Displaying publications 41 - 60 of 196 in total

Abstract:
Sort:
  1. Zhang W, Jiang B, Zeng M, Duan Y, Wu Z, Wu Y, et al.
    J Virol, 2020 04 16;94(9).
    PMID: 32075929 DOI: 10.1128/JVI.01850-19
    Duck Tembusu virus (DTMUV), which is similar to other mosquito-borne flaviviruses that replicate well in most mammalian cells, is an emerging pathogenic flavivirus that has caused epidemics in egg-laying and breeding waterfowl. Immune organ defects and neurological dysfunction are the main clinical symptoms of DTMUV infection. Preinfection with DTMUV makes the virus impervious to later interferon (IFN) treatment, revealing that DTMUV has evolved some strategies to defend against host IFN-dependent antiviral responses. Immune inhibition was further confirmed by screening for DTMUV-encoded proteins, which suggested that NS2A significantly inhibited IFN-β and IFN-stimulated response element (ISRE) promoter activity in a dose-dependent manner and facilitated reinfection with duck plague virus (DPV). DTMUV NS2A was able to inhibit duck retinoic acid-inducible gene-I (RIG-I)-, and melanoma differentiation-associated gene 5 (MDA5)-, mitochondrial-localized adaptor molecules (MAVS)-, stimulator of interferon genes (STING)-, and TANK-binding kinase 1 (TBK1)-induced IFN-β transcription, but not duck TBK1- and interferon regulatory factor 7 (IRF7)-mediated effective phases of IFN response. Furthermore, we found that NS2A competed with duTBK1 in binding to duck STING (duSTING), impaired duSTING-duSTING binding, and reduced duTBK1 phosphorylation, leading to the subsequent inhibition of IFN production. Importantly, we first identified that the W164A, Y167A, and S361A mutations in duSTING significantly impaired the NS2A-duSTING interaction, which is important for NS2A-induced IFN-β inhibition. Hence, our data demonstrated that DTMUV NS2A disrupts duSTING-dependent antiviral cellular defenses by binding with duSTING, which provides a novel mechanism by which DTMUV subverts host innate immune responses. The potential interaction sites between NS2A and duSTING may be the targets of future novel antiviral therapies and vaccine development.IMPORTANCE Flavivirus infections are transmitted through mosquitos or ticks and lead to significant morbidity and mortality worldwide with a spectrum of manifestations. Infection with an emerging flavivirus, DTMUV, manifests with clinical symptoms that include lesions of the immune organs and neurological dysfunction, leading to heavy egg drop and causing serious harm to the duck industry in China, Thailand, Malaysia, and other Southeast Asian countries. Mosquito cells, bird cells, and mammalian cell lines are all susceptible to DTMUV infection. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and may pose a threat to mammalian health. However, the pathogenesis of DTMUV is largely unclear. Our results show that NS2A strongly blocks the STING-induced signal transduction cascade by binding with STING, which subsequently blocks STING-STING binding and TBK1 phosphorylation. More importantly, the W164, Y167, or S361 residues in duSTING were identified as important interaction sites between STING and NS2A that are vital for NS2A-induced IFN production and effective phases of IFN response. Uncovering the mechanism by which DTMUV NS2A inhibits IFN in the cells of its natural hosts, ducks, will help us understand the role of NS2A in DTMUV pathogenicity.
  2. Wang Z, Zhang F, Liang Y, Zheng K, Gu C, Zhang W, et al.
    Microbiol Spectr, 2021 10 31;9(2):e0046321.
    PMID: 34643440 DOI: 10.1128/Spectrum.00463-21
    Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
  3. Han M, Sun J, Yang Q, Liang Y, Jiang Y, Gao C, et al.
    mSystems, 2023 Feb 23.
    PMID: 36815859 DOI: 10.1128/msystems.01211-22
    The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.
  4. Zheng K, Liang Y, Paez-Espino D, Zou X, Gao C, Shao H, et al.
    mSystems, 2023 Sep 13;8(5):e0019723.
    PMID: 37702511 DOI: 10.1128/msystems.00197-23
    The N4-like viruses, which were recently assigned to the novel viral family Schitoviridae in 2021, belong to a podoviral-like viral lineage and possess conserved genomic characteristics and a unique replication mechanism. Despite their significance, our understanding of N4-like viruses is primarily based on viral isolates. To address this knowledge gap, this study has established a comprehensive N4-like viral data sets comprising 342 high-quality N4-like viruses/proviruses (144 viral isolates, 158 uncultured viruses, and 40 integrated N4-like proviruses). These viruses were classified into 97 subfamilies (89 of which are newly identified), 148 genera (100 of which are newly identified), and 253 species (177 of which are newly identified). The study reveals that N4-like viruses inhibit the polar region, oligotrophic open oceans, and the human gut, where they infect various bacterial lineages, such as Alpha/Beta/Gamma/Epsilon-proteobacteria in the Proteobacteria phylum. Although N4-like viral endogenization appears to be prevalent in Proteobacteria, it has also been observed in Firmicutes. Additionally, the phylogenetic analysis has identified evolutionary divergence within the hallmark genes of N4-like viruses, indicating a complex origin of the different conserved parts of viral genomes. Moreover, 1,101 putative auxiliary metabolic genes (AMGs) were identified in the N4-like viral pan-proteome, which mainly participate in nucleotide and cofactor/vitamin metabolisms. Of these AMGs, 27 were found to be associated with virulence, suggesting their potential involvement in the spread of bacterial pathogenicity. IMPORTANCE The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.
  5. Gu C, Liang Y, Li J, Shao H, Jiang Y, Zhou X, et al.
