Displaying publications 41 - 60 of 223 in total

Abstract:
Sort:
  1. Low JY, Khe CS, Usman F, Hassan YM, Lai CW, You KY, et al.
    Environ Res, 2024 Feb 15;243:117840.
    PMID: 38081342 DOI: 10.1016/j.envres.2023.117840
    Since the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions. These emulsions can take the form of water-in-oil (W/O) emulsions, where water droplets disperse continuously in crude oil, or oil-in-water (O/W) emulsions, where crude oil droplets are suspended in water. To prevent the spread of water and inorganic salts, these emulsions need to be treated and eliminated. In existing literature, different demulsification procedures have shown varying outcomes in effectively treating oil/water emulsions. The observed discrepancies have been attributed to various factors such as temperature, salinity, pH, droplet size, and emulsifier concentrations. It is crucial to identify the most effective demulsification approach for oil/water separation while adhering to environmental regulations and minimizing costs for the petroleum sector. Therefore, this study aims to explore and review recent advancements in two popular demulsification techniques: chemical demulsification and magnetic nanoparticles-based (MNP) demulsification. The advantages and disadvantages of each technique are assessed, with the magnetic approach emerging as the most promising due to its desirable efficiency and compliance with environmental and economic concerns. The findings of this report are expected to have a significant impact on the overall process of separating oil and water, benefiting the oil and gas industry, as well as other relevant sectors in achieving the circular economy.
  2. S E, G A, A F I, P S G, Y LT
    Environ Res, 2021 06;197:111177.
    PMID: 33864792 DOI: 10.1016/j.envres.2021.111177
    Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
  3. Afroz R, Hassan MN, Ibrahim NA
    Environ Res, 2003 Jun;92(2):71-7.
    PMID: 12854685
    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
  4. Salahuddin M, Habib MA, Al-Mulali U, Ozturk I, Marshall M, Ali MI
    Environ Res, 2020 12;191:110094.
    PMID: 32846170 DOI: 10.1016/j.envres.2020.110094
    This study employs dynamic panel data for 34 Sub Saharan Africa (SSA) countries for the period 1984-2016 to estimate the effects of renewable energy on environmental quality measured by three indicators, namely, per capita CO2 emissions, energy intensity (EI) and Aggregate National Savings (ANS). The study leveraged a battery of second-generation econometric tests and estimation and causality methods to obtain the coefficients between the regressed and the regressors. Results reveal that use of renewable energy reduces CO2 emissions and energy intensity while it enhances ANS. Economic growth still seems to be expensive for the region as it stimulates CO2 emissions. However, it has a positive effect on ANS. As expected, fossil fuels exacerbate CO2 emissions and energy intensity. FDI is found to be detrimental for the environment of SSA region with its positive significant coefficient on CO2 emissions. Financial development is reported to reduce CO2 emissions. Some causal links between variables are also noted.
  5. Moradi H, Sabbaghi S, Mirbagheri NS, Chen P, Rasouli K, Kamyab H, et al.
    Environ Res, 2023 Apr 15;223:115484.
    PMID: 36775091 DOI: 10.1016/j.envres.2023.115484
    The presence of chloride ion as an environmental pollutant is having a devastating and irreversible effect on aquatic and terrestrial ecosystems. To ensure safe and clean drinking water, it is vital to remove this substance using non-toxic and eco-friendly methods. This study presents a novel and highly efficient Ag NPs-modified bentonite adsorbent for removing chloride ion, a common environmental pollutant, from drinking water using a facile approach. The surface chemical properties and morphology of the pristine Na-bentonite and Ag NPs-Modified bentonite were characterized by field emission scanning electron microscopy (FESEM) and X-ray spectroscopy (EDX), X-Ray diffraction (XRD), Fourier transform infrared (FTIR), and zeta potential (ζ). To achieve maximum chloride ion removal, the effects of experimental parameters, including adsorbent dosage (1-9 g/L), chloride ion concentration (100-900 mg/L), and reaction time (5-25 h), were examined using the Response Surface Methodology (RSM). The chloride ion removal of 90% was obtained at optimum conditions (adsorbent dosage: 7 g/L, chloride ion concentration: 500 mg/L, and reaction time: 20 h). The adsorption isotherm and kinetics results indicated that the Langmuir isotherm model and pseudo-second-order kinetics were found suitable to chloride ion removal. Additionally, the regeneration and reusability of the Ag NPs-modified bentonite were further studied. In the regeneration and reusability study, the Ag NPs-modified bentonite has shown consistently ≥90% and ≥87% chloride ion removal even up to 2 repeated cycles, separately. Thus, the findings in this study provided convincing evidence for using Ag-NPs modified bentonite as a high-efficiency and promising adsorbent to remove chloride ion from drinking water.
