Displaying publications 41 - 60 of 64 in total

Abstract:
Sort:
  1. Jalil MA, Moniruzzaman M, Parvez MS, Siddika A, Gafur MA, Repon MR, et al.
    Heliyon, 2021 Aug;7(8):e07861.
    PMID: 34485740 DOI: 10.1016/j.heliyon.2021.e07861
    This research aims to study the spinnability of pristine PALF and PALF blended cotton using the existing spinning machines. Apron draft ring spinning frame and flyer jute spinning frame were used to produce 100% PALF yarn and the yarns count were found 121 tex and 138 tex separately. Besides, 90:10 and 80:20 cotton-PALF blended 30 tex yarn spun in a cotton spinning system with different twist factors. With both yarns, two samples; 1/1 plain and 3/1 twill fabrics, were fabricated through equal density. For plain and twill fabric, PALF yarn of 121 tex and 138 tex were used in the warp way, respectively and PALF blended cotton yarn of 60 tex was used in the weft way. Through the study, physio-mechanical properties of the samples were explored and FTIR & XRD patterns were analyzed to perform the task for diversified use as an ultimate fiber in industrial and domestic purposes.
  2. Elgharbawy AA, Alam MZ, Moniruzzaman M, Kabbashi NA, Jamal P
    3 Biotech, 2018 May;8(5):236.
    PMID: 29744268 DOI: 10.1007/s13205-018-1253-8
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process.
  3. Ali MK, Moshikur RM, Wakabayashi R, Tahara Y, Moniruzzaman M, Kamiya N, et al.
    J Colloid Interface Sci, 2019 Sep 01;551:72-80.
    PMID: 31075635 DOI: 10.1016/j.jcis.2019.04.095
    Ionic liquid (IL) surfactants have attracted great interest as promising substitutes for conventional surfactants owing to their exceptional and favorable physico-chemical properties. However, most IL surfactants are not eco-friendly and form unstable micelles, even when using a high concentration of the surfactant. In this study, we prepared a series of halogen-free and biocompatible choline-fatty-acid-based ILs with different chain lengths and degrees of saturation, and we then investigated their micellar properties in aqueous solutions. Characterization of the synthesized surface-active ILs (SAILs) was performed by 1H and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. The surface-active properties of the SAILs were investigated by tensiometry, conductometry, and dynamic light scattering measurements. The critical micelle concentration of the SAILs was found to be 2-4 times lower than those of conventional surfactants. The thermodynamic properties of micellization (ΔG0m, ΔH0m, and ΔS0m) indicate that the micellization process of the SAILs is spontaneous, stable, and entropy-driven at room temperature. The cytotoxicity of the SAILs was evaluated using mammalian cell line NIH 3T3. Importantly, [Cho][Ole] shows lower toxicity than the analogous ILs with conventional surfactants. These results clearly suggest that these environmentally friendly SAILs can be used as a potential alternative to conventional ILs for various purposes, including biological applications.
  4. Mustahil NA, Baharuddin SH, Abdullah AA, Reddy AVB, Abdul Mutalib MI, Moniruzzaman M
    Chemosphere, 2019 May 04;229:349-357.
    PMID: 31078892 DOI: 10.1016/j.chemosphere.2019.05.026
    Ionic liquids (ILs) based surfactants have been emerged as attractive alternatives to the conventional surfactants owing to their tailor-made and eco-friendly properties. Therefore, present study described the synthesis of nine new fatty amino acids based IL surfactants utilizing lauroyl sarcosinate anion and pyrrolidinium, imidazolium, pyridinium, piperidinium, morpholinium and cholinium cations for the first time. The synthesized surface active lauroyl sarcosinate ionic liquids (SALSILs) were characterized by 1H NMR, 13C NMR and TGA. Next, the surface tension and critical micellar concentrations were determined and compared with the surface properties of ILs based surfactants. Further, the toxicity and biodegradability of the synthesized SALSIILs were evaluated to confirm their safe and efficient process applications. The studies revealed that three out of nine synthesized SALSILs containing pyridinium cation have showed strong activity towards the tested microbial growth. The remaining six SALSILs met the biocompatible measures demonstrating moderate to low activity depends on the tested microbes. The alicyclic SALSILs containing morpholinium and piperidinium cations have demonstrated 100% biodegradation after 28 days of the test period. Overall, it is believed that the synthesized SALSILs could effectively replace the conventional surfactants in a wide variety of applications.
