Displaying publications 41 - 60 of 61 in total

Abstract:
Sort:
  1. Goh KM, Wong YH, Ang MY, Yeo SCM, Abas F, Lai OM, et al.
    Food Res Int, 2019 07;121:553-560.
    PMID: 31108780 DOI: 10.1016/j.foodres.2018.12.013
    The detection of 3- and 2-MCPD ester and glycidyl ester was transformed from selected ion monitoring (SIM) mode to multiple reaction monitoring (MRM) mode by gas chromatography triple quadrupole spectrometry. The derivatization process was adapted from AOCS method Cd 29a-13. The results showed that the coefficient of determination (R2) of all detected compounds obtained from both detection mode was comparable, which falls between 0.997 and 0.999. The limit of detection and quantification (LOD and LOQ) were improved in MRM mode as compared to SIM mode. In MRM mode, the LOD of 3- and 2-MCPD ester was achieved 0.01 mg/kg while the LOQ was 0.05 mg/kg. Besides, LOD and LOQ of glycidyl ester were 0.024 and 0.06 mg/kg respectively. A blank spiked with MCPD esters (0.03, 0.10 and 0.50 mg/kg) and GE (0.06, 0.24 and 1.20 mg/kg) were chosen for repeatability and recovery tests. MRM mode showed better repeatability in area ratio and recovery with relative standard deviation (RSD %) 
  2. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Acharya RU, Yeong CH
    World journal of experimental medicine, 2020 Mar 30;10(2):10-25.
    PMID: 32266125 DOI: 10.5493/wjem.v10.i2.10
    BACKGROUND: Liver cancer is the 6th most common cancer in the world and the 4th most common death from cancer worldwide. Hepatic radioembolization is a minimally invasive treatment involving intraarterial administration of radioembolic microspheres.

    AIM: To develop a neutron-activated, biodegradable and theranostics samarium-153 acetylacetonate (153SmAcAc)-poly-L-lactic acid (PLLA) microsphere for intraarterial radioembolization of hepatic tumors.

    METHODS: Microspheres with different concentrations of 152SmAcAc (i.e., 100%, 150%, 175% and 200% w/w) were prepared by solvent evaporation method. The microspheres were then activated using a nuclear reactor in a neutron flux of 2 × 1012 n/cm2/s1, converting 152Sm to Samarium-153 (153Sm) via152Sm (n, γ) 153Sm reaction. The SmAcAc-PLLA microspheres before and after neutron activation were characterized using scanning electron microscope, energy dispersive X-ray spectroscopy, particle size analysis, Fourier transform infrared spectroscopy, thermo-gravimetric analysis and gamma spectroscopy. The in-vitro radiolabeling efficiency was also tested in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    RESULTS: The SmAcAc-PLLA microspheres with different SmAcAc contents remained spherical before and after neutron activation. The mean diameter of the microspheres was about 35 µm. Specific activity achieved for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc after 3 h neutron activation were 1.7 ± 0.05, 2.5 ± 0.05, 2.7 ± 0.07, and 2.8 ± 0.09 GBq/g, respectively. The activity of per microspheres were determined as 48.36 ± 1.33, 74.10 ± 1.65, 97.87 ± 2.48, and 109.83 ± 3.71 Bq for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc. The energy dispersive X-ray and gamma spectrometry showed that no elemental and radioactive impurities present in the microspheres after neutron activation. Retention efficiency of 153Sm in the SmAcAc-PLLA microspheres was excellent (approximately 99%) in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    CONCLUSION: The 153SmAcAc-PLLA microsphere is potentially useful for hepatic radioembolization due to their biodegradability, favorable physicochemical characteristics and excellent radiolabeling efficiency. The synthesis of the formulation does not involve ionizing radiation and hence reducing the complication and cost of production.

  3. Appalasamy JR, Selvaraj A, Wong YH, Dujaili JA, Kow CS
    Res Social Adm Pharm, 2022 Jan 31.
    PMID: 35168890 DOI: 10.1016/j.sapharm.2022.01.008
    OBJECTIVE: This systematic review aimed to evaluate the effectiveness of educational interventions on the smoking cessation service provided by community pharmacists.