    iScience, 2021 Dec 17;24(12):103439.
    PMID: 34988389 DOI: 10.1016/j.isci.2021.103439
    The highest plateau on Earth, Qinghai-Tibet Plateau, contains thousands of lakes with broad salinity and diverse and unique microbial communities. However, little is known about their co-occurring viruses. Herein, we identify 4,560 viral Operational Taxonomic Units (vOTUs) from six viromes of three saline lakes on Qinghai-Tibet Plateau, with less than 1% that could be classified. Most of the predicted vOTUs were associated with the dominant bacterial and archaeal phyla. Virus-encoded auxiliary metabolic genes suggest that viruses influence microbial metabolisms of carbon, nitrogen, sulfur, and lipid; the antibiotic resistance mediation; and their salinity adaption. The six viromes clustered together with the ice core viromes and bathypelagic ocean viromes and might represent a new viral habitat. This study has revealed the unique characteristics and potential ecological roles of DNA viromes in the lakes of the highest plateau and established a foundation for the recognition of the viral roles in plateau lake ecosystems.
  6. Wang H, Zheng K, Wang M, Ma K, Ren L, Guo R, et al.
    Microbiol Spectr, 2024 Feb 06;12(2):e0336723.
    PMID: 38214523 DOI: 10.1128/spectrum.03367-23
    Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.
  7. Zhang W, Liu Y, Zheng K, Xing J, Li Q, Gu C, et al.
    PMID: 36975807 DOI: 10.1128/aem.01896-22
    The marine bacterial family Oceanospirillaceae, is well-known for its ability to degrade hydrocarbons and for its close association with algal blooms. However, only a few Oceanospirillaceae-infecting phages have been reported thus far. Here, we report on a novel Oceanospirillum phage, namely, vB_OsaM_PD0307, which has a 44,421 bp linear dsDNA genome and is the first myovirus infecting Oceanospirillaceae. A genomic analysis demonstrated that vB_OsaM_PD0307 is a variant of current phage isolates from the NCBI data set but that it has similar genomic features to two high-quality, uncultured viral genomes identified from marine metagenomes. Hence, we propose that vB_OsaM_PD0307 can be classified as the type phage of a new genus, designated Oceanospimyovirus. Additionally, metagenomic read mapping results have further shown that Oceanospimyovirus species are widespread in the global ocean, display distinct biogeographic distributions, and are abundant in polar regions. In summary, our findings expand the current understanding of the genomic characteristics, phylogenetic diversity, and distribution of Oceanospimyovirus phages. IMPORTANCE Oceanospirillum phage vB_OsaM_PD0307 is the first myovirus found to infect Oceanospirillaceae, and it represents a novel abundant viral genus in polar regions. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral genus, namely Oceanospimyovirus.
  8. Gao C, Xia J, Zhou X, Liang Y, Jiang Y, Wang M, et al.
    Appl Environ Microbiol, 2021 10 28;87(22):e0116021.
    PMID: 34469192 DOI: 10.1128/AEM.01160-21
    Nordic Seas are the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean with complex water masses, experiencing an abrupt climate change. Though knowledge of the marine virosphere has expanded rapidly, the diversity of viruses and their relationships with host cells and water masses in the Nordic Seas remain to be fully revealed. Here, we establish the Nordic Sea DNA virome (NSV) data set of 55,315 viral contigs including 1,478 unique viral populations from seven stations influenced by both the warm Atlantic and cold Arctic water masses. Caudovirales dominated in the seven NSVs, especially in the warm Atlantic waters. The major giant nucleocytoplasmic large DNA viruses (NCLDVs) contributed a significant proportion of the classified viral contigs in the NSVs (32.2%), especially in the cold Arctic waters (44.9%). The distribution patterns of Caudovirales and NCLDVs were a reflection of the community structure of their hosts in the corresponding water masses and currents. Latitude, pH, and flow speed were found to be key factors influencing the microbial communities and coinfluencing the variation of viral communities. Network analysis illustrated the tight coupling between the variation of viral communities and microbial communities in the Nordic Seas. This study suggests a probable linkage between viromes, host cells, and surface water masses from both the cool Arctic and warm Atlantic Oceans. IMPORTANCE This is a systematic study of Nordic Sea viromes using metagenomic analysis. The viral diversity, community structure, and their relationships with host cells and the complex water masses from both the cool Arctic and the warm Atlantic oceans were illustrated. The NCLDVs and Caudovirales are proposed as the viral characteristics of the cold Arctic and warm Atlantic waters, respectively. This study provides an important background for the viromes in the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean and sheds light on their responses to abrupt climate change in the future.
  9. Schäffer A, Groh KJ, Sigmund G, Azoulay D, Backhaus T, Bertram MG, et al.
    Environ Sci Technol, 2023 Dec 05;57(48):19066-19077.
    PMID: 37943968 DOI: 10.1021/acs.est.3c04213
    Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.
  10. Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen ZJ, Hoffmann B, et al.
    Environ Int, 2016 Feb;87:66-73.
    PMID: 26641521 DOI: 10.1016/j.envint.2015.11.007
    Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence.
  11. Andersen ZJ, Pedersen M, Weinmayr G, Stafoggia M, Galassi C, Jørgensen JT, et al.
    Neuro-oncology, 2018 02 19;20(3):420-432.
    PMID: 29016987 DOI: 10.1093/neuonc/nox163
    Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent.