  5. Baharuddin SH, Mustahil NA, Reddy AVB, Abdullah AA, Mutalib MIA, Moniruzzaman M
    Chemosphere, 2020 Jun;249:126125.
    PMID: 32058133 DOI: 10.1016/j.chemosphere.2020.126125
    The application of chemical dispersants in marine oil spill remediation is comprehensively reported across the globe. But, the augmented toxicity and poor biodegradability of reported chemical dispersants have created necessity for their replacement with the bio-based green dispersants. Therefore, in the present study, we have synthesized five ionic liquids (ILs) namely 1-butyl-3-methylimidazolium lauroylsarcosinate, 1,1'-(1,4-butanediyl)bis(1-H-pyrrolidinium) dodecylbenzenesulfonate, tetrabutylammonium citrate, tetrabutylammonium polyphosphate and tetrabutylammonium ethoxylate oleyl ether glycolate, and formulated a water based ILs dispersant combining the synthesized ILs at specified compositions. The effectiveness of formulated ILs dispersant was found between 70.75% and 94.71% for the dispersion of various crude oils ranging from light to heavy. Further, the acute toxicity tests against zebra fish and grouper fish have revealed the practically non-toxic behaviour of formulated ILs dispersant with LC50 value greater than 100 ppm after 96 h. In addition, the formulated ILs dispersant has provided excellent biodegradability throughout the test period. Overall, the formulated new ILs dispersant is deemed to facilitate environmentally benign oil spill remediation and could effectively substitute the use of hazardous chemical dispersants in immediate future.
  6. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Chem Commun (Camb), 2019 Jun 11.
    PMID: 31184357 DOI: 10.1039/c9cc02812a
    We report a one-step emulsification and rapid freeze-drying process to develop a curcumin-ionic liquid (CCM-IL) complex that could be readily dispersed in water with a significantly enhanced solubility of ∼8 mg mL-1 and half-life (t1/2) of ∼260 min compared with free CCM (solubility ∼30 nM and t1/2 ∼ 20 min). This process using an IL consisting of a long chain carbon backbone as a surfactant, may provide an alternative way of enhancing the solubility of poorly water-soluble drugs.
  7. Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Pharmaceutics, 2020 Apr 24;12(4).
    PMID: 32344768 DOI: 10.3390/pharmaceutics12040392
    The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
  8. Uddin S, Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, et al.
    ACS Appl Bio Mater, 2021 08 16;4(8):6256-6267.
    PMID: 35006923 DOI: 10.1021/acsabm.1c00563
    Lipid-based biocompatible ionic liquids (LBILs) have attracted attention as carriers in transdermal drug delivery systems (TDDSs) because of their lipophilic character. In this study, we report the formulation of a peptide-LBIL complex microencapsulated in an oil phase as a potential carrier for the transdermal delivery of leuprolide acetate as a model hydrophilic peptide. The peptide-LBIL complexes were prepared via a water-in-oil emulsion composed of 1,2-dimyristoyl-sn-glycerol-3-ethyl-phosphatidylcholine (EDMPC), a fatty acid (stearic, oleic, and linoleic acid)-based LBIL, and cyclohexane followed by freeze-drying to remove the water and cyclohexane. Then, the peptide-LBIL complexes were nanodispersed and stabilized in isopropyl myristate (IPM) using sorbitol laurate (Span-20). Ionic-liquid-in-oil nanodispersions (IL/O-NDs) were prepared with varying weight ratios of LBILs and Span-20 as the surfactant and the cosurfactant, respectively. Keeping the overall surfactant constant at 10 wt % in IPM, a 5:5 wt % ratio of surfactant (IL) and cosurfactant (Span-20) in the IL/O-NDs significantly (p < 0.0001) increased the physiochemical stability, drug-loading capacity, and drug encapsulation efficiency. The in vitro and in vivo peptide delivery across the skin was increased significantly (p < 0.0001) using IL/O-NDs, compared with non-IL-treated groups. Of all of the LBIL-based formulations, [EDMPC][Linoleate]/O-ND was considered the most preferable for a TDDS based on the pharmacokinetic parameters. The transdermal delivery flux with [EDMPC][Linoleate]/O-ND was increased 65-fold compared with the aqueous delivery vehicle. The IL/O-NDs were able to deform the lipid and protein arrangements of the skin layers to enhance the transdermal permeation of the peptide. In vitro and in vivo cytotoxicity studies of the IL/O-NDs revealed the biocompatibility of the LBIL-based formulations. These results indicated that IL/O-NDs are promising biocompatible carriers for lipid-peptide TDDSs.