    METHODS: A systematic literature search was performed in May-July 2021, in electronic databases, which included PubMed (MEDLINE), Embase, and Web of Science. Studies were included in this systematic review if they were original articles published in English language from 2010 to 2021 and evaluated the effect of any types of educational interventions intended to improve the ability of community pharmacists to provide smoking cessation services.

    RESULTS: In total, 12 studies were included for this systematic review. The effectiveness of the educational interventions across the included studies was measured using a range of outcomes, which can be broadly categorized into 3 categories, namely changes in pharmacists' self-efficacy, knowledge, and attitude toward providing smoking cessation service, changes in pharmacists' smoking cessation practices, and changes in the effectiveness of community pharmacy based smoking cessation services. Included studies reported that educational interventions can improve pharmacists' self-efficacy, knowledge, and attitude toward smoking cessation, as well as pharmacists' smoking cessation practices. Though the evidence is limited, improvement in the effectiveness of community pharmacy based smoking cessation services has also been observed.

    CONCLUSION: Any form educational interventions can positively impact improve community pharmacists' self-efficacy, knowledge, and attitude toward smoking cessation, as well as pharmacists' smoking cessation practices, but it is currently uncertain whether these outcomes are able to translate into higher effectiveness of the community pharmacy based smoking cessation services.

  4. Allan A, Kealley C, Squelch A, Wong YH, Yeong CH, Sun Z
    Quant Imaging Med Surg, 2019 Jan;9(1):86-93.
    PMID: 30788249 DOI: 10.21037/qims.2018.12.01
    BACKGROUND: 3D printing has shown great promise in medical applications, with increasing reports in liver diseases. However, research on 3D printing in biliary disease is limited with lack of studies on validation of model accuracy. In this study, we presented our experience of creating a realistic 3D printed model of biliary ducts with congenital cyst. Measurements of anatomical landmarks were compared at different stages of model generation to determine dimensional accuracy.

    METHODS: Contrast-enhanced computed tomography (CT) images of a patient diagnosed with congenital cyst in the common bile duct with dilated hepatic ducts were used to create the 3D printed model. The 3D printed model was scanned on a 64-slice CT scanner using the similar abdominal CT protocol. Measurements of anatomical structures including common hepatic duct (CHD), right hepatic duct (RHD), left hepatic duct (LHD) and the cyst at left to right and anterior to posterior dimensions were performed and compared between original CT images, the standard tessellation language (STL) image and CT images of the 3D model.

    RESULTS: The 3D printing model was successfully generated with replication of biliary ducts and cyst. Significant differences in measurements of these landmarks were found between the STL and the original CT images, and the CT images of the 3D printed model and the original CT images (P<0.05). Measurements of the RHD and LHD diameters from the original CT images were significantly larger than those from the CT images of 3D model or STL file (P<0.05), while measurements of the CHD diameters were significantly smaller than those of the other two datasets (P<0.05). No significant differences were reached in measurements of the CHD, RHD, LHD and the biliary cyst between CT images of the 3D printed model and STL file (P=0.08-0.98).

    CONCLUSIONS: This study shows our experience in producing a realistic 3D printed model of biliary ducts and biliary cyst. The model was found to replicate anatomical structures and cyst with high accuracy between the STL file and the CT images of the 3D model. Large discrepancy in dimensional measurements was noted between the original CT and STL file images, and the original CT and CT images of the 3D model, highlighting the necessity of further research with inclusion of more cases of biliary disease to validate accuracy of 3D printed biliary models.