  6. Yu H, Zahidi I, Fai CM
    Environ Res, 2023 Sep 01;232:116336.
    PMID: 37321336 DOI: 10.1016/j.envres.2023.116336
    Tailings ponds, large man-made structures conceived during the mining process for waste storage, often become deserted post-mining, leaving behind a stark, contaminated landscape. This paper posits that these forsaken tailings ponds can be rejuvenated into fertile agricultural land through adept reclamation efforts. Serving as a discussion paper, it engages in a stimulating exploration of the environmental and health risks linked to tailings ponds. It sheds light on the potential and impediments in the transformation of these ponds into agricultural land. The discussion concludes that despite the substantial hurdles in repurposing tailings ponds for agriculture, there are encouraging prospects with the application of multifaceted efforts.
  7. Vinayagam V, Kishor Kumar NK, Palani KN, Ganesh S, Kushwaha OS, Pugalenthi A
    Environ Res, 2023 Nov 04.
    PMID: 37931737 DOI: 10.1016/j.envres.2023.117549
    Since ecosystems are becoming inherently polluted, long-term contaminant removal methods are required. Electrodeionization, in particular, has recently been demonstrated as an effective approach for eliminating ionic compounds from contaminated water sources. Being a more environmentally friendly technology is most likely the main reason for its eminence. It uses electricity to replace toxic contaminants that are conventionally used to regenerate and hence reducing the toxins associated with resin regeneration. In wastewater treatment, continuous electrodeionization system overcomes several limitations of ion exchange resins, notably ion dumping. This prospective assessment delves into the mechanism, principle, and theory of electrodeionization system. It also focused on the design and applications, particularly in the removal of toxic compounds, as well as current advances in the electrodeionization system. Recent breakthroughs in electrodeionization were comprehensively discussed. Further developments in electrodeionization systems are also projected, with improved efficiency at the time of functioning at lower costs because of reduced energy use, proving them desirable for commercial usage with a broad array of applications across the globe.
  8. Hitam CNC, Jalil AA
    Environ Res, 2022 03;204(Pt A):111964.
    PMID: 34461122 DOI: 10.1016/j.envres.2021.111964
    As one of the potential bionanomaterials, nanocellulose has appeared as a favorable candidate for photoremediation of the environment because of its abundance in nature, inexpensive, eco-friendly, decomposable, high surface area, and outstanding mechanical properties. The current review carefully summarized the diverse type of nanocellulose, their preparation approaches, and several previous works on the use of nanocellulose for photoremediation. These include the role of nanocellulose for the increased surface active site of the hybrid photocatalysts by providing a large surface area for enhanced adsorption of photons and pollutant molecules, as a dispersing agent to increase distribution of metal/non-metal dopants photocatalysts, as well as for controlled size and morphology of the dopants photocatalysts. Furthermore, the recommendations for upcoming research provided in this review are anticipated to ignite an idea for the development of other nanocellulose-based photocatalysts. Other than delivering beneficial information on the present growth of the nanocellulose biomaterials photocatalysts, this review is expected will attract more interest to the utilization of nanocellulose photocatalyst and distribute additional knowledge in this exciting area of environmental photoremediation. This could be attained by considering that a review on nanocellulose biomaterials for environmental health photoremediation has not been described elsewhere, notwithstanding intensive research works have been dedicated to this topic.
  9. Arifin MN, Jusoh R, Abdullah H, Ainirazali N, Setiabudi HD
    Environ Res, 2023 Jul 15;229:115936.
    PMID: 37080279 DOI: 10.1016/j.envres.2023.115936
    The presence of phenolic compounds in the aquatic environment has posed severe risks due to their toxicity. Among the phenolic families, nitro- and alkyl-phenolic compounds have been categorized as precedence contaminants by the United States Environmental Protection Agency (US EPA). Therefore, efficient treatment methods for wastewater containing nitro- and alkyl-phenolic compounds are urgently needed. Due to the advantages of creating reactive species and generating efficient degradation of hazardous contaminants in wastewater, advanced oxidation processes (AOPs) are well-known in the field of treating toxic contaminants. In this review paper, the recent directions in AOPs, catalysts, mechanisms, and kinetics of AOPs are comprehensively reviewed. Furthermore, the conclusion summarizes the research findings, future prospects, and opportunities for this study. The main direction of AOPs lies on the optimization of catalyst and operating parameters, with industrial applications remain as the main challenge. This review article is expected to present a summary and in-depth understanding of AOPs development; and thus, inspiring scientists to accelerate the evolution of AOPs in industrial applications.