    Methods: In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤2.5, ≤10, and 2.5-10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.

    Results: Of 282194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89-3.14 per 10-5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38-2.71 per 10-5/m3) and all other pollutants were lower for nonmalignant than for malignant brain tumors.

    Conclusion: We found suggestive evidence of an association between long-term exposure to PM2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors.

  12. Nagel G, Stafoggia M, Pedersen M, Andersen ZJ, Galassi C, Munkenast J, et al.
    Int J Cancer, 2018 10 01;143(7):1632-1643.
    PMID: 29696642 DOI: 10.1002/ijc.31564
    Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancers of the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient air pollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-use regression models for particulate matter (PM) below 10 µm (PM10 ), below 2.5 µm (PM2.5 ), between 2.5 and 10 µm (PMcoarse ), PM2.5 absorbance and nitrogen oxides (NO2 and NOX ) as well as approximated by traffic indicators. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. During average follow-up of 14.1 years of 305,551 individuals, 744 incident cases of gastric cancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5 µg/m3 of PM2.5 was 1.38 (95% CI 0.99; 1.92) for gastric and 1.05 (95% CI 0.62; 1.77) for UADT cancers. No associations were found for any of the other exposures considered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influence markedly the effect estimate for PM2.5 and gastric cancer. Higher estimated risks of gastric cancer associated with PM2.5 was found in men (HR 1.98 [1.30; 3.01]) as compared to women (HR 0.85 [0.5; 1.45]). This large multicentre cohort study shows an association between long-term exposure to PM2.5 and gastric cancer, but not UADT cancers, suggesting that air pollution may contribute to gastric cancer risk.
  13. Pedersen M, Stafoggia M, Weinmayr G, Andersen ZJ, Galassi C, Sommar J, et al.
    Eur Urol Focus, 2018 01;4(1):113-120.
    PMID: 28753823 DOI: 10.1016/j.euf.2016.11.008
    BACKGROUND: Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population.