  5. Tan HY, Wong YH, Kasbollah A, Md Shah MN, Perkins AC, Yeong CH
    Nucl Med Commun, 2023 Apr 01;44(4):227-243.
    PMID: 36808108 DOI: 10.1097/MNM.0000000000001665
    Personalised cancer treatment is of growing importance and can be achieved via targeted radionuclide therapy. Radionuclides with theranostic properties are proving to be clinically effective and are widely used because diagnostic imaging and therapy can be accomplished using a single formulation that avoids additional procedures and unnecessary radiation burden to the patient. For diagnostic imaging, single photon emission computed tomography (SPECT) or positron emission tomography (PET) is used to obtain functional information noninvasively by detecting the gamma (γ) rays emitted from the radionuclide. For therapeutics, high linear energy transfer (LET) radiations such as alpha (α), beta (β - ) or Auger electrons are used to kill cancerous cells in close proximity, whereas sparing the normal tissues surrounding the malignant tumour cells. One of the most important factors that lead to the sustainable development of nuclear medicine is the availability of functional radiopharmaceuticals. Nuclear research reactors play a vital role in the production of medical radionuclides for incorporation into clinical radiopharmaceuticals. The disruption of medical radionuclide supplies in recent years has highlighted the importance of ongoing research reactor operation. This article reviews the current status of operational nuclear research reactors in the Asia-Pacific region that have the potential for medical radionuclide production. It also discusses the different types of nuclear research reactors, their operating power, and the effects of thermal neutron flux in producing desirable radionuclides with high specific activity for clinical applications.
  6. Lee HJ, Ker PJ, Gamel MMA, Jamaludin MZ, Wong YH
    Heliyon, 2023 Oct;9(10):e20585.
    PMID: 37842600 DOI: 10.1016/j.heliyon.2023.e20585
    Accurate spectral irradiance measurement in the near-infrared range is significant for the design and characterization of photodetector and photovoltaic cells. Approximation method is commonly used to solve for the input power using estimated spectral irradiance, where the dependency on wavelength and temperature remains uncertain. This study aims to determine the power spectrum at different radiation temperatures using a single pixel photodetector, taking into consideration factors such as transmission spectra of alumina radiator, CaF2 collimating lens, responsivity, and measured photocurrent information of photodetectors. Utilizing predictive mathematical model, five commercial photodetectors, including Silicon, Germanium, In0.53Ga0.47As, In0.73Ga0.27As, and In0.83Ga0.17As were used to solve for the power densities as a function of wavelengths at radiation temperatures of 1000 °C and 1500 °C. The spectral irradiance of photodetectors was determined with a percentage difference of <4.9 %, presenting an accurate power density estimation for the spectrum at a wide range of radiation temperatures. Power irradiance data obtained were validated in the narrow wavelength range with 1000 nm, 1400 nm, 1500 nm, and 2000 nm bandpass filters. The reported work demonstrates a simple and efficient way which could contribute to develop a cost-effective method of measuring and determining the spectrum irradiances of objects at different radiation temperatures. This predictive analysis method hopefully intensifies the progress of efforts to reduce the reliance on complex optoelectronic instruments in accurately solving power irradiance information.
  7. Yap KL, Yasmin AM, Wong YH, Ooi YE, Tan SC, Jegathesan M, et al.
    Med J Malaysia, 1992 Dec;47(4):303-8.
    PMID: 1303484
    A 1 year longitudinal study of 156 Malaysian children from urban and suburban areas in the Klang Valley revealed that the incidence rate of diarrhoea was 23.6 per 100 person-year with abnormal faeces reported on 0.26% of the total days of observation. Diarrhoea cases were detected in children from all socioeconomic classes. Rotavirus was isolated from 12% of the diarrheic children and asymptomatic rotavirus infection occurred in 3.2% of the children. All rotaviruses isolated were group A rotaviruses with long electrophoretypic pattern.
  8. Lau I, Wong YH, Yeong CH, Abdul Aziz YF, Md Sari NA, Hashim SA, et al.
    Quant Imaging Med Surg, 2019 Jan;9(1):107-114.
    PMID: 30788252 DOI: 10.21037/qims.2019.01.02
    Current visualization techniques of complex congenital heart disease (CHD) are unable to provide comprehensive visualization of the anomalous cardiac anatomy as the medical datasets can essentially only be viewed from a flat, two-dimensional (2D) screen. Three-dimensional (3D) printing has therefore been used to replicate patient-specific hearts in 3D views based on medical imaging datasets. This technique has been shown to have a positive impact on the preoperative planning of corrective surgery, patient-doctor communication, and the learning experience of medical students. However, 3D printing is often costly, and this impedes the routine application of this technology in clinical practice. This technical note aims to investigate whether reducing 3D printing costs can have any impact on the clinical value of the 3D-printed heart models. Low-cost and a high-cost 3D-printed models based on a selected case of CHD were generated with materials of differing cost. Quantitative assessment of dimensional accuracy of the cardiac anatomy and pathology was compared between the 3D-printed models and the original cardiac computed tomography (CT) images with excellent correlation (r=0.99). Qualitative evaluation of model usefulness showed no difference between the two models in medical applications.
  9. Andoy-Galvan JA, Lugova H, Patil SS, Wong YH, Baloch GM, Suleiman A, et al.
    F1000Res, 2020;9:160.
    PMID: 32399203 DOI: 10.12688/f1000research.22236.1
