Displaying publications 41 - 60 of 76 in total

Abstract:
Sort:
  1. Wong CY, Chang YM, Tsai YS, Ng WV, Cheong SK, Chang TY, et al.
    BMC Genomics, 2020 Jul 07;21(1):467.
    PMID: 32635896 DOI: 10.1186/s12864-020-06868-5
    BACKGROUND: Mesangial cells play an important role in the glomerulus to provide mechanical support and maintaine efficient ultrafiltration of renal plasma. Loss of mesangial cells due to pathologic conditions may lead to impaired renal function. Mesenchymal stem cells (MSC) can differentiate into many cell types, including mesangial cells. However transcriptomic profiling during MSC differentiation into mesangial cells had not been studied yet. The aim of this study is to examine the pattern of transcriptomic changes during MSC differentiation into mesangial cells, to understand the involvement of transcription factor (TF) along the differentiation process, and finally to elucidate the relationship among TF-TF and TF-key gene or biomarkers during the differentiation of MSC into mesangial cells.

    RESULTS: Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process.

    CONCLUSIONS: A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.

  2. Chong LC, Khan AM
    BMC Genomics, 2019 Dec 24;20(Suppl 9):921.
    PMID: 31874646 DOI: 10.1186/s12864-019-6311-z
    BACKGROUND: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.

    METHODS: All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon's entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database.

    RESULTS: A total of 2321 nonamers met the HCSS selection criteria of entropy  0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity.

    CONCLUSION: This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.

  3. Zhang Y, Liu W, Lin Y, Ng YK, Li S
    BMC Genomics, 2019 Apr 04;20(Suppl 2):186.
    PMID: 30967119 DOI: 10.1186/s12864-019-5470-2
    BACKGROUND: Recent advances in genome analysis have established that chromatin has preferred 3D conformations, which bring distant loci into contact. Identifying these contacts is important for us to understand possible interactions between these loci. This has motivated the creation of the Hi-C technology, which detects long-range chromosomal interactions. Distance geometry-based algorithms, such as ChromSDE and ShRec3D, have been able to utilize Hi-C data to infer 3D chromosomal structures. However, these algorithms, being matrix-based, are space- and time-consuming on very large datasets. A human genome of 100 kilobase resolution would involve ∼30,000 loci, requiring gigabytes just in storing the matrices.

    RESULTS: We propose a succinct representation of the distance matrices which tremendously reduces the space requirement. We give a complete solution, called SuperRec, for the inference of chromosomal structures from Hi-C data, through iterative solving the large-scale weighted multidimensional scaling problem.

    CONCLUSIONS: SuperRec runs faster than earlier systems without compromising on result accuracy. The SuperRec package can be obtained from http://www.cs.cityu.edu.hk/~shuaicli/SuperRec .

  4. Yu X, Megens HJ, Mengistu SB, Bastiaansen JWM, Mulder HA, Benzie JAH, et al.
    BMC Genomics, 2021 Jun 09;22(1):426.
    PMID: 34107887 DOI: 10.1186/s12864-021-07486-5
    BACKGROUND: Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population.

    RESULTS: In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage.

    CONCLUSIONS: There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components.

  5. Zhang Y, Wu Q, Fang S, Li S, Zheng H, Zhang Y, et al.
    BMC Genomics, 2020 Aug 14;21(1):559.
    PMID: 32795331 DOI: 10.1186/s12864-020-06965-5
    BACKGROUND: Mud crab, Scylla paramamosain, a euryhaline crustacean species, mainly inhabits the Indo-Western Pacific region. Wild mud crab spawn in high-salt condition and the salinity reduced with the growth of the hatching larvae. When the larvae grow up to megalopa, they migrate back to estuaries and coasts in virtue of the flood tide, settle and recruit adult habitats and metamorphose into the crablet stage. Adult crab can even survive in a wide salinity of 0-35 ppt. To investigate the mRNA profile after salinity stress, S. paramamosain megalopa were exposed to different salinity seawater (low, 14 ppt; control, 25 ppt; high, 39 ppt).

