Displaying publications 41 - 60 of 90 in total

Abstract:
Sort:
  1. Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, et al.
    Molecules, 2018 Jun 05;23(6).
    PMID: 29874809 DOI: 10.3390/molecules23061355
    Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
  2. Jafarian S, Ling KH, Hassan Z, Perimal-Lewis L, Sulaiman MR, Perimal EK
    Alzheimers Dement (N Y), 2019;5:637-643.
    PMID: 31687471 DOI: 10.1016/j.trci.2019.09.009
    Introduction: We investigated the effects of zerumbone (1 and 10 mg/kg) against hyperactivity, anxiety and memory impairment in scopolamine-induced dementia in Sprague-Dawley rats.

    Methods: Open field tests, elevated plus maze and Morris water maze were performed to assess general locomotor activity, anxiety-like behaviours and learning and memory processes respectively in rats pretreated with scopolamine.

    Results: Scopolamine-treated rats showed high total activity, stereotype, and total distance travelled in the open field arena, reduced number of entries to open arms, decreased the percentage of time spent in open arms and higher escape latency time in the Morris water maze test. Interestingly, single administration of zerumbone (1 and 10 mg/kg) reversed the hyperactivity, anxiety-like behaviours, and learning impairment effects of scopolamine in the three experimental model studied respectively.

    Discussion: Our findings demonstrated that the scopolamine-induced impairment of learning and memory was reversed by the administration of zerumbone. As a conclusion, our findings presented the positive effects of zerumbone on dementia-like behaviours in the animal model used and could possibly contribute for future research to manage hyperactivity, anxiety, and learning disabilities.

  3. Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR
    Front Pharmacol, 2019;10:1148.
    PMID: 31649532 DOI: 10.3389/fphar.2019.01148
    Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
  4. Gopalsamy B, Farouk AAO, Tengku Mohamad TAS, Sulaiman MR, Perimal EK
    J Pain Res, 2017;10:2605-2619.
    PMID: 29184437 DOI: 10.2147/JPR.S143024
    Background: Neuropathic pain is a debilitating condition that severely affects the quality of life for those with this pain condition, and treatment for pain relief is greatly sought-after. Zerumbone (Zer), a sesquiterpene compound isolated from the rhizomes of a Southeast Asian ginger plant, Zingiber zerumbet (L.) Roscoe ex Smith. (Zingiberaceae), showed antinociceptive and antiinflammatory properties when previously tested on models of nociception and inflammation.

    Objective: This study investigated the effects of prophylactic administration of zerumbone on allodynia and hyperalgesia in a mouse model of chronic constriction injury (CCI)-induced neuropathic pain.

    Methods: Intraperitoneal administration of Zer (5-50 mg/kg) from day 1 post-surgery was carried out to identify the onset and progression of the pain condition. Responses toward mechanical and cold allodynia, and mechanical and thermal hyperalgesia were assessed on days 3, 5, 7, 9, 11, and 14 post-surgery. Blood plasma and spinal cord levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and IL-10 were screened using enzyme-linked immunosorbent assay on day 15.

    Results: Zer (10 and 50 mg/kg) attenuated pain symptoms on all days of behavioral testing without any signs of sedation in the rotarod test. ED50 values for mechanical allodynia, cold allodynia, thermal hyperalgesia, and mechanical hyperalgesia were 9.25, 9.507, 8.289, and 9.801 mg/kg, respectively. Blood plasma and spinal levels of IL-1β, IL-6, and tumor necrosis factor-α but not IL-10 were significantly (p<0.05) suppressed by zer treatment.

    Discussion and conclusion: Zer exhibits its antiallodynic and antihyperalgesic properties via reduced sensitization at nociceptor neurons possibly through the suppression of inflammatory mediators. Zer may prove to be a novel and beneficial alternative for the management of neuropathic pain.