    Background: Recent studies have shown that higher income is associated with a higher risk for subsequent obesity in low- and middle-income countries, while in high-income countries there is a reversal of the association - higher-income individuals have a lower risk of obesity. The concept of being able to afford to overeat is no longer a predictor of obesity in developed countries. In Malaysia, a trend has been observed that the prevalence of obesity increases with an increase in income among the low-income (B40) group. This trend, however, was not further investigated. Therefore, this study was performed to investigate the association of income and other sociodemographic factors with obesity among residents within the B40 income group in an urban community.  Methods: This cross-sectional study used a systematic sampling technique to recruit participants residing in a Program Perumahan Rakyat (PPR), Kuala Lumpur, Malaysia. The sociodemographic characteristics were investigated through face-to-face interviews. Weight and height were measured, and body mass index (BMI) was calculated and coded as underweight, normal, overweight and obese according to the cut-off points for the Asian population. A chi-squared test was used to compare the prevalence of obesity in this study with the national prevalence. A generalized linear model was introduced to identify BMI predictors. Results: Among the 341 participants, 25 (7.3%) were underweight, 94 (27.6%) had normal weight, 87 (25.5%) were overweight, and 135 (39.6%) were obese. The proportion of obese adults (45.8%) was significantly higher than the national prevalence of 30.6% (p<0.001). Among all the tested variables, only income was significantly associated with BMI (p=0.046). Conclusion: The proportion of obesity in this urban poor community was higher compared with the national average. BMI increased as the average monthly household income decreased.
  10. Wong YH, Goh KM, Nyam KL, Cheong LZ, Wang Y, Nehdi IA, et al.
    Sci Rep, 2020 09 15;10(1):15110.
    PMID: 32934328 DOI: 10.1038/s41598-020-72118-z
    3-Monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are heat-induced contaminants which form during oil refining process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3-MCPD and GE in fries which also involved high temperature. The content of 3-MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and different concentration of salt (NaCl). The results in our study showed that the effect was in the order of concentration of sodium chloride 
  11. Wong YH, Wong SH, Wong XT, Yi Yap Q, Yip KY, Wong LZ, et al.
    Panminerva Med, 2021 Oct 05.
    PMID: 34609116 DOI: 10.23736/S0031-0808.21.04285-3
    According to the International Diabetes Federation, the number of adults (age of 20-79) being diagnosed with Diabetes Mellitus (DM) have increased from 285 million in year 2009 to 463 million in year 2019 which comprises of 95% Type 2 DM patient (T2DM). Research have claimed that genetic predisposition could be one of the factors causing T2DM complications. In addition, T2DMcomplications cause an incremental risk to mortality. Therefore, this article aims to discuss some complications of T2DM in and their genetic association. The complications that are discussed in this article are diabetic nephropathy, diabetes induced cardiovascular disease, diabetic neuropathy, Diabetic Foot Ulcer (DFU) and Alzheimer's disease. According to the information obtained, genes associated with diabetic nephropathy (DN) are gene GABRR1 and ELMO1 that cause injury to glomerular. Replication of genes FRMD3, CARS and MYO16/IRS2 shown to have link with DN. The increase of gene THBS2, NGAL, PIP, TRAF6 polymorphism, ICAM-1 encoded for rs5498 polymorphism and C667T increase susceptibility towards DN in T2DM patient. Genes associated with cardiovascular diseases are Adiponectin gene (ACRP30) and Apolipoprotein E (APOE) polymorphism gene with ξ2 allele. Haptoglobin (Hp) 1-1 genotype and Mitochondria Superoxide Dismutase 2 (SOD2) plays a role in cardiovascular events. As for genes related to diabetic neuropathy, Janus Kinase (JAK), mutation of SCN9A and TRPA1 gene and destruction of miRNA contribute to pathogenesis of diabetic neuropathy among T2DM patients. Expression of cytokine IL-6, IL-10, miR-146a are found to cause diabetic neuropathy. Besides, A1a16Va1 gene polymorphism, an oxidative stress influence was found as one of the gene factors. Diabetic retinopathy (DR) is believed to have association with Monocyte Chemoattractant Protein-1 (MCP-1) and Insulin-like Growth Factor 1 (IGF1). Over-expression of gene ENPP1, IL-6 pro-inflammatory cytokine, ARHGAP22's protein rs3844492 polymorphism and TLR4 heterozygous genotype are contributing to significant pathophysiological process causing DR, while research found increases level of UCP1 gene protects retina cells from oxidative stress. Diabetic Foot Ulcer (DFU) is manifested by slowing in reepithelialisation of keratinocyte, persistence wound inflammation and healing impairment. Reepithelialisation disturbance was caused by E2F3 gene, reduction of Tacl gene encoded substance P causing persistence inflammation while expression of MMp-9 polymorphism contributes to healing impairment. A decrease in HIF-1a gene expression leads to increased risk of pathogenesis, while downregulation of TLR2 increases severity of wound in DFU patients. SNPs alleles has been shown to have significant association between the genetic dispositions of T2DM and Alzheimer's disease (AD). The progression of AD can be due to the change in DNA methylation of CLOCK gene, followed with worsening of AD by APOE4 gene due to dyslipidaemia condition in T2DM patients. Insulin resistance is also a factor that contributes to pathogenesis of AD.
  12. Tan D, Mohamad NA, Wong YH, Yeong CH, Cheah PL, Sulaiman N, et al.
    Int J Hyperthermia, 2019;36(1):554-561.
    PMID: 31132888 DOI: 10.1080/02656736.2019.1610800
    Purpose: This study aimed to evaluate the effects of various computed tomography (CT) acquisition parameters and metal artifacts on CT number measurement for CT thermometry during CT-guided thermal ablation. Methods: The effects of tube voltage (100-140 kVp), tube current (20-250 mAs), pitch (0.6-1.5) and gantry rotation time (0.5, 1.0 s) as well as metal artifacts from a radiofrequency ablation (RFA) needle on CT number were evaluated using liver tissue equivalent polyacrylamide (PAA) phantom. The correlation between CT number and temperature from 37 to 80 °C was studied on PAA phantom using optimum CT acquisition parameters. Results: No statistical significant difference (p > 0.05) was found on CT numbers under the variation of different acquisition parameters for the same temperature setting. On the other hand, the RFA needle has induced metal artifacts on the CT images of up to 8 mm. The CT numbers decreased linearly when the phantom temperature increased from 37 to 80 °C. A linear regression analysis on the CT numbers and temperature suggested that the CT thermal sensitivity was -0.521 ± 0.061 HU/°C (R2 = 0.998). Conclusion: CT thermometry is feasible for temperature assessment during RFA with the current CT technology, which produced a high CT number reproducibility and stable measurement at different CT acquisition parameters. Despite being affected by metal artifacts, the CT-based thermometry could be further developed as a tissue temperature monitoring tool during CT-guided thermal ablation.