  9. Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2022 Dec 21;14(50):55332-55341.
    PMID: 36508194 DOI: 10.1021/acsami.2c15636
    The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
  10. Moniruzzaman M, Islam MT, Misran N, Samsuzzaman M, Alam T, Chowdhury MEH
    Sci Rep, 2021 Jun 07;11(1):11950.
    PMID: 34099814 DOI: 10.1038/s41598-021-91432-8
    An inductively tuned modified split-ring resonator-based metamaterial (MTM) is presented in this article that provides multiple resonances covering S, C, X, and Ku-bands. The MTM is designed on an FR-4 substrate with a thickness of 1.5 mm and an electrical dimension of 0.063λ × 0.063λ where wavelength, λ is calculated at 2.38 GHz. The resonator part is a combination of three squared copper rings and one circular ring in which all the square rings are modified shaped, and the inner two rings are interconnected. The resonance frequency is tuned by adding inductive metal strips in parallel two vertical splits of the outer ring that causes a significant shift of resonances towards the lower frequencies and a highly effective medium ratio (EMR) of 15.75. Numerical simulation software CST microwave studio is used for the simulation and performance analysis of the proposed unit cell. The MTM unit cell exhibits six resonances of transmission coefficient (S21) at 2.38, 4.24, 5.98, 9.55, 12.1, and 14.34 GHz covering S, C, X, and Ku-bands with epsilon negative (ENG), near-zero permeability, and near-zero refractive index (NZI). The simulated result is validated by experiment with good agreement between them. The performance of the array of the unit cells is also investigated in both simulation and measurement. The equivalent circuit modeling has been accomplished using Advanced Design Software (ADS) that shows a similar S21 response compared to CST simulation. Noteworthy to mention that with the copper backplane, the same unit cell provides multiband absorption properties with four major absorption peaks of 99.6%, 95.7%, 99.9%, 92.7% with quality factors(Q-factor) of 28.4, 34.4, 23, and 32 at 3.98, 5.5, 11.73 and 13.47 GHz, respectively which can be applied for sensing and detecting purposes. The application of an array of the unit cells is investigated using it as a superstrate of an antenna that provides a 73% (average) increase of antenna gain. Due to its simple design, compact dimension with high EMR, ENG property with near-zero permeability, this multiband NZI metamaterial can be used for microwave applications, especially for multiband antenna gain enhancement.
  11. Reddy AVB, Rafiq R, Ahmad A, Maulud AS, Moniruzzaman M
    Molecules, 2022 Nov 11;27(22).
    PMID: 36431876 DOI: 10.3390/molecules27227775
    In the current study, we have synthesized an imidazolium based cross-linked polymer, namely, 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide (poly[veim][Tf2N]-TRIM) using trimethylolpropane trimethacrylate as cross linker, and demonstrated its efficiency for the removal of two extensively used ionic dyes—methylene blue and orange-II—from aqueous systems. The detailed characterization of the synthesized poly[veim][Tf2N]-TRIM was performed with the help of 1H NMR, TGA, FT-IR and FE-SEM analysis. The concentration of dyes in aqueous samples before and after the adsorption process was measured using an UV-vis spectrophotometer. The process parameters were optimised, and highest adsorption was obtained at a solution pH of 7.0, adsorbent dosage of 0.75 g/L, contact time of 7 h and dye concentrations of 100 mg/L and 5.0 mg/L for methylene blue and orange-II, respectively. The adsorption kinetics for orange-II and methylene blue were well described by pseudo-first-order and pseudo−second-order models, respectively. Meanwhile, the process of adsorption was best depicted by Langmuir isotherms for both the dyes. The highest monolayer adsorption capacities for methylene blue and orange-II were found to be 1212 mg/g and 126 mg/g, respectively. Overall, the synthesized cross-linked poly[veim][Tf2N]-TRIM effectively removed the selected ionic dyes from aqueous samples and provided >90% of adsorption efficiency after four cycles of adsorption. A possible adsorption mechanism between the synthesised polymeric adsorbent and proposed dyes is presented. It is further suggested that the proposed ionic liquid polymer adsorbent could effectively remove other ionic dyes and pollutants from contaminated aqueous systems.