  10. Hariharan P, Sundarrajan S, Arthanareeswaran G, Seshan S, Das DB, Ismail AF
    Environ Res, 2021 Sep 15.
    PMID: 34536369 DOI: 10.1016/j.envres.2021.112045
    A comprehensive overview of various modifications carried out on polymeric membranes for biomedical applications has been presented in this review paper. In particular, different methods of carrying out these modifications have been discussed. The uniqueness of the review lies in the sense that it discusses the surface modification techniques traversing the timeline from traditionally well-established technologies to emerging new techniques, thus giving an intuitive understanding of the evolution of surface modification techniques over time. A critical comparison of the advantages and pitfalls of commonly used traditional and emerging surface modification techniques have been discussed. The paper also highlights the tuning of specific properties of polymeric membranes that are critical for their increased applications in the biomedical industry specifically in drug delivery, along with current challenges faced and where the future potential of research in the field of surface modification of membranes.
  11. Chowdhury MA, Shuvho MBA, Shahid MA, Haque AKMM, Kashem MA, Lam SS, et al.
    Environ Res, 2021 Jan;192:110294.
    PMID: 33022215 DOI: 10.1016/j.envres.2020.110294
    The rapid spread of COVID-19 has led to nationwide lockdowns in many countries. The COVID-19 pandemic has played serious havoc on economic activities throughout the world. Researchers are immensely curious about how to give the best protection to people before a vaccine becomes available. The coronavirus spreads principally through saliva droplets. Thus, it would be a great opportunity if the virus spread could be controlled at an early stage. The face mask can limit virus spread from both inside and outside the mask. This is the first study that has endeavoured to explore the design and fabrication of an antiviral face mask using licorice root extract, which has antimicrobial properties due to glycyrrhetinic acid (GA) and glycyrrhizin (GL). An electrospinning process was utilized to fabricate nanofibrous membrane and virus deactivation mechanisms discussed. The nanofiber mask material was characterized by SEM and airflow rate testing. SEM results indicated that the nanofibers from electrospinning are about 15-30 μm in diameter with random porosity and orientation which have the potential to capture and kill the virus. Theoretical estimation signifies that an 85 L/min rate of airflow through the face mask is possible which ensures good breathability over an extensive range of pressure drops and pore sizes. Finally, it can be concluded that licorice root membrane may be used to produce a biobased face mask to control COVID-19 spread.
  12. Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DN, et al.
    Environ Res, 2023 Feb 01;218:114948.
    PMID: 36455634 DOI: 10.1016/j.envres.2022.114948
    Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
  13. Munir M, Ahmad M, Rehan M, Saeed M, Lam SS, Nizami AS, et al.
    Environ Res, 2021 02;193:110398.
    PMID: 33127396 DOI: 10.1016/j.envres.2020.110398
    This study focused on producing high quality and yield of biodiesel from novel non-edible seed oil of abundantly available wild Raphnus raphanistrum L. using an efficient, recyclable and eco-friendly copper modified montmorillonite (MMT) clay catalyst. The maximum biodiesel yield of 83% was obtained by base catalyzed transesterification process under optimum operating conditions of methanol to oil ratio of 15:1, reaction temperature of 150 °C, reaction time of 5 h and catalyst loading of 3.5%. The synthesized catalyst and biodiesel were characterized for their structural features and chemical compositions using various state-of-the-art techniques, including x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance (1H, 13C) and gas chromatography-mass spectroscopy. The fuel properties of the biodiesel were estimated including kinematic viscosity (4.36 cSt), density (0.8312 kg/L), flash point (72 °C), acid value (0.172 mgKOH/g) and sulphur content (0.0002 wt.%). These properties were compared and found in good agreement with the International Biodiesel Standards of American (ASTM-951, 6751), European Committee (EN-14214) and China GB/T 20828 (2007). The catalyst was re-used in five consecutive transesterification reactions without losing much catalytic efficiency. Overall, non-edible Raphnus raphanistrum L.. seed oil and Cu doped MMT clay catalyst appeared to be highly active, stable, and cheap contenders for future biofuel industry. However, detailed life cycle assessment (LCA) studies of Raphnus raphanistrum L. seed oil biodiesel are highly recommended to assess the technical, ecological, social and economic challenges.
  14. Siavash NK, Ghobadian B, Najafi G, Rohani A, Tavakoli T, Mahmoodi E, et al.
    Environ Res, 2021 05;196:110434.