  13. Goh KM, Maulidiani M, Rudiyanto R, Wong YH, Ang MY, Yew WM, et al.
    Talanta, 2019 Jun 01;198:215-223.
    PMID: 30876552 DOI: 10.1016/j.talanta.2019.01.111
    The technique of Fourier transform infrared spectroscopy is widely used to generate spectral data for use in the detection of food contaminants. Monochloropropanediol (MCPD) is a refining process-induced contaminant that is found in palm-based fats and oils. In this study, a chemometric approach was used to evaluate the relationship between the FTIR spectra and the total MCPD content of a palm-based cooking oil. A total of 156 samples were used to develop partial least squares regression (PLSR), artificial neural network (nnet), average artificial neural network (avNNET), random forest (RF) and cubist models. In addition, a consensus approach was used to generate fusion result consisted from all the model mentioned above. All the models were evaluated based on validation performed using training and testing datasets. In addition, the box plot of coefficient of determination (R2), root mean square error (RMSE), slopes and intercepts by 100 times randomization was also compared. Evaluation of performance based on the testing R2 and RMSE suggested that the cubist model predicted total MCPD content with the highest accuracy, followed by the RF, avNNET, nnet and PLSR models. The overfitting tendency was assessed based on differences in R2 and RMSE in the training and testing calibrations. The observations showed that the cubist and avNNET models possessed a certain degree of overfitting. However, the accuracy of these models in predicting the total MCPD content was high. Results of the consensus model showed that it slightly improved the accuracy of prediction as well as significantly reduced its uncertainty. The important variables derived from the cubist and RF models suggested that the wavenumbers corresponding to the MCPDs originated from the -CH=CH2 or CH=CH (990-900 cm-1) and C-Cl stretch (800-700 cm-1) regions of the FTIR spectrum data. In short, chemometrics in combination with FTIR analysis especially for the consensus model represent a potential and flexible technique for estimating the total MCPD content of refined vegetable oils.
  14. Goh KM, Wong YH, Abas F, Lai OM, Mat Yusoff M, Tan TB, et al.
    Foods, 2020 Jun 04;9(6).
    PMID: 32512737 DOI: 10.3390/foods9060739
    Shortening derived from palm oil is widely used in baking applications. However, palm oil and the related products are reported to contain high levels of monochloropropandiol (MCPD) ester and glycidyl ester (GE). MCPD and glycidol are known as process contaminants, which are carcinogenic and genotoxic compounds, respectively. The objective was to evaluate the effects of antioxidant addition in palm olein and stearin to the content of MCPD esters and GE in baked cake. Butylated hydroxyanisole (BHA), rosemary extract and tocopherol were used to fortify the samples at 200 mg/kg and in combinations (400, 600 and 800 mg/kg rosemary or tocopherol combined with 200 mg/kg BHA). The MCPD esters and GE content, radical formation and the quality of the fats portion were analyzed. The results showed that palm olein fortified with rosemary extract yielded less 2-MCPD ester. The GE content was lower when soft stearin was fortified with rosemary. ESR spectrometry measurements showed that the antioxidants were effective to reduce radical formation. The synergistic effects of combining antioxidants controlled the contaminants formation. In conclusion, oxidation stability was comparable either in the single or combined antioxidants. Tocopherol in combination with BHA was more effective in controlling the MCPD esters and GE formation.
  15. Lugova H, Andoy-Galvan JA, Patil SS, Wong YH, Baloch GM, Suleiman A, et al.
    Community Ment Health J, 2021 11;57(8):1489-1498.
    PMID: 33417170 DOI: 10.1007/s10597-020-00765-7
    Growing prevalence of mental illnesses and the role they play in the global disease burden is an emerging public health issue. The prevalence of depression and anxiety is on the rise in Malaysia. Low-income urban communities are among the key affected populations with regards to mental health problems. This cross-sectional study was aimed to determine the prevalence and severity of depression, anxiety and stress, and their associated factors among adults in the low-income community of Kuala Lumpur, Malaysia. A total of 248 participants aged 18-60 years old were recruited. Data were collected via face-to-face interviews using the Depression, Anxiety and Stress Scale-21 Items (DASS-21). Chi-squared test was used to examine the association between the variables. Multiple ordinal regression model was introduced to identify the predictors of depression, anxiety and stress. The proportions of participants with depression, anxiety and stress were 24.2% (95% CI: 19.6-30.4), 36.3% (95% CI: 29.9-43.0), and 20.6% (95% CI: 15.4-26.5), respectively. There was a statistically significant association of ethnicity (p = 0.002) and age (p = 0.014) with the severity of depression, ethnicity (p = 0.001) and age (p = 0.024) with the severity of anxiety, and ethnicity (p 
  16. Tan HY, Wong YH, Kasbollah A, Md Shah MN, Abdullah BJJ, Perkins AC, et al.
    Nucl Med Commun, 2022 Apr 01;43(4):410-422.
    PMID: 35045548 DOI: 10.1097/MNM.0000000000001529
    PURPOSE: Hepatic radioembolization is an effective minimally invasive treatment for primary and metastatic liver cancers. Yttrium-90 [90Y]-labelled resin or glass beads are typically used as the radioembolic agent for this treatment; however, these are not readily available in many countries. In this study, novel samarium-153 oxide-loaded polystyrene ([153Sm]Sm2O3-PS) microspheres were developed as a potential alternative to 90Y microspheres for hepatic radioembolization.