  12. Khan HW, Elgharbawy AAM, Bustam MA, Goto M, Moniruzzaman M
    Molecules, 2023 Mar 03;28(5).
    PMID: 36903590 DOI: 10.3390/molecules28052345
    Ibuprofen (Ibf) is a biologically active drug (BADs) and an emerging contaminant of concern (CECs) in aqueous streams. Due to its adverse effects upon aquatic organisms and humans, the removal and recovery of Ibf are essential. Usually, conventional solvents are employed for the separation and recovery of ibuprofen. Due to environmental limitations, alternative green extracting agents need to be explored. Ionic liquids (ILs), emerging and greener alternatives, can also serve this purpose. It is essential to explore ILs that are effective for recovering ibuprofen, among millions of ILs. The conductor-like screening model for real solvents (COSMO-RS) is an efficient tool that can be used to screen ILs specifically for ibuprofen extraction. The main objective of this work was to identify the best IL for the extraction of ibuprofen. A total of 152 different cation-anion combinations consisting of eight aromatic and non-aromatic cations and nineteen anions were screened. The evaluation was based upon activity coefficients, capacity, and selectivity values. Furthermore, the effect of alkyl chain length was studied. The results suggest that quaternary ammonium (cation) and sulfate (anion) have better extraction ability for ibuprofen than the other combinations tested. An ionic liquid-based green emulsion liquid membrane (ILGELM) was developed using the selected ionic liquid as the extractant, sunflower oil as the diluent, Span 80 as the surfactant, and NaOH as the stripping agent. Experimental verification was carried out using the ILGELM. The experimental results indicated that the predicted COSMO-RS and the experimental results were in good agreement. The proposed IL-based GELM is highly effective for the removal and recovery of ibuprofen.
  13. Uddin S, Islam MR, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    Molecules, 2023 Mar 27;28(7).
    PMID: 37049732 DOI: 10.3390/molecules28072969
    Transcutaneous vaccination is one of the successful, affordable, and patient-friendly advanced immunization approaches because of the presence of multiple immune-responsive cell types in the skin. However, in the absence of a preferable facilitator, the skin's outer layer is a strong impediment to delivering biologically active foreign particles. Lipid-based biocompatible ionic-liquid-mediated nanodrug carriers represent an expedient and distinct strategy to permit transdermal drug delivery; with acceptable surfactants, the performance of drug formulations might be further enhanced. For this purpose, we formulated a lipid-based nanovaccine using a conventional (cationic/anionic/nonionic) surfactant loaded with an antigenic protein and immunomodulator in its core to promote drug delivery by penetrating the skin and boosting drug delivery and immunogenic cell activity. In a follow-up investigation, a freeze-dry emulsification process was used to prepare the nanovaccine, and its transdermal delivery, pharmacokinetic parameters, and ability to activate autoimmune cells in the tumor microenvironment were studied in a tumor-budding C57BL/6N mouse model. These analyses were performed using ELISA, nuclei and HE staining, flow cytometry, and other biological techniques. The immunomodulator-containing nanovaccine significantly (p < 0.001) increased transdermal drug delivery and anticancer immune responses (IgG, IgG1, IgG2, CD8+, CD207+, and CD103+ expression) without causing cellular or biological toxicity. Using a nanovaccination approach, it is possible to create a more targeted and efficient delivery system for cancer antigens, thereby stimulating a stronger immune response compared with conventional aqueous formulations. This might lead to more effective therapeutic and preventative outcomes for patients with cancer.
  14. Nazar M, Ul Hassan Shah M, Ahmad A, Goto M, Zaireen Nisa Yahya W, Moniruzzaman M
    Chemosphere, 2023 Dec;344:140412.
    PMID: 37827466 DOI: 10.1016/j.chemosphere.2023.140412
    Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.