  5. Lee YZ, Yap HM, Shaari K, Tham CL, Sulaiman MR, Israf DA
    Front Pharmacol, 2017;8:837.
    PMID: 29201006 DOI: 10.3389/fphar.2017.00837
    Epithelial-mesenchymal transition (EMT) is currently recognized as the main cellular event that contributes to airway remodeling. Eosinophils can induce EMT in airway epithelial cells via increased transforming growth factor (TGF)-β production. We assessed the effect of synthetic 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) upon eosinophil-induced EMT in a cellular model. The human eosinophil cell line EoL-1 was used to induce EMT in BEAS-2B human bronchial epithelial cells. The induction of EMT was dose-dependently suppressed following tHGA treatment in which the epithelial morphology and E-cadherin expression were not altered. Protein and mRNA expression of vimentin, collagen I and fibronectin in eosinophil-induced epithelial cells were also significantly suppressed by tHGA treatment. Following pathway analysis, we showed that tHGA suppressed eosinophil-induced activator protein-1-mediated TGF-β production by targeting c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways. These findings corroborated previous findings on the ability of tHGA to inhibit experimental murine airway remodeling.
  6. Lee YZ, Shaari K, Cheema MS, Tham CL, Sulaiman MR, Israf DA
    Eur J Pharmacol, 2017 Feb 15;797:53-64.
    PMID: 28089919 DOI: 10.1016/j.ejphar.2017.01.011
    2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a synthetic compound that is naturally found in Melicope ptelefolia. We had previously demonstrated that parenteral administration of tHGA reduces pulmonary inflammation in OVA-sensitized mice. In this study, we evaluated the effect of orally administered tHGA upon airway remodeling in a murine model of chronic asthma. Female BALB/C mice were sensitized intraperitoneally with ovalbumin (OVA) on day 0, 7 and 14, followed by aerosolized 1% OVA 3 times per week for 6 weeks. Control groups were sensitized with saline. OVA sensitized animals were either treated orally with vehicle (saline with 1% DMSO and Tween 80), tHGA (80, 40, 20mg/kg) or zileuton (30mg/kg) 1h prior to each aerosolized OVA sensitization. On day 61, mice underwent methacholine challenge to determine airway hyperresponsiveness prior to collection of bronchoalveolar lavage (BAL) fluid and lung samples. BAL fluid inflammatory cell counts and cytokine concentrations were evaluated while histological analysis and extracellular matrix protein concentrations were determined on collected lung samples. Oral tHGA treatment attenuated airway hyperresponsiveness and inhibited airway remodeling in a dose-dependent fashion. tHGA's effect on airway remodeling could be attributed to the reduction of inflammatory cell infiltration and decreased expression of cytokines associated with airway remodeling. Oral administration of tHGA attenuates airway hyperresponsiveness and remodeling in OVA-induced BALB/c mice. tHGA is an interesting compound that should be evaluated further for its possible role as an alternative non-steroidal pharmacological approach in the management of asthma.
  7. Ng CT, Fong LY, Sulaiman MR, Moklas MA, Yong YK, Hakim MN, et al.
    J Interferon Cytokine Res, 2015 Jul;35(7):513-22.
    PMID: 25830506 DOI: 10.1089/jir.2014.0188
    Interferon-gamma (IFN-γ) is known to potentiate the progression of inflammatory diseases, such as inflammatory bowel disease and atherosclerosis. IFN-γ has been found to disrupt the barrier integrity of epithelial and endothelial cell both in vivo and in vitro. However, the mechanisms of IFN-γ underlying increased endothelial cell permeability have not been extensively elucidated. We reported that IFN-γ exhibits a biphasic nature in increasing endothelial permeability. The changes observed in the first phase (4-8 h) involve cell retraction and rounding in addition to condensed peripheral F-actin without a significant change in the F-/G-actin ratio. However, cell elongation, stress fiber formation, and an increased F-/G-actin ratio were noticed in the second phase (16-24 h). Consistent with our finding from the permeability assay, IFN-γ induced the formation of intercellular gaps in both phases. A delayed phase of increased permeability was observed at 12 h, which paralleled the onset of cell elongation, stress fiber formation, and increased F-/G-actin ratio. In addition, IFN-γ stimulated p38 mitogen-activated protein (MAP) kinase phosphorylation over a 24 h period. Inhibition of p38 MAP kinase by SB203580 prevented increases in paracellular permeability, actin rearrangement, and increases in the F-/G-actin ratio caused by IFN-γ. Our results suggest that p38 MAP kinase is activated in response to IFN-γ and causes actin rearrangement and altered cell morphology, which in turn mediates endothelial cell hyperpermeability. The F-/G-actin ratio might be involved in the regulation of actin distribution and cell morphology rather than the increased permeability induced by IFN-γ.
  8. Chia JSM, Omar Farouk AA, Mohamad AS, Sulaiman MR, Perimal EK
    Biomed Pharmacother, 2016 Oct;83:1303-1310.
    PMID: 27570173 DOI: 10.1016/j.biopha.2016.08.052
    Zerumbone, a bioactive sesquiterpene isolated from Zingiber zerumbet (Smith), has shown to exert antiallodynic and antihyperalgesic effects in neuropathic pain mice model in our recent study. The mechanism through which zerumbone alleviates neuropathic pain has yet to be elucidated. Thus, this study aimed to determine whether the serotonergic system, part of the descending pain modulation pathway, contributes to the antineuropathic effect of zerumbone. Participation of the serotonergic system in zerumbone-induced antiallodynia and antihyperalgesia was assessed using Dynamic Plantar Aesthesiometer von Frey test and Hargreaves plantar test respectively in chronic-constriction injury mice model. Administration of ρ-chlorophenylalanine (PCPA, 100mg/kg, i.p.) for four consecutive days to deplete serotonin (5-HT) prior to zerumbone administration blocked the antiallodynic and antihyperalgesic effects of zerumbone. Further investigation with 5-HT receptor antagonists methiothepin (5-HT1/6/7 receptor antagonist, 0.1mg/kg), WAY-100635 (5-HT1A receptor antagonist, 1mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3mg/kg) and ondansetron (5-HT3 receptor antagonist, 0.5mg/kg) managed to significantly attenuate antiallodynic and antihyperalgesic effects of zerumbone (10mg/kg). These findings demonstrate that zerumbone alleviates mechanical allodynia and thermal hyperalgesia through the descending serotonergic system via 5-HT receptors 1A, 1B, 2A, 3, 6 and 7 in chronic constriction injury neuropathic pain mice.
  9. Zakaria ZA, Mohamad AS, Chear CT, Wong YY, Israf DA, Sulaiman MR
    Med Princ Pract, 2010;19(4):287-94.
    PMID: 20516705 DOI: 10.1159/000312715
    OBJECTIVE: The present study was carried out to determine the antiinflammatory and antinociceptive activities of a methanol extract of Zingiber zerumbet rhizomes (MEZZ) using various experimental model systems.