    METHODS: The [152Sm]Sm2O3-PS microspheres were synthesized using solid-in-oil-in-water solvent evaporation. The microspheres underwent neutron activation using a 1 MW open-pool research reactor to produce radioactive [153Sm]Sm2O3-PS microspheres via 152Sm(n,γ)153Sm reaction. Physicochemical characterization, gamma spectroscopy and in-vitro radionuclide retention efficiency were carried out to evaluate the properties and stability of the microspheres before and after neutron activation.

    RESULTS: The [153Sm]Sm2O3-PS microspheres achieved specific activity of 5.04 ± 0.52 GBq·g-1 after a 6 h neutron activation. Scanning electron microscopy and particle size analysis showed that the microspheres remained spherical with an average diameter of ~33 μm before and after neutron activation. No long half-life radionuclide and elemental impurities were found in the samples. The radionuclide retention efficiencies of the [153Sm]Sm2O3-PS microspheres at 550 h were 99.64 ± 0.07 and 98.76 ± 1.10% when tested in saline solution and human blood plasma, respectively.

    CONCLUSIONS: A neutron-activated [153Sm]Sm2O3-PS microsphere formulation was successfully developed for potential application as a theranostic agent for liver radioembolization. The microspheres achieved suitable physical properties for radioembolization and demonstrated high radionuclide retention efficiency in saline solution and human blood plasma.