    RESULTS: Firstly, from the expression profiles of Na+/K+/2Cl- cotransporter, chloride channel protein 2, and ABC transporter, it turned out that the 24 h might be the most influenced duration in the short-term stress. We collected megalopa under different salinity for 24 h and then submitted to mRNA profiling. Totally, 57.87 Gb Clean Data were obtained. The comparative genomic analysis detected 342 differentially expressed genes (DEGs). The most significantly DEGs include gamma-butyrobetaine dioxygenase-like, facilitated trehalose transporter Tret1, sodium/potassium-transporting ATPase subunit alpha, rhodanese 1-like protein, etc. And the significantly enriched pathways were lysine degradation, choline metabolism in cancer, phospholipase D signaling pathway, Fc gamma R-mediated phagocytosis, and sphingolipid signaling pathway. The results indicate that in the short-term salinity stress, the megalopa might regulate some mechanism such as metabolism, immunity responses, osmoregulation to adapt to the alteration of the environment.

    CONCLUSIONS: This study represents the first genome-wide transcriptome analysis of S. paramamosain megalopa for studying its stress adaption mechanisms under different salinity. The results reveal numbers of genes modified by salinity stress and some important pathways, which will provide valuable resources for discovering the molecular basis of salinity stress adaptation of S. paramamosain larvae and further boost the understanding of the potential molecular mechanisms of salinity stress adaptation for crustacean species.

  6. Zhang W, Liang Y, Zheng K, Gu C, Liu Y, Wang Z, et al.
    BMC Genomics, 2021 Sep 20;22(1):675.
    PMID: 34544379 DOI: 10.1186/s12864-021-07978-4
    BACKGROUND: Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown.

    RESULTS: Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans.

    CONCLUSIONS: These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage-host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.

  7. James SA, Ong HS, Hari R, Khan AM
    BMC Genomics, 2021 Sep 28;22(Suppl 3):700.
    PMID: 34583643 DOI: 10.1186/s12864-021-07657-4
    BACKGROUND: Biology has entered the era of big data with the advent of high-throughput omics technologies. Biological databases provide public access to petabytes of data and information facilitating knowledge discovery. Over the years, sequence data of pathogens has seen a large increase in the number of records, given the relatively small genome size and their important role as infectious and symbiotic agents. Humans are host to numerous pathogenic diseases, such as that by viruses, many of which are responsible for high mortality and morbidity. The interaction between pathogens and humans over the evolutionary history has resulted in sharing of sequences, with important biological and evolutionary implications.

    RESULTS: This study describes a large-scale, systematic bioinformatics approach for identification and characterization of shared sequences between the host and pathogen. An application of the approach is demonstrated through identification and characterization of the Flaviviridae-human share-ome. A total of 2430 nonamers represented the Flaviviridae-human share-ome with 100% identity. Although the share-ome represented a small fraction of the repertoire of Flaviviridae (~ 0.12%) and human (~ 0.013%) non-redundant nonamers, the 2430 shared nonamers mapped to 16,946 Flaviviridae and 7506 human non-redundant protein sequences. The shared nonamer sequences mapped to 125 species of Flaviviridae, including several with unclassified genus. The majority (~ 68%) of the shared sequences mapped to Hepacivirus C species; West Nile, dengue and Zika viruses of the Flavivirus genus accounted for ~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviridae protein sequences (16,946) mapped by the share-ome. Further characterization of the share-ome provided important structural-functional insights to Flaviviridae-human interactions.

    CONCLUSION: Mapping of the host-pathogen share-ome has important implications for the design of vaccines and drugs, diagnostics, disease surveillance and the discovery of unknown, potential host-pathogen interactions. The generic workflow presented herein is potentially applicable to a variety of pathogens, such as of viral, bacterial or parasitic origin.

  8. Zhang L, Feng XK, Ng YK, Li SC
    BMC Genomics, 2016 Aug 18;17 Suppl 4:430.
    PMID: 27556418 DOI: 10.1186/s12864-016-2791-2
    BACKGROUND: Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues.