    MATERIALS AND METHODS: The MEZZ was prepared by macerating oven-dried (50 degrees C) powdered rhizomes (1.2 kg) of Z. zerumbet in 80% methanol in a ratio of 1:20 (w/v) for 48 h. The supernatant was collected, filtered and evaporated to dryness under reduced pressure (50 degrees C) yielding approximately 21.0 g of the crude dried extract. The crude dried extract was stored at -20 degrees C prior to use and was dissolved in normal saline (0.9% NaCl) immediately before administration at concentrations required to produce doses of 25, 50 and 100 mg/kg.

    RESULTS: All dosages of MEZZ showed significant (p < 0.05) antiedema activity when assessed using the carrageenan-induced paw edema test and the cotton-pellet-induced granuloma test. The MEZZ exhibited significant (p < 0.05) antinociceptive activity when assessed by the writhing, hot plate and formalin tests. Pretreatment with naloxone (5 mg/kg) significantly decreased the latency of discomfort produced by the 100 mg/kg dose of MEZZ in the hot plate test.

    CONCLUSION: MEZZ produced antiinflammatory and antinociceptive activities which may involve the inhibition of bradykinin-, prostaglandin-, histamine- and opioid-mediated processes.

  10. Seddiki LS, Belboukhari N, Ould El Hadj-Khelil A, Sulaiman MR, Sekkoum K, Cheriti A
    J Ethnopharmacol, 2021 Jul 15;275:114137.
    PMID: 33915133 DOI: 10.1016/j.jep.2021.114137
    ETHNOPHARMACOLOGICAL RELEVANCE: Launaea arborescens, its vernacular name is Mol-albina belonging to asteracaea family origin of the southwest of Algeria. This plant is used in folk medicines to treat gastroenteritis, diabetes, child aliment and other diseases; it is taken macerated or boiled.

    AIM: This study aims to evaluate the anti-inflammation an analgesic activity of the aqueous extract of Launaea arborescens (AqELA) and its pathway of action.

    METHODS: the investigation of anti-inflammatory and analgesic effects were done using formalin test, acetic acid test. For mechanism investigation, it was used hot plate test to induce opioid receptors, a histamine and serotonin test to induce edema paw, finally, for the TRPV1 receptor, it was used the capsaicin test.

    RESULTS: The aqueous extract of Launaea arborescens showed a significant inhibition of abdominal writhing test 95% and 100% inhibition of licking paw using acid acetic test and formalin test respectively (EC: 47 mg/kg and 104 mg/kg). The analgesic effect of the aqueous extract of Launaea arborescens showed inhibition of sensation of pain after 120 min compared to morphine effect. The aqueous extract of Launaea arborescens reduced paw volume after 180 min and 120 min for histamine and serotonin respectively with dose-dependent. Concerning of TRPV1 receptors, the inhibition was showed at doses 100 mg and 300 mg.

    CONCLUSION: Our results contribute towards validation of the traditional use of Launaea arborescens for inflammation ailment.