  17. Mohd Noor MNZ, Alauddin AS, Wong YH, Looi CY, Wong EH, Madhavan P, et al.
    Asian Pac J Cancer Prev, 2023 Jan 01;24(1):37-47.
    PMID: 36708550 DOI: 10.31557/APJCP.2023.24.1.37
    BACKGROUND: Cancer remains a challenging target to cure, with present therapeutic methods unable to exhibit restorative outcomes without causing severe negative effects. Molecular hydrogen (H2) has been reported to be a promising adjunctive therapy for cancer treatment, having the capability to induce anti-proliferative, anti-oxidative, pro-apoptotic and anti-tumoural effects. This review summarises the findings from various articles on the mechanism, treatment outcomes, and overall effectiveness of H2 therapy on cancer management.

    METHODS: Using Cochrane, PubMed, and Google Scholar as the search engines, full-text articles in the scope of the study, written in English and within 10 years of publication were selected.

    RESULTS: Out of the 677 articles, 27 articles fulfilled the eligibility criteria, where data was compiled into a table, outlining the general characteristics and findings. Throughout the different forms of H2 administration, study design and types of cancers reported, outcomes were found to be consistent.

    CONCLUSION: From our analysis, H2 plays a promising therapeutic role as an independent therapy as well as an adjuvant in combination therapy, resulting in an overall improvement in survivability, quality of life, blood parameters, and tumour reduction. Although more comprehensive research is needed, given the promising outcomes, H2 is worth considering for use as a complement to current cancer therapy.