    RESULTS: In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors.

    CONCLUSION: By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

  9. Lee BK, Tiong KH, Chang JK, Liew CS, Abdul Rahman ZA, Tan AC, et al.
    BMC Genomics, 2017 01 25;18(Suppl 1):934.
    PMID: 28198666 DOI: 10.1186/s12864-016-3260-7
    BACKGROUND: The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously.

    RESULTS: We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC50) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control.

    CONCLUSIONS: DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

  10. Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, et al.
    BMC Genomics, 2017 06 21;18(1):470.
    PMID: 28637447 DOI: 10.1186/s12864-017-3855-7
    BACKGROUND: The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations.

    RESULTS: A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms.

    CONCLUSIONS: Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.

  11. Looi QH, Amin H, Aini I, Zuki M, Omar AR
    BMC Genomics, 2017 07 03;18(1):504.
    PMID: 28673247 DOI: 10.1186/s12864-017-3861-9
    BACKGROUND: Edible bird's nest (EBN), produced from solidified saliva secretions of specific swiftlet species during the breeding season, is one of the most valuable animal by-products in the world. The composition and medicinal benefits of EBN have been extensively studied, however, genomic and transcriptomic studies of the salivary glands of these birds have not been conducted.

    RESULTS: The study described the transcriptomes of salivary glands from three swiftlet species (28 samples) generated by RNASeq. A total of 14,835 annotated genes and 428 unmapped genes were cataloged. The current study investigated the genes and pathways that are associated with the development of salivary gland and EBN composition. Differential expression and pathway enrichment analysis indicated that the expression of CREB3L2 and several signaling pathways involved in salivary gland development, namely, the EGFR, BMP, and MAPK signaling pathways, were up-regulated in swiftlets producing white EBN (Aerodramus fuciphagus) and black EBN (Aerodramus maximus) compared with non-EBN-producing swiftlets (Apus affinis). Furthermore, MGAT, an essential gene for the biosynthesis of N-acetylneuraminic acid (sialic acid), was highly expressed in both white- and black-nest swiftlets compared to non-EBN-producing swiftlets. Interspecies comparison between Aerodramus fuciphagus and Aerodramus maximus indicated that the genes involved in N-acetylneuraminic and fatty acid synthesis were up-regulated in Aerodramus fuciphagus, while alanine and aspartate synthesis pathways were up-regulated in Aerodramus maximus. Furthermore, gender-based analysis revealed that N-glycan trimming pathway was significantly up-regulated in male Aerodramus fuciphagus from its natural habitat (cave) compared to their female counterpart.

    CONCLUSIONS: Transcriptomic analysis of salivary glands of different swiftlet species reveal differential expressions of candidate genes that are involved in salivary gland development and in the biosynthesis of various bioactive compounds found in EBN.

  12. Ho WK, Chai HH, Kendabie P, Ahmad NS, Jani J, Massawe F, et al.
    BMC Genomics, 2017 02 20;18(1):192.
    PMID: 28219341 DOI: 10.1186/s12864-016-3393-8
    BACKGROUND: Bambara groundnut [Vigna subterranea (L) Verdc.] is an indigenous legume crop grown mainly in subsistence and small-scale agriculture in sub-Saharan Africa for its nutritious seeds and its tolerance to drought and poor soils. Given that the lack of ex ante sequence is often a bottleneck in marker-assisted crop breeding for minor and underutilised crops, we demonstrate the use of limited genetic information and resources developed within species, but linked to the well characterised common bean (Phaseolus vulgaris) genome sequence and the partially annotated closely related species; adzuki bean (Vigna angularis) and mung bean (Vigna radiata). From these comparisons we identify conserved synteny blocks corresponding to the Linkage Groups (LGs) in bambara groundnut genetic maps and evaluate the potential to identify genes in conserved syntenic locations in a sequenced genome that underlie a QTL position in the underutilised crop genome.