    OBJECTIVE: To evaluate the association between long-term exposure to ambient air pollution and BC incidence.

    DESIGN, SETTING, AND PARTICIPANTS: We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N=303431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO2 and NOx), particulate matter (PM) with diameter <10μm (PM10), <2.5μm (PM2.5), between 2.5 and 10μm (PM2.5-10), PM2.5absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRs) for BC incidence.

    RESULTS AND LIMITATIONS: During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-μg/m3 increase in NO2 and 5-μg/m3 increase in PM2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure.

    CONCLUSIONS: There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC.

    PATIENT SUMMARY: We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk.

  14. Garg AX, Cuerden M, Aguado H, Amir M, Belley-Cote EP, Bhatt K, et al.
    Can J Kidney Health Dis, 2022;9:20543581211069225.
    PMID: 35024154 DOI: 10.1177/20543581211069225
    Background: Most patients who take antihypertensive medications continue taking them on the morning of surgery and during the perioperative period. However, growing evidence suggests this practice may contribute to perioperative hypotension and a higher risk of complications. This protocol describes an acute kidney injury substudy of the Perioperative Ischemic Evaluation-3 (POISE-3) trial, which is testing the effect of a perioperative hypotension-avoidance strategy versus a hypertension-avoidance strategy in patients undergoing noncardiac surgery.

    Objective: To conduct a substudy of POISE-3 to determine whether a perioperative hypotension-avoidance strategy reduces the risk of acute kidney injury compared with a hypertension-avoidance strategy.

    Design: Randomized clinical trial with 1:1 randomization to the intervention (a perioperative hypotension-avoidance strategy) or control (a hypertension-avoidance strategy).

    Intervention: If the presurgery systolic blood pressure (SBP) is <130 mmHg, all antihypertensive medications are withheld on the morning of surgery. If the SBP is ≥130 mmHg, some medications (but not angiotensin receptor blockers [ACEIs], angiotensin receptor blockers [ARBs], or renin inhibitors) may be continued in a stepwise manner. During surgery, the patients' mean arterial pressure (MAP) is maintained at ≥80 mmHg. During the first 48 hours after surgery, some antihypertensive medications (but not ACEIs, ARBs, or renin inhibitors) may be restarted in a stepwise manner if the SBP is ≥130 mmHg.

    Control: Patients receive their usual antihypertensive medications before and after surgery. The patients' MAP is maintained at ≥60 mmHg from anesthetic induction until the end of surgery.

    Setting: Recruitment from 108 centers in 22 countries from 2018 to 2021.

    Patients: Patients (~6800) aged ≥45 years having noncardiac surgery who have or are at risk of atherosclerotic disease and who routinely take antihypertensive medications.

    Measurements: The primary outcome of the substudy is postoperative acute kidney injury, defined as an increase in serum creatinine concentration of either ≥26.5 μmol/L (≥0.3 mg/dL) within 48 hours of randomization or ≥50% within 7 days of randomization.

    Methods: The primary analysis (intention-to-treat) will examine the relative risk and 95% confidence interval of acute kidney injury in the intervention versus control group. We will repeat the primary analysis using alternative definitions of acute kidney injury and examine effect modification by preexisting chronic kidney disease, defined as a prerandomization estimated glomerular filtration rate <60 mL/min/1.73 m2.

    Results: Substudy results will be analyzed in 2022.

    Limitations: It is not possible to mask patients or providers to the intervention; however, objective measures will be used to assess acute kidney injury.

    Conclusions: This substudy will provide generalizable estimates of the effect of a perioperative hypotension-avoidance strategy on the risk of acute kidney injury.

  15. Andersen ZJ, Stafoggia M, Weinmayr G, Pedersen M, Galassi C, Jørgensen JT, et al.
    Environ Health Perspect, 2017 10 13;125(10):107005.
    PMID: 29033383 DOI: 10.1289/EHP1742
    BACKGROUND: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent.

    OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women.