  18. Alregib AH, Tan HY, Wong YH, Kasbollah A, Wong EH, Abdullah BJJ, et al.
    J Labelled Comp Radiopharm, 2023 Aug;66(10):308-320.
    PMID: 37287213 DOI: 10.1002/jlcr.4046
    Transarterial chemoembolization (TACE) and transarterial radioembolization (TARE) are promising treatments for unresectable liver tumours. Some recent studies suggested that combining TACE and TARE in one treatment course might improve treatment efficacy through synergistic cytotoxicity effects. Nonetheless, current formulations do not facilitate a combination of chemo- and radio-embolic agents in one delivery system. Therefore, this study aimed to synthesise a hybrid biodegradable microsphere loaded with both radioactive agent, samarium-153 (153 Sm) and chemotherapeutic drug, doxorubicin (Dox) for potential radio-chemoembolization of advanced liver tumours. 152 Sm and Dox-loaded polyhydroxybutyrate-co-3-hydroxyvalerate (PHBV) microspheres were prepared using water-in-oil-in-water solvent evaporation method. The microspheres were then sent for neutron activation in a neutron flux of 2 × 1012  n/cm2 /s. The physicochemical properties, radioactivity, radionuclide purity, 153 Sm retention efficiency, and Dox release profile of the Dox-153 Sm-PHBV microspheres were analysed. In addition, in vitro cytotoxicity of the formulation was tested using MTT assay on HepG2 cell line at 24 and 72 h. The mean diameter of the Dox-153 Sm-PHBV microspheres was 30.08 ± 2.79 μm. The specific radioactivity was 8.68 ± 0.17 GBq/g, or 177.69 Bq per microsphere. The 153 Sm retention efficiency was more than 99%, tested in phosphate-buffered saline (PBS) and human blood plasma over 26 days. The cumulative release of Dox from the microspheres after 41 days was 65.21 ± 1.96% and 29.96 ± 0.03% in PBS solution of pH 7.4 and pH 5.5, respectively. The Dox-153 Sm-PHBV microspheres achieved a greater in vitro cytotoxicity effect on HepG2 cells (85.73 ± 3.63%) than 153 Sm-PHBV (70.03 ± 5.61%) and Dox-PHBV (74.06 ± 0.78%) microspheres at 300 μg/mL at 72 h. In conclusion, a novel biodegradable microspheres formulation loaded with chemotherapeutic drug (Dox) and radioactive agent (153 Sm) was successfully developed in this study. The formulation fulfilled all the desired physicochemical properties of a chemo-radioembolic agent and achieved better in vitro cytotoxicity on HepG2 cells. Further investigations are needed to evaluate the biosafety, radiation dosimetry, and synergetic anticancer properties of the formulation.
  19. Raziff HHA, Tan D, Tan SH, Wong YH, Lim KS, Yeong CH, et al.
    Phys Med, 2021 Feb;82:40-45.
    PMID: 33581616 DOI: 10.1016/j.ejmp.2021.01.067
    PURPOSE: To investigate the efficacy of a newly-developed laser-heated core biopsy needle in the thermal ablation of biopsy tract to reduce hemorrhage after biopsy using in vivo rabbit's liver model.

    MATERIALS AND METHODS: Five male New Zealand White rabbits weighed between 1.5 and 4.0 kg were anesthetized and their livers were exposed. 18 liver biopsies were performed under control group (without tract ablation, n = 9) and study group (with tract ablation, n = 9) settings. The needle insertion depth (~3 cm) and rate of retraction (~3 mm/s) were fixed in all the experiments. For tract ablation, three different needle temperatures (100, 120 and 150 °C) were compared. The blood loss at each biopsy site was measured by weighing the gauze pads before and after blood absorption. The rabbits were euthanized immediately and the liver specimens were stained with hematoxylin-eosin (H&E) for further histopathological examination (HPE).

    RESULTS: The average blood loss in the study group was reduced significantly (p 

  20. Haas AV, En Yee L, Yuan YE, Wong YH, Hopkins PN, Jeunemaitre X, et al.
    Hypertension, 2021 Dec;78(6):1809-1817.
    PMID: 34757767 DOI: 10.1161/HYPERTENSIONAHA.121.18033
    [Figure: see text].
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links