    RESULTS: Two individual intraspecific linkage maps consisting of DArTseq markers were constructed in two bambara groundnut (2n = 2x = 22) segregating populations: 1) The genetic map of Population IA was derived from F2lines (n = 263; IITA686 x Ankpa4) and covered 1,395.2 cM across 11 linkage groups; 2) The genetic map of Population TD was derived from F3lines (n = 71; Tiga Nicuru x DipC) and covered 1,376.7 cM across 11 linkage groups. A total of 96 DArTseq markers from an initial pool of 142 pre-selected common markers were used. These were not only polymorphic in both populations but also each marker could be located using the unique sequence tag (at selected stringency) onto the common bean, adzuki bean and mung bean genomes, thus allowing the sequenced genomes to be used as an initial 'pseudo' physical map for bambara groundnut. A good correspondence was observed at the macro synteny level, particularly to the common bean genome. A test using the QTL location of an agronomic trait in one of the bambara groundnut maps allowed the corresponding flanking positions to be identified in common bean, mung bean and adzuki bean, demonstrating the possibility of identifying potential candidate genes underlying traits of interest through the conserved syntenic physical location of QTL in the well annotated genomes of closely related species.

    CONCLUSIONS: The approach of adding pre-selected common markers in both populations before genetic map construction has provided a translational framework for potential identification of candidate genes underlying a QTL of trait of interest in bambara groundnut by linking the positions of known genetic effects within the underutilised species to the physical maps of other well-annotated legume species, without the need for an existing whole genome sequence of the study species. Identifying the conserved synteny between underutilised species without complete genome sequences and the genomes of major crops and model species with genetic and trait data is an important step in the translation of resources and information from major crop and model species into the minor crop species. Such minor crops will be required to play an important role in future agriculture under the effects of climate change.

  13. Huang CB, Xiao L, Xing SC, Chen JY, Yang YW, Zhou Y, et al.
    BMC Genomics, 2019 Oct 23;20(1):770.
    PMID: 31646963 DOI: 10.1186/s12864-019-6115-1
    BACKGROUND: Host genotype plays a crucial role in microbial composition of laying hens, which may lead to dissimilar odor gas production. The objective of this study was to investigate the relationship among layer breed, microbial structure and odor production.

    RESULTS: Thirty Hy-Line Gray and thirty Lohmann Pink laying hens were used in this study to determine the impact of cecal microbial structure on odor production of laying hens. The hens were managed under the same husbandry and dietary regimes. Results of in vivo experiments showed a lower hydrogen sulfide (H2S) production from Hy-Line hens and a lower concentration of soluble sulfide (S2-) but a higher concentration of butyrate in the cecal content of the Hy-Line hens compared to Lohmann Pink hens (P  0.05). Significant microbial structural differences existed between the two breed groups. The relative abundance of some butyrate producers (including Butyricicoccus, Butyricimonas and Roseburia) and sulfate-reducing bacteria (including Mailhella and Lawsonia) were found to be significantly correlated with odor production and were shown to be different in the 16S rRNA and PCR data between two breed groups. Furthermore, some bacterial metabolism pathways associated with energy extraction and carbohydrate utilization (oxidative phosphorylation, pyruvate metabolism, energy metabolism, two component system and secretion system) were overrepresented in the Hy-Line hens, while several amino acid metabolism-associated pathways (amino acid related enzymes, arginine and proline metabolism, and alanine-aspartate and glutamate metabolism) were more prevalent in the Lohmann hens.

    CONCLUSION: The results of this study suggest that genotype of laying hens influence cecal microbiota, which in turn modulates their odor production. Our study provides references for breeding and enteric manipulation for defined microbiota to reduce odor gas emission.

  14. Deng L, Lou H, Zhang X, Thiruvahindrapuram B, Lu D, Marshall CR, et al.
    BMC Genomics, 2019 Nov 12;20(1):842.
    PMID: 31718558 DOI: 10.1186/s12864-019-6226-8
    BACKGROUND: Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated.

    RESULTS: We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10- 8 - 1.33 × 10- 8, 1.0 × 10- 9 - 2.9 × 10- 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples.