    METHODS: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.

    RESULTS: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m3], PMcoarse[1.20 (95% CI: 0.96, 1.49 per 5 μg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m3, p=0.04].

    CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742.

  16. Arends S, Drenthen J, van den Bergh P, Franssen H, Hadden RDM, Islam B, et al.
    Clin Neurophysiol, 2022 Jun;138:231-240.
    PMID: 35078730 DOI: 10.1016/j.clinph.2021.12.014
    OBJECTIVE: To describe the heterogeneity of electrodiagnostic (EDx) studies in Guillain-Barré syndrome (GBS) patients collected as part of the International GBS Outcome Study (IGOS).

    METHODS: Prospectively collected clinical and EDx data were available in 957 IGOS patients from 115 centers. Only the first EDx study was included in the current analysis.

    RESULTS: Median timing of the EDx study was 7 days (interquartile range 4-11) from symptom onset. Methodology varied between centers, countries and regions. Reference values from the responding 103 centers were derived locally in 49%, from publications in 37% and from a combination of these in the remaining 15%. Amplitude measurement in the EDx studies (baseline-to-peak or peak-to-peak) differed from the way this was done in the reference values, in 22% of motor and 39% of sensory conduction. There was marked variability in both motor and sensory reference values, although only a few outliers accounted for this.

    CONCLUSIONS: Our study showed extensive variation in the clinical practice of EDx in GBS patients among IGOS centers across the regions.

    SIGNIFICANCE: Besides EDx variation in GBS patients participating in IGOS, this diversity is likely to be present in other neuromuscular disorders and centers. This underlines the need for standardization of EDx in future multinational GBS studies.

  17. Sun P, Hu SB, Cheng X, Li M, Guo B, Song ZF, et al.
    Hernia, 2015 Apr;19 Suppl 1:S157-65.
    PMID: 26518794 DOI: 10.1007/BF03355344
  18. Choo SW, Chong JL, Gaubert P, Hughes AC, O'Brien S, Chaber AL, et al.
    Sci Total Environ, 2022 Feb 14.
    PMID: 35176378 DOI: 10.1016/j.scitotenv.2022.153666
  19. Mo Y, Ding Y, Cao Y, Hopkins J, Ashley EA, Waithira N, et al.
    Wellcome Open Res, 2023;8:179.
    PMID: 37854055 DOI: 10.12688/wellcomeopenres.19210.2
    Background: Antimicrobial resistance surveillance is essential for empiric antibiotic prescribing, infection prevention and control policies and to drive novel antibiotic discovery. However, most existing surveillance systems are isolate-based without supporting patient-based clinical data, and not widely implemented especially in low- and middle-income countries (LMICs). Methods: A Clinically-Oriented Antimicrobial Resistance Surveillance Network (ACORN) II is a large-scale multicentre protocol which builds on the WHO Global Antimicrobial Resistance and Use Surveillance System to estimate syndromic and pathogen outcomes along with associated health economic costs. ACORN-healthcare associated infection (ACORN-HAI) is an extension study which focuses on healthcare-associated bloodstream infections and ventilator-associated pneumonia. Our main aim is to implement an efficient clinically-oriented antimicrobial resistance surveillance system, which can be incorporated as part of routine workflow in hospitals in LMICs. These surveillance systems include hospitalised patients of any age with clinically compatible acute community-acquired or healthcare-associated bacterial infection syndromes, and who were prescribed parenteral antibiotics. Diagnostic stewardship activities will be implemented to optimise microbiology culture specimen collection practices. Basic patient characteristics, clinician diagnosis, empiric treatment, infection severity and risk factors for HAI are recorded on enrolment and during 28-day follow-up. An R Shiny application can be used offline and online for merging clinical and microbiology data, and generating collated reports to inform local antibiotic stewardship and infection control policies. Discussion: ACORN II is a comprehensive antimicrobial resistance surveillance activity which advocates pragmatic implementation and prioritises improving local diagnostic and antibiotic prescribing practices through patient-centred data collection. These data can be rapidly communicated to local physicians and infection prevention and control teams. Relative ease of data collection promotes sustainability and maximises participation and scalability. With ACORN-HAI as an example, ACORN II has the capacity to accommodate extensions to investigate further specific questions of interest.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links