  15. Moniruzzaman M, Islam MT, Hossain I, Soliman MS, Samsuzzaman M, Almalki SHA
    Sci Rep, 2021 Nov 08;11(1):21842.
    PMID: 34750440 DOI: 10.1038/s41598-021-01266-7
    In this paper, a tuned metamaterial (MTM) consisting of a symmetric split ring resonator is presented that exhibits epsilon negative (ENG), near zero permeability and refractive index properties for multiband microwave applications. The proposed metamaterial is constituted on a Rogers (RT-5880) substrate with 1.57 mm thickness and the electrical dimension of 0.14λ × 0.14λ, where wavelength, λ is calculated at 4.2 GHz. The symmetric resonating patch is subdivided into four equal and similar quartiles with two interconnecting split rings in each quartile. The quartiles are connected at the center of the substrate with a square metal strip with which four tuning metal strips are attached. These tuning metal strips are acted as spacers between four quartiles of the resonator patch. Numerical simulation of the proposed design is executed in CST microwave studio. The proposed MTM provides four resonances of transmission coefficient (S21) at 4.20 GHz, 10.14 GHz, 13.15 GHz, and 17.1 GHz covering C, X and Ku bands with negative permittivity, near zero permeability and refractive index. The calculated effective medium ratio (EMR) is 7.14 at 4.2 GHz indicates its compactness. The resonance frequencies are selective in nature which can be easily tuned by varying the length of the tuning metal stubs. The equivalent circuit of the proposed MTM is modelled in Advanced Design Software (ADS) that exhibits a similar S21 compared with CST simulation. Surface current, electric and magnetic fields are analyzed to explain the frequency tuning property and other performances of the MTM. Compact size, ENG with near zero permeability and refractive index along with frequency selectivity through tuning provides flexibility for frequency selective applications of this MTM in wireless communications.
  16. Khan HW, Zailan AA, Bhaskar Reddy AV, Goto M, Moniruzzaman M
    Environ Technol, 2023 Jul 18.
    PMID: 37415504 DOI: 10.1080/09593330.2023.2234669
    In the present investigation, a total of 108 combinations of ionic liquids (ILs) were screened using the conductor-like screening model for real solvents (COSMO-RS) with the aid of six cations and eighteen anions for the extraction of succinic acid (SA) from aqueous streams through dispersive liquid-liquid microextraction (DLLME). Using the screened ILs, an ionic liquid-based DLLME (IL-DLLME) was developed to extract SA and the role of different reaction parameters in the effectiveness of IL-DLLME approach was investigated. COSMO-RS results suggested that, quaternary ammonium and choline cations form effective IL combinations with [OH¯], [F¯], and [SO42¯] anions due to hydrogen bonding. In view of these results, one of the screened ILs, tetramethylammonium hydroxide [TMAm][OH] was chosen as the extractant in IL-DLLME process and acetonitrile was adopted as the dispersive solvent. The highest SA removal efficiency of 97.8% was achieved using 25 μL of IL [TMAm][OH] as a carrier and 500 μL of acetonitrile as dispersive solvent. The highest amount of SA was extracted with a stir time of 20 min at 300 rpm, followed by centrifugation for 5 min at 4500 rpm. Overall, the findings showed that IL-DLLME is efficient in extracting succinic acid from aqueous environments while adhering to the first-order kinetics.