    CONCLUSION: Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.

  15. Shen Y, Wang L, Fu J, Xu X, Yue GH, Li J
    BMC Genomics, 2019 Jun 07;20(1):467.
    PMID: 31174480 DOI: 10.1186/s12864-019-5872-1
    BACKGROUND: Genetic diversity within a species reflects population evolution, ecology, and ability to adapt. Genome-wide population surveys of both natural and introduced populations provide insights into genetic diversity, the evolutionary processes and the genetic basis underlying local adaptation. Grass carp is the most important freshwater foodfish species for food and water weed control. However, there is as yet no overall picture on genetic variations and population structure of this species, which is important for its aquaculture.

    RESULTS: We used 43,310 SNPs to infer the population structure, evidence of local adaptation and sources of introduction. The overall genetic differentiation of this species was low. The native populations were differentiated into three genetic clusters, corresponding to the Yangtze, Pearl and Heilongjiang River Systems, respectively. The populations in Malaysia, India and Nepal were introduced from both the Yangtze and Pearl River Systems. Loci and genes involved in putative local selection for native locations were identified. Evidence of both positive and balancing selection was found in the introduced locations. Genes associated with loci under putative selection were involved in many biological functions. Outlier loci were grouped into clusters as genomic islands within some specific genomic regions, which likely agrees with the divergence hitchhiking scenario of divergence-with-gene-flow.

    CONCLUSIONS: This study, for the first time, sheds novel insights on the population differentiation of the grass carp, genetics of its strong ability in adaption to diverse environments and sources of some introduced grass carp populations. Our data also suggests that the natural populations of the grass carp have been affected by the aquaculture besides neutral and adaptive forces.

  16. Chin KCJ, Taylor TD, Hebrard M, Anbalagan K, Dashti MG, Phua KK
    BMC Genomics, 2017 Oct 31;18(1):836.
    PMID: 29089020 DOI: 10.1186/s12864-017-4212-6
    BACKGROUND: Typhoid fever is an acute systemic infection of humans caused by Salmonella enterica subspecies enterica serovar Typhi (S. Typhi). In chronic carriers, the bacteria survive the harsh environment of the gallbladder by producing biofilm. The phenotype of S. Typhi biofilm cells is significantly different from the free-swimming planktonic cells, and studies have shown that they are associated with antibiotic resistance, immune system evasion, and bacterial persistence. However, the mechanism of this transition and the events leading to biofilm formation are unknown. High throughput sequencing was performed to identify the genes involved in biofilm formation and to postulate the mechanism of action.

    RESULTS: Planktonic S. Typhi cells were cultured using standard nutrient broth whereas biofilm cells were cultured in a stressful environment using high shearing-force and bile to mimic the gallbladder. Sequencing libraries were prepared from S. Typhi planktonic cells and mature biofilm cells using the Illumina HiSeq 2500 platform, and the transcriptome data obtained were processed using Cufflinks bioinformatics suite of programs to investigate differential gene expression between the two phenotypes. A total of 35 up-regulated and 29 down-regulated genes were identified. The identities of the differentially expressed genes were confirmed using NCBI BLAST and their functions were analyzed. The results showed that the genes associated with metabolic processes and biofilm regulations were down-regulated while those associated with the membrane matrix and antibiotic resistance were highly up-regulated.

    CONCLUSIONS: It is proposed that the biofilm phenotype of S. Typhi allows the bacteria to increase production of the membrane matrix in order to serve as a physical shield and to adhere to surfaces, and enter an energy conservation state in response to the stressful environment. Conversely, the planktonic phenotype allows the bacteria to produce flagella and increase metabolic activity to enable the bacteria to migrate and form new colonies of infection. This data provide a basis for further studies to uncover the mechanism of biofilm formation in S. Typhi and to discover novel genes or pathways associated with the development of the typhoid carrier state.

  17. Lim WC, Khan AM
    BMC Genomics, 2018 01 19;19(Suppl 1):42.
    PMID: 29363421 DOI: 10.1186/s12864-017-4328-8
    BACKGROUND: Ebolavirus (EBOV) is responsible for one of the most fatal diseases encountered by mankind. Cellular T-cell responses have been implicated to be important in providing protection against the virus. Antigenic variation can result in viral escape from immune recognition. Mapping targets of immune responses among the sequence of viral proteins is, thus, an important first step towards understanding the immune responses to viral variants and can aid in the identification of vaccine targets. Herein, we performed a large-scale, proteome-wide mapping and diversity analyses of putative HLA supertype-restricted T-cell epitopes of Zaire ebolavirus (ZEBOV), the most pathogenic species among the EBOV family.

    METHODS: All publicly available ZEBOV sequences (14,098) for each of the nine viral proteins were retrieved, removed of irrelevant and duplicate sequences, and aligned. The overall proteome diversity of the non-redundant sequences was studied by use of Shannon's entropy. The sequences were predicted, by use of the NetCTLpan server, for HLA-A2, -A3, and -B7 supertype-restricted epitopes, which are relevant to African and other ethnicities and provide for large (~86%) population coverage. The predicted epitopes were mapped to the alignment of each protein for analyses of antigenic sequence diversity and relevance to structure and function. The putative epitopes were validated by comparison with experimentally confirmed epitopes.

    RESULTS & DISCUSSION: ZEBOV proteome was generally conserved, with an average entropy of 0.16. The 185 HLA supertype-restricted T-cell epitopes predicted (82 (A2), 37 (A3) and 66 (B7)) mapped to 125 alignment positions and covered ~24% of the proteome length. Many of the epitopes showed a propensity to co-localize at select positions of the alignment. Thirty (30) of the mapped positions were completely conserved and may be attractive for vaccine design. The remaining (95) positions had one or more epitopes, with or without non-epitope variants. A significant number (24) of the putative epitopes matched reported experimentally validated HLA ligands/T-cell epitopes of A2, A3 and/or B7 supertype representative allele restrictions. The epitopes generally corresponded to functional motifs/domains and there was no correlation to localization on the protein 3D structure. These data and the epitope map provide important insights into the interaction between EBOV and the host immune system.

  18. Makita Y, Kawashima M, Lau NS, Othman AS, Matsui M
    BMC Genomics, 2018 01 19;19(Suppl 1):922.
    PMID: 29363422 DOI: 10.1186/s12864-017-4333-y
    BACKGROUND: Natural rubber is an economically important material. Currently the Pará rubber tree, Hevea brasiliensis is the main commercial source. Little is known about rubber biosynthesis at the molecular level. Next-generation sequencing (NGS) technologies brought draft genomes of three rubber cultivars and a variety of RNA sequencing (RNA-seq) data. However, no current genome or transcriptome databases (DB) are organized by gene.

    RESULTS: A gene-oriented database is a valuable support for rubber research. Based on our original draft genome sequence of H. brasiliensis RRIM600, we constructed a rubber tree genome and transcriptome DB. Our DB provides genome information including gene functional annotations and multi-transcriptome data of RNA-seq, full-length cDNAs including PacBio Isoform sequencing (Iso-Seq), ESTs and genome wide transcription start sites (TSSs) derived from CAGE technology. Using our original and publically available RNA-seq data, we calculated co-expressed genes for identifying functionally related gene sets and/or genes regulated by the same transcription factor (TF). Users can access multi-transcriptome data through both a gene-oriented web page and a genome browser. For the gene searching system, we provide keyword search, sequence homology search and gene expression search; users can also select their expression threshold easily.

    CONCLUSION: The rubber genome and transcriptome DB provides rubber tree genome sequence and multi-transcriptomics data. This DB is useful for comprehensive understanding of the rubber transcriptome. This will assist both industrial and academic researchers for rubber and economically important close relatives such as R. communis, M. esculenta and J. curcas. The Rubber Transcriptome DB release 2017.03 is accessible at http://matsui-lab.riken.jp/rubber/ .

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links