    PMID: 33166537 DOI: 10.1016/j.envres.2020.110434
    Wind power is one of the most popular sources of renewable energies with an ideal extractable value that is limited to 0.593 known as the Betz-Joukowsky limit. As the generated power of wind machines is proportional to cubic wind speed, therefore it is logical that a small increment in wind speed will result in significant growth in generated power. Shrouding a wind turbine is an ordinary way to exceed the Betz limit, which accelerates the wind flow through the rotor plane. Several layouts of shrouds are developed by researchers. Recently an innovative controllable duct is developed by the authors of this work that can vary the shrouding angle, so its performance is different in each opening angle. As a wind tunnel investigation is heavily time-consuming and has a high cost, therefore just four different opening angles have been assessed. In this work, the performance of the turbine was predicted using multiple linear regression and an artificial neural network in a wide range of duct opening angles. For the turbine power generation and its rotor angular speed in different wind velocities and duct opening angles, regression and an ANN are suggested. The developed neural network model is found to possess better performance than the regression model for both turbine power curve and rotor speed estimation. This work revealed that in higher ranges of wind velocity, the turbine performance intensively will be a function of shrouding angle. This model can be used as a lookup table in controlling the turbines equipped with the proposed mechanism.
  15. Chai N, Mao C
    Environ Res, 2022 Apr 01;205:112482.
    PMID: 34871597 DOI: 10.1016/j.envres.2021.112482
    Accelerated growth in urban populations has become a powerful force for human development, particularly in developed countries. Metropolitan cities are centers for technical and economic advancement, but air pollution, overflowing of water, and other climate effects still pose significant problems related to nature, climate, and the environment. Cities are vulnerable to increasingly dense, diverse, and interdependent urban systems. A single extreme occurrence can contribute to a systemic break-up of a city's infrastructure, often like dominoes. In this paper, a dynamic integration-assisted population management solution (DI-PMS) has been proposed. DI-PMS recognizes that the latest facilities' optimal usage of knowledge and technologies is needed to increase urbanization. They are one of the critical priorities of the weather community. Such integrated urban weather, environmental, and climate services will help cities address dangers including storms, floods, heatwaves, and air pollution, especially in climate change. The goal is to create urban facilities that satisfy communities' unique needs by high-resolution forecasting and pollution reduction climate services, which allow the construction of durable, robust, and thriving cities that support the Sustainable Development Goals. Several recent international surveys to explore these topics have been undertaken. DI-PMS gives a brief description of urban hydrometeorological, climate and air pollution activities, outlines the new urban integrated weather and environmental services concept, and emphasizes the need for science to be implemented.
  16. Vijayanand M, Ramakrishnan A, Subramanian R, Issac PK, Nasr M, Khoo KS, et al.
    Environ Res, 2023 Mar 20;227:115716.
    PMID: 36940816 DOI: 10.1016/j.envres.2023.115716
    Polycyclic aromatic hydrocarbons (PAHs) are considered a major class of organic contaminants or pollutants, which are poisonous, mutagenic, genotoxic, and/or carcinogenic. Due to their ubiquitous occurrence and recalcitrance, PAHs-related pollution possesses significant public health and environmental concerns. Increasing the understanding of PAHs' negative impacts on ecosystems and human health has encouraged more researchers to focus on eliminating these pollutants from the environment. Nutrients available in the aqueous phase, the amount and type of microbes in the culture, and the PAHs' nature and molecular characteristics are the common factors influencing the microbial breakdown of PAHs. In recent decades, microbial community analyses, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively researched. Although xenobiotic-degrading microbes have a lot of potential for restoring the damaged ecosystems in a cost-effective and efficient manner, their role and strength to eliminate the refractory PAH compounds using innovative technologies are still to be explored. Recent analytical biochemistry and genetically engineered technologies have aided in improving the effectiveness of PAHs' breakdown by microorganisms, creating and developing advanced bioremediation techniques. Optimizing the key characteristics like the adsorption, bioavailability, and mass transfer of PAH boosts the microorganisms' bioremediation performance, especially in the natural aquatic water bodies. This review's primary goal is to provide an understanding of recent information about how PAHs are degraded and/or transformed in the aquatic environment by halophilic archaea, bacteria, algae, and fungi. Furthermore, the removal mechanisms of PAH in the marine/aquatic environment are discussed in terms of the recent systemic advancements in microbial degradation methodologies. The review outputs would assist in facilitating the development of new insights into PAH bioremediation.
  17. Zhang H, Zhang F, Song J, Tan ML, Kung HT, Johnson VC
    Environ Res, 2021 11;202:111702.