  17. Islam MR, Uddin S, Chowdhury MR, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 Sep 15;13(36):42461-42472.
    PMID: 34460218 DOI: 10.1021/acsami.1c11533
    Since injection administration for diabetes is invasive, it is important to develop an effective transdermal method for insulin. However, transdermal delivery remains challenging owing to the strong barrier function of the stratum corneum (SC) of the skin. Here, we developed ionic liquid (IL)-in-oil microemulsion formulations (MEFs) for transdermal insulin delivery using choline-fatty acids ([Chl][FAs])-comprising three different FAs (C18:0, C18:1, and C18:2)-as biocompatible surface-active ILs (SAILs). The MEFs were successfully developed using [Chl][FAs] as surfactants, sorbitan monolaurate (Span-20) as a cosurfactant, choline propionate IL as an internal polar phase, and isopropyl myristate as a continuous oil phase. Ternary phase behavior, dynamic light scattering, and transmission electron microscopy studies revealed that MEFs were thermodynamically stable with nanoparticle size. The MEFs significantly enhanced the transdermal permeation of insulin via the intercellular route by compromising the tight lamellar structure of SC lipids through a fluidity-enhancing mechanism. In vivo transdermal administration of low insulin doses (50 IU/kg) to diabetic mice showed that MEFs reduced blood glucose levels (BGLs) significantly compared with a commercial surfactant-based formulation by increasing the bioavailability of insulin in the systemic circulation and sustained the insulin level for a much longer period (half-life > 24 h) than subcutaneous injection (half-life 1.32 h). When [Chl][C18:2] SAIL-based MEF was transdermally administered, it reduced the BGL by 56% of its initial value. The MEFs were biocompatible and nontoxic (cell viability > 90%). They remained stable at room temperature for 3 months and their biological activity was retained for 4 months at 4 °C. We believe SAIL-based MEFs will alter current approaches to insulin therapy and may be a potential transdermal nanocarrier for protein and peptide delivery.
  18. Elgharbawy AA, Alam MZ, Kabbashi NA, Moniruzzaman M, Jamal P
    3 Biotech, 2016 Dec;6(2):128.
    PMID: 28330203 DOI: 10.1007/s13205-016-0440-8
    Lignocellulosic biomasses, exhibit resistance to enzymatic hydrolysis due to the presence of lignin and hemicellulose. Ionic liquids proved their applicability in lignin degradation, however, ionic liquid removal has to be performed to proceed to hydrolysis. Therefore, this study reports an in situ hydrolysis of empty fruit bunches (EFB) that combined an ionic liquid (IL) pretreatment and enzymatic hydrolysis. For enzyme production, palm kernel cake (PKC) was used as the primary media for microbial cellulase (PKC-Cel) from Trichoderma reesei (RUTC30). The obtained enzyme exhibited a promising stability in several ionic liquids. Among few, in choline acetate [Cho]OAc, PKC-Cel retained 63.16 % of the initial activity after 6 h and lost only 10 % of its activity in 10 % IL/buffer mixture. Upon the confirmation of the PKC-Cel stability, EFB was subjected to IL-pretreatment followed by hydrolysis in a single step without further removal of the IL. The findings revealed that choline acetate [Cho]OAc and choline butyrate [Cho]Bu were among the best ILs used in the study since 0.332 ± 0.05 g glucose/g and 0.565 ± 0.08 g total reducing sugar/g EFB were obtained after 24 h of enzymatic hydrolysis. Compared to the untreated EFB, the amount of reducing sugar obtained after enzymatic hydrolysis increased by three-fold in the case of [Cho]OAc and [Cho]Bu, two-fold with [EMIM]OAc and phosphate-based ILs whereas the lowest concentration was obtained in [TBPH]OAc. Pretreatment of EFB with [Cho]OAc and [Cho]Bu showed significant differences in the morphology of EFB samples when observed with SEM. Analysis of the lignin, hemicellulose and hemicellulose showed that the total lignin content from the raw EFB was reduced from 37.8 ± 0.6 to 25.81 ± 0.35 % (w/w) upon employment of [Cho]OAc in the compatible system. The PKC-Cel from T. reesei (RUTC30) exhibited promising characteristics that need to be investigated further towards a single-step process for bioethanol production.
  19. Moniruzzaman M, Yung An C, Rao PV, Hawlader MN, Azlan SA, Sulaiman SA, et al.
    Biomed Res Int, 2014;2014:737490.
    PMID: 25045696 DOI: 10.1155/2014/737490
    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.
  20. Chowdhury MA, Jahan I, Karim N, Alam MK, Abdur Rahman M, Moniruzzaman M, et al.
    Biomed Res Int, 2014;2014:145159.
    PMID: 24711991 DOI: 10.1155/2014/145159
    In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86 mg/kg, while phenthoate was detected at 0.311 mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40-48%, 35-43%, and 30-45%, respectively, when a radiation strength of 0.5 kGy was utilized. However, when the radiation dose was increased to 1.0 kGy, the levels of the pesticides were reduced to 85-90%, 80-91%, and 90-95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0 kGy can remove 80-95% of some pesticides.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links