  11. Zakaria ZA, Rofiee MS, Somchit MN, Zuraini A, Sulaiman MR, Teh LK, et al.
    PMID: 21318140 DOI: 10.1155/2011/142739
    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.
  12. Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, et al.
    Pharmacol. Biochem. Behav., 2013 Dec;114-115:58-63.
    PMID: 24201054 DOI: 10.1016/j.pbb.2013.10.019
    The present study investigated the analgesic effect of a novel synthetic cyclohexanone derivative, 2,6-bis-4-(hydroxyl-3-methoxybenzilidine)-cyclohexanone or BHMC in a mouse model of chronic constriction injury-induced neuropathic pain. It was demonstrated that intraperitoneal administration of BHMC (0.03, 0.1, 0.3 and 1.0mg/kg) exhibited dose-dependent inhibition of chronic constriction injury-induced neuropathic pain in mice, when evaluated using Randall-Selitto mechanical analgesiometer. It was also demonstrated that pretreatment of naloxone (non-selective opioid receptor blocker), nor-binaltorphimine (nor-BNI, selective κ-opioid receptor blocker), but not β-funaltrexamine (β-FN, selective μ-opioid receptor blocker) and naltrindole hydrochloride (NTI, selective δ-opioid receptor blocker), reversed the anti-nociceptive effect of BHMC. In addition, the analgesic effect of BHMC was also reverted by pretreatment of 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ, soluble guanosyl cyclase blocker) and glibenclamide (ATP-sensitive potassium channel blocker) but not Nω-nitro-l-arginine (l-NAME, a nitric oxide synthase blocker). Taken together, the present study demonstrated that the systemic administration of BHMC attenuated chronic constriction, injury-induced neuropathic pain. We also suggested that the possible mechanisms include κ-opioid receptor activation and nitric oxide-independent cyclic guanosine monophosphate activation of ATP-sensitive potassium channel opening.
  13. Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, et al.
    Molecules, 2013 Apr 10;18(4):4209-20.
    PMID: 23612473 DOI: 10.3390/molecules18044209
    Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when L-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
  14. Khalid S, Shaik Mossadeq WM, Israf DA, Hashim P, Rejab S, Shaberi AM, et al.
    Med Princ Pract, 2010;19(4):255-9.
    PMID: 20516700 DOI: 10.1159/000312710
    To study the effects of Tamarindus indica L. aqueous fruit extract on the antinociceptive activities in rodent models.
  15. Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, et al.
    Eur J Pharmacol, 2011 Feb 10;652(1-3):136-44.
    PMID: 21114991 DOI: 10.1016/j.ejphar.2010.10.092
    We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.
  16. Shaik Mossadeq WM, Sulaiman MR, Tengku Mohamad TA, Chiong HS, Zakaria ZA, Jabit ML, et al.
    Med Princ Pract, 2009;18(5):378-84.
    PMID: 19648761 DOI: 10.1159/000226292
    OBJECTIVES: To determine the anti-inflammatory and antinociceptive activities of Mitragyna speciosa Korth methanol extract in rodents.
    MATERIALS AND METHODS: Anti-inflammatory activity was evaluated using carrageenan-induced paw edema and cotton pellet-induced granuloma tests in rats. Antinociceptive activity was measured using the writhing test and the hot plate test in mice, and the formalin test in rats. All drugs and extracts were diluted in dH(2)O and administered through the intraperitoneal route. Results were analyzed using one-way ANOVA followed by Dunnett's test for multiple comparisons among groups.
    RESULTS: Results showed that intraperitoneal administration of the extract at doses of 100 and 200 mg/kg produced significant dose-dependent activity in all of the nociceptive models evaluated (p < 0.05). With the formalin test, the antinociceptive activity in mice was inhibited only at the highest dose of the extract (200 mg/kg). The study also showed that intraperitoneal administration of the methanol extract of M. speciosa (100 and 200 mg/kg) significantly and dose-dependently suppressed the development of carrageenan-induced rat paw edema (p < 0.05). In the chronic test, however, significant reduction in granulomatous tissue formation in rats was observed only at the highest dose of the methanol extract of M. speciosa (200 mg/kg, p < 0.05).
    CONCLUSION: The present study suggests the presence of potent antinociceptive and anti-inflammatory principles in the extract, supporting its folkloric use for the treatment of these conditions.
  17. Zakaria ZA, Hassan MH, Nurul Aqmar MN, Abd Ghani M, Mohd Zaid SN, Sulaiman MR, et al.
    Methods Find Exp Clin Pharmacol, 2007 Oct;29(8):515-20.
    PMID: 18040526