    PMID: 34284019 DOI: 10.1016/j.envres.2021.111702
    This study aims to analyze the pollution characteristics and sources of heavy metal elements for the first time in the Zhundong mining area in Xinjiang using the linear regression model. Additionaly, the health risks with their probability and infleuencing factors on different groups of people's were also evaluated using Monte Carlo (MC) simulation approach. The results shows that 89.28% of Hg was from coal combustion, 40.28% of Pb was from transportation, and 19.54% of As was from atmospheric dust. The main source of Cu and Cr was coal dust, Hg has the greatest impact on potential ecological risks. which accounted for 60.2% and 81.46% of the Cu and Cr content in soil, respectively. The all samples taken from Pb have been Extremely polluted (100%). 93.3% samples taken from As have been Extremely polluted. The overall potential ecological risk was moderate. Adults experienced higher non-carcinogenic risks of heavy metals from their diets than children. Interestingly, body weight was the main factor affecting the adult's health risks. This research provides more comprehensive information for better soil management, soil remediation, and soil pollution control in the Xinjiang mining areas.
  18. Wu Y, Liu Y, Kamyab H, Rajasimman M, Rajamohan N, Ngo GH, et al.
    Environ Res, 2023 Sep 01;232:116363.
    PMID: 37295587 DOI: 10.1016/j.envres.2023.116363
    Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.
  19. Li M, Han N, Zhang X, Wang S, Jiang M, Bokhari A, et al.
    Environ Res, 2022 Apr 01;205:112544.
    PMID: 34902376 DOI: 10.1016/j.envres.2021.112544
    Using solar energy to catalyse photo-driven processes to address the energy crisis and environmental pollution plays a role in the path to a sustainable society. Many oxide-based materials, especially perovskite oxides, have been widely investigated as catalysts for photocatalysis in energy and environment because of the low-cost and earth-abundant and good performance. At this stage, there is a need to present a scientific-based evaluation of the technologies developed so far and identify the most sustainable technologies and the existing limitations and opportunities for their commercialisation. This work comprehensively investigated the outcomes using various scientometric indices on perovskite oxide-based photo(electro)catalysts for water splitting, nitrogen fixation, carbon dioxide conversion, organic pollutant degradation, current trends and advances in the field. According to the results achieved, efforts in both energy and environment based on perovskite oxides have been initiated in the 1990s and accelerated since the 2010s. China and the United States were identified as the most contributing countries. Based on the results achieved in this study, the main milestones and current trends in the development of this field have been identified. The aim of this research is to provide useful guidelines for the further investigation of perovskite oxide-based catalysts for photoelectrocatalysis and photocatalysis both in energy and environment on the applications such as water splitting, nitrogen fixation, carbon dioxide conversion, and wastewater treatment.
  20. Ahmad T, Iqbal J, Bustam MA, Babar M, Tahir MB, Sagir M, et al.
    Environ Res, 2023 Apr 01;222:115314.
    PMID: 36738770 DOI: 10.1016/j.envres.2023.115314
    The critical challenge being faced by our current modern society on a global scale is to reduce the surging effects of climate change and global warming, being caused by anthropogenic emissions of CO2 in the environment. Present study reports the surface driven adsorption potential of deep eutectic solvents (DESs) surface functionalized cerium oxide nanoparticles (CeNPs) for low pressure CO2 separation. The phosphonium based DESs were prepared using tetra butyl phosphoniumbromide as hydrogen bond acceptor (HBA) and 6 acids as hydrogen bond donors (HBDs). The as-developed DESs were characterized and employed for the surface functionalization of CeNPs with their subsequent utilization in adsorption-based CO2 adsorption. The synthesis of as-prepared DESs was confirmed through FTIR measurements and absence of precipitates, revealed through visual observations. It was found that DES6 surface functionalized CeNPs demonstrated 27% higher adsorption performance for CO2 capturing. On the contrary, DES3 coated CeNPs exhibited the least adsorption progress for CO2 separation. The higher adsorption performance associated with DES6 coated CeNPs was due to enhanced surface affinity with CO2 molecules that must have facilitated the mass transport characteristics and resulted an enhancement in CO2 adsorption performance. Carboxylic groups could have generated an electric field inside the pores to attract more polarizable adsorbates including CO2, are responsible for the relatively high values of CO2 adsorption. The quadruple movement of the CO2 molecules with the electron-deficient and pluralizable nature led to the enhancement of the interactive forces between the CO2 molecules and the CeNPs decorated with the carboxylic group hydrogen bond donor rich DES. The current findings may disclose the new research horizons and theoretical guidance for reduction in the environmental effects associated with uncontrolled CO2 emission via employing DES surface coated potential CeNPs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links