel of tt[over ¯] events, where the lepton is an electron or muon. The products of the hadronic top quark decay t→bW→bqq[over ¯]^{'} are reconstructed as a single jet with transverse momentum larger than 400 GeV. The tt[over ¯] cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6±2.5  GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of 3 relative to an earlier measurement. This highlights the potential of measurements using boosted top quarks, where the new technique will enable future precision measurements.
  8. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Apr 24;124(16):162002.
    PMID: 32383915 DOI: 10.1103/PhysRevLett.124.162002
    The polarizations of promptly produced χ_{c1} and χ_{c2} mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at sqrt[s]=8  TeV. The χ_{c} states are reconstructed via their radiative decays χ_{c}→J/ψγ, with the photons being measured through conversions to e^{+}e^{-}, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_{c2} to χ_{c1} yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ→μ^{+}μ^{-} decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(9):773.
    PMID: 31713548 DOI: 10.1140/epjc/s10052-019-7276-4
    A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Δ ϕ 12 , is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 Te and corresponding to an integrated luminosity of 35.9 fb - 1 are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 ∘ < Δ ϕ 12 < 180 ∘ . The 2- and 3-jet measurements are not simultaneously described by any of models.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(7):564.
    PMID: 31397444 DOI: 10.1140/epjc/s10052-019-7058-z
    A search is presented for a heavy pseudoscalar boson A decaying to a Z  boson and a Higgs boson with mass of 125 GeV . In the final state considered, the Higgs boson decays to a bottom quark and antiquark, and the Z  boson decays either into a pair of electrons, muons, or neutrinos. The analysis is performed using a data sample corresponding to an integrated luminosity of 35.9 fb - 1 collected in 2016 by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13 Te . The data are found to be consistent with the background expectations. Exclusion limits are set in the context of two-Higgs-doublet models in the A boson mass range between 225 and 1000 GeV .
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(4):364.
    PMID: 31180390 DOI: 10.1140/epjc/s10052-019-6855-8
    A search for the pair production of heavy vector-like partners T and B of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton-proton collisions at s = 13 Te . The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9 fb - 1 . Final states studied for T T ¯ production include those where one of the T quarks decays via T → t Z and the other via T → b W , t Z , or t H , where H is a Higgs boson. For the B B ¯ case, final states include those where one of the B quarks decays via B → b Z and the other B → t W , b Z , or b H . Events with two oppositely charged electrons or muons, consistent with coming from the decay of a Z boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the T and B quarks for a range of branching fractions. Assuming 100% branching fractions for T → t Z , and B → b Z , T and B quark mass values below 1280 and 1130 Ge , respectively, are excluded.
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(4):313.
    PMID: 31031568 DOI: 10.1140/epjc/s10052-019-6788-2
    A top quark mass measurement is performed using 35.9 fb - 1 of LHC proton-proton collision data collected with the CMS detector at s = 13 TeV . The measurement uses the t t ¯ all-jets final state. A kinematic fit is performed to reconstruct the decay of the t t ¯  system and suppress the multijet background. Using the ideogram method, the top quark mass ( m t ) is determined, simultaneously constraining an additional jet energy scale factor ( JSF ). The resulting value of m t = 172.34 ± 0.20 (stat+JSF) ± 0.70 (syst) GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the t t ¯ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an m t measurement of 172.26 ± 0.07 (stat+JSF) ± 0.61 (syst) GeV . This is the first combined m t extraction from the lepton+jets and all-jets channels through a single likelihood function.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(2):140.
    PMID: 31265001 DOI: 10.1140/epjc/s10052-018-5607-5
    A search for standard model production of four top quarks ( t t ¯ t t ¯ ) is reported using events containing at least three leptons ( e , μ ) or a same-sign lepton pair. The events are produced in proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, and the data sample, recorded in 2016, corresponds to an integrated luminosity of 35.9 fb - 1 . Jet multiplicity and flavor are used to enhance signal sensitivity, and dedicated control regions are used to constrain the dominant backgrounds. The observed and expected signal significances are, respectively, 1.6 and 1.0 standard deviations, and the t t ¯ t t ¯ cross section is measured to be 16 . 9 - 11.4 + 13.8 fb , in agreement with next-to-leading-order standard model predictions. These results are also used to constrain the Yukawa coupling between the top quark and the Higgs boson to be less than 2.1 times its expected standard model value at 95% confidence level.
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(4):291.
    PMID: 31007582 DOI: 10.1140/epjc/s10052-018-5740-1
    A search for new physics in events with a Z boson produced in association with large missing transverse momentum at the LHC is presented. The search is based on the 2016 data sample of proton-proton collisions recorded with the CMS experiment at s = 13 TeV , corresponding to an integrated luminosity of 35.9 fb - 1 . The results of this search are interpreted in terms of a simplified model of dark matter production via spin-0 or spin-1 mediators, a scenario with a standard-model-like Higgs boson produced in association with the Z boson and decaying invisibly, a model of unparticle production, and a model with large extra spatial dimensions. No significant deviations from the background expectations are found, and limits are set on relevant model parameters, significantly extending the results previously achieved in this channel.
  15. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2018;78(3):242.
    PMID: 31264999 DOI: 10.1140/epjc/s10052-018-5691-6
    Events with no charged particles produced between the two leading jets are studied in proton-proton collisions at s = 7 TeV . The jets were required to have transverse momentum p T jet > 40 GeV and pseudorapidity 1.5 < | η jet | < 4.7 , and to have values of η jet with opposite signs. The data used for this study were collected with the CMS detector during low-luminosity running at the LHC, and correspond to an integrated luminosity of 8 pb - 1 . Events with no charged particles with p T > 0.2 GeV in the interval - 1 < η < 1 between the jets are observed in excess of calculations that assume no color-singlet exchange. The fraction of events with such a rapidity gap, amounting to 0.5-1% of the selected dijet sample, is measured as a function of the p T of the second-leading jet and of the rapidity separation between the jets. The data are compared to previous measurements at the Tevatron, and to perturbative quantum chromodynamics calculations based on the Balitsky-Fadin-Kuraev-Lipatov evolution equations, including different models of the non-perturbative gap survival probability.
  16. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(11):746.
    PMID: 31999281 DOI: 10.1140/epjc/s10052-017-5286-7
    A measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8 TeV using 19.7 fb -1 of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is α S ( M Z ) = 0.1199 ± 0.0015 ( exp ) - 0.0020 + 0.0031 ( theo ) , where M Z is the mass of the Z boson.
  17. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(4):287.
    PMID: 31007580 DOI: 10.1140/epjc/s10052-018-5752-x
    A study of the associated production of a Z boson and a charm quark jet ( Z + c ), and a comparison to production with a b quark jet ( Z + b ), in p p collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb - 1 , collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with p T ℓ > 20 GeV , | η ℓ | < 2.1 , 71 < m ℓ ℓ < 111 GeV , and heavy flavour jets with p T jet > 25 GeV and | η jet | < 2.5 . The Z + c production cross section is measured to be σ ( p p → Z + c + X ) B ( Z → ℓ + ℓ - ) = 8.8 ± 0.5 (stat) ± 0.6 (syst) pb . The ratio of the Z + c and Z + b production cross sections is measured to be σ ( p p → Z + c + X ) / σ ( p p → Z + b + X ) = 2.0 ± 0.2 (stat) ± 0.2 (syst) . The Z + c production cross section and the cross section ratio are also measured as a function of the transverse momentum of the Z boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2019;79(11):893.
    PMID: 31886779 DOI: 10.1140/epjc/s10052-019-7402-3
    The average total energy as well as its hadronic and electromagnetic components are measured with the CMS detector at pseudorapidities - 6.6 < η < - 5.2 in proton-proton collisions at a centre-of-mass energy s = 13 TeV . The results are presented as a function of the charged particle multiplicity in the region | η | < 2 . This measurement is sensitive to correlations induced by the underlying event structure over a very wide pseudorapidity region. The predictions of Monte Carlo event generators commonly used in collider experiments and ultra-high energy cosmic ray physics are compared to the data. All generators considered overestimate the fraction of energy going into hadrons.
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(5):421.
    PMID: 31178657 DOI: 10.1140/epjc/s10052-019-6909-y
    Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at s = 13 Te , corresponding to an integrated luminosity of 35.9 fb - 1 . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: H → γ γ , Z Z , W W , τ τ , b b , and μ μ . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be μ = 1.17 ± 0.10 , assuming a Higgs boson mass of 125.09 Ge . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(9):636.
    PMID: 32011608 DOI: 10.1140/epjc/s10052-017-5192-z
    A search for heavy resonances with masses above 1 TeV , decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV , corresponding to an integrated luminosity of 35.9 fb - 1 . The data are consistent with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W ' and Z ' bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3 TeV are excluded at 95% confidence level, setting the most stringent constraints to date on such states decaying into a vector boson and a Higgs boson.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links