    This study was carried out in mice to determine the nonopioid receptor signaling pathway(s) that might modulate the antinociceptive activity of the aqueous and chloroform extracts of Muntingia calabura (M. calabura) leaves, using the hot-plate test. The leaves of M. calabura were sequentially soaked [1:2 (w/v); 72 h] in distilled water (dH(2)O) and chloroform. The 50% concentration extracts were selected for this study based on the plant's previously established antinociceptive profiles. The mice (n = 7) were pretreated (s.c.) for 10 min with the selected nonopioid receptor antagonists, followed by the (s.c.) administration of the respective extract. The latency of discomfort was recorded at the interval time of 0.5, 1, 2, 3, 4 and 5 h after the extract administration. The 5 mg/kg atropine, 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol, 1 mg/kg haloperidol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the aqueous extract-induced antinociceptive activity. The 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the chloroform extract-induced antinociceptive activity. In conclusion, the central antinociceptive activity of M. calabura leaves appears to be involved in the modulation of various nonopioid receptor signaling pathways. Its aqueous extract antinociceptive activity is mediated via modulation of the muscarinic, alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic, dopaminergic and GABAergic receptors, while its chloroform extract activity is mediated via modulation of the alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic and GABAergic receptors.
  18. Zakaria ZA, Sulaiman MR, Gopalan HK, Abdul Ghani ZD, Raden Mohd Nor RN, Mat Jais AM, et al.
    Yakugaku Zasshi, 2007 Feb;127(2):359-65.
    PMID: 17268156
    The antinociceptive and anti-inflammatory properties of Corchorus capsularis leaves chloroform extract were investigated in experimental animal models. The antinociceptive activity was measured using the writhing, hot plate and formalin tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema test. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by in vacuo evaporation to dryness, was weighed and prepared by serial dilution in DMSO in the doses of 20, 100 and 200 mg/kg. The extract was administered (s.c.) 30 min prior to subjection to the respective assays. The extract was found to exhibit significant (p < 0.05) antinociceptive and anti-inflammatory activities. As a conclusion, the present study confirmed the traditional claims of using C. capsularis to treat various ailments related to inflammation and pain.
  19. Zakaria ZA, Abdul Ghani ZD, Raden Mohd Nor RN, Gopalan HK, Sulaiman MR, Abdullah FC
    Yakugaku Zasshi, 2006 Nov;126(11):1197-203.
    PMID: 17077622
    The present study was carried out to establish the antinociceptive and anti-inflammatory properties of Dicranopteris linearis leaves chloroform extract in experimental animals. The antinociceptive activity was measured using the abdominal constriction, formalin and hot plate tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by evaporation under vacuo (40 degrees C) to dryness, was dissolved in dimethyl sulfoxide to the doses of 20, 100 and 200 mg/kg and administered subcutaneously 30 min prior to subjection to the above mentioned assays. The extract, at all doses used, was found to exhibit significant (p<0.05) antinociceptive activity in a dose-dependent manner. However, the significant (p<0.05) anti-inflammatory activity observed occur in a dose-independent manner. As a conclusion, the chloroform extract of D. linearis possesses antinociceptive and anti-inflammatory activity and thus justify its traditional uses by the Malays to treat various ailments.
  20. Liew CY, Lam KW, Kim MK, Harith HH, Tham CL, Cheah YK, et al.
    Int Immunopharmacol, 2011 Jan;11(1):85-95.
    PMID: 21035434 DOI: 10.1016/j.intimp.2010.10.011
    We previously showed that 3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l)propenone (HMP), suppressed the synthesis of various proinflammatory mediators. In this study, HMP showed a dose-dependent inhibition of NO synthesis in the RAW 264.7 murine macrophage line. The inhibition of NO synthesis was related to inhibition of p38 phosphorylation and kinase activity that led to significant inhibition of phosphorylation of ATF-2. This effect in turn caused inhibition of AP-1-DNA binding which partially explains the inhibitory effect upon the synthesis of iNOS. HMP had no effect upon phosphorylation of JNK, ERK1/2 and STAT-1. Kinase activity of JNK and ERK1/2 was also not affected by HMP as determined by levels of phosphorylated c-jun and phosphorylated elk-1. Furthermore HMP failed to block phosphorylation of IκBα, and subsequent nuclear translocation and DNA-binding activity of p65 NF-κB in IFN-γ/LPS-induced RAW 264.7 cells. Molecular docking experiments confirmed that HMP fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We conclude that the synthetic HMP is a chalcone analogue that selectively inhibits the p38/ATF-2 and AP-1 signaling pathways in the NO synthesis by the macrophage RAW 264.7.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links