Displaying publications 41 - 45 of 45 in total

Abstract:
Sort:
  1. Ying Y, Tu S, Ni J, Lu X, Hu X, Lei P, et al.
    Fitoterapia, 2023 Oct;170:105662.
    PMID: 37648028 DOI: 10.1016/j.fitote.2023.105662
    Two new terrein derivatives asperterreinones A-B (1-2), one new octahydrocoumarin derivative (±)-asperterreinin A (6), along with seventeen known compounds, were isolated from Aspergillus terreus F6-3, a marine fungus associated with Johnius belengerii. The structures of 1, 2, and 6 were established on the basis of 1D and 2D NMR, mass spectroscopy, comparative electronic circular dichroism (ECD) spectra analysis, density functional theory calculation of 13C NMR, and DP4+ probability analysis. Among all the isolates, eurylene (7), a constituent of the Malaysian medicinal plant Eurycoma longifolia, was obtained from a microbial source for first time. In the in vitro bioassay, 11 and 13 showed potent inhibitory activity against the Escherichia coli β-glucuronidase (EcGUS) with IC50 values of 27.75 ± 0.73 and 17.73 ± 0.81 μM, respectively. It was the first time that questinol (11) and (±)-aspertertone B (13) were reported as potent EcGUS inhibitors.
  2. Ngadni MA, Chong SL, Kamarudin MNA, Hazni H, Litaudon M, Supratman U, et al.
    Fitoterapia, 2024 Mar;173:105765.
    PMID: 38042506 DOI: 10.1016/j.fitote.2023.105765
    A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against H2O2 exposure; 1 (83.77% ± 1.84 at 12.5 μM), 2 (69.07 ± 2.01 at 12.5 μM), 3 (80.38 ± 2.1 at 12.5 μM), 4 (62.33 ± 1.95 at 25 μM),5 (58.67 ± 1.85 at 50 μM) and 7 (66.07 ± 2.03 at 12.5 μM). Interestingly, 1 and 3 demonstrated comparable protective effects to positive control epigallocatechin gallate (EGCG) with similar cell viability capacity (≈ 80%), having achieved that at lower concentration (12.5 μM) than EGCG (50 μM). Collectively, the results suggested the promising use of 1 and 3 as potential neuroprotective agents against hydrogen peroxide-induced cytotoxicity in neuronal model.
  3. Muhammad MT, Beniddir MA, Phongphane L, Abu Bakar MH, Hussin MH, Awang K, et al.
    Fitoterapia, 2024 Apr;174:105873.
    PMID: 38417682 DOI: 10.1016/j.fitote.2024.105873
    Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 μM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 μM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.
  4. Bakrim S, Elouafy Y, Touhtouh J, Aanniz T, El Kadri K, Khalid A, et al.
    Fitoterapia, 2024 Aug 15.
    PMID: 39153554 DOI: 10.1016/j.fitote.2024.106182
    Today, pharmaceutical drugs have been shown to have serious side effects, while the bioactive components of botanical plants are proven to be effective in the treatment of several diseases marked by enhanced oxidative stress and mild inflammation, often associated with minimal adverse events. Coumaroyltyramine, designated by various nomenclatures such as paprazine, N-p-trans-coumaroyltyramine, p-coumaroyltyramine and N-p-coumaroyltyramine, could be a promising bioactive ingredient to address health issues thanks to its powerful anti-inflammatory and antioxidant effects. This review represents the first in-depth analysis of coumaroyltyramine, an intriguing phenylpropanoid substance found in many species of plants. In fact, an in-depth examination of coumaroyltyramine's biological characteristics, chemical attributes, and synthesis process has been undertaken. All previous research relating to the discovery, extraction, biosynthesis, and characterization of the biologically and pharmacologically active properties of coumaroyltyramine has been reviewed and taken into consideration in this analysis. All articles published in a peer-reviewed English-language journal were examined between the initial compilations of the appropriate database until February 12, 2024. A variety of phytochemicals revealed that coumaroyltyramine is a neutral amide of hydroxycinnamic acid that tends to concentrate in plants as a reaction against infection caused by pathogens and is extracted from several medicinal herbs such as Cannabis sativa, Solanum melongena, Allium bakeri, Annona cherimola, Polygonatum zanlanscianense, and Lycopersicon esculentum. Thanks to its effectiveness in suppressing the effect of the enzyme α-glucosidase, coumaroltyramine has demonstrated antihyperglycemic activity and could have an impact on diabetes and metabolic disorders. It has considerable anti-inflammatory and antioxidant effects. These results were obtained through biological and pharmacological studies in silico, in vivo, and in vitro. In addition, coumaroyltyramine has demonstrated hypocholesterolemic and neuroprotective benefits, thereby diminishing heart and vascular disease incidence and helping to prevent neurological disorders. Other interesting properties of coumaroltyramine include anticancer, antibacterial, anti-urease, antifungal, antiviral, and antidysmenorrheal activities. Targeted pathways encompass activity at different molecular levels, notably through induction of endoplasmic reticulum stress-dependent apoptosis, arrest of the cell cycle, and inhibition of the growth of cancer cells, survival, and proliferation. Although the findings from in silico, in vivo, and in vitro experiments illustrate coumaroyltyramine's properties and modes of action, further research is needed to fully exploit its therapeutic potential. To improve our understanding of the compound's pharmacodynamic effects and pharmacokinetic routes, large-scale research should first be undertaken. To determine whether coumaroyltyramine is clinically safe and effective, further studies are required in the clinical and toxicological fields. This upcoming research will be crucial to achieving the overall potency of this substance as a natural drug and in terms of its potential synergies with other drugs.
  5. Ariffin NHM, Hasham R, Hamzah MAAM, Park CS
    Fitoterapia, 2024 Jan;172:105755.
    PMID: 38000761 DOI: 10.1016/j.fitote.2023.105755
    Ficus deltoidea was known for its potent antioxidant, anti-melanogenic and photoprotective skin barrier activities. These properties are contributed by its biomarkers which are vitexin and isovitexin. This study aims to optimize the yield of methanolic extraction of Ficus deltoidea leaves (EFD) and evaluate their effects on skin barrier function and hydration. For optimization, Box-Behnken design was utilized to investigate the effects of methanol concentration, sonication time, and solvent-to-sample ratio on the yields of vitexin and isovitexin in EFD. The optimal yields obtained were 32.29 mg/g for vitexin and 35.87 mg/g for isovitexin. The optimum extraction conditions were 77.66% methanol concentration, 20.03 min sonication time, and 19.88 mL/g solvent-to-sample ratio. The quantitative real-time polymerase chain reaction was utilized to measure variant marker genes of transglutaminase-1, caspase 14, ceramide synthase 3, involucrin, and filaggrin of EFD-induced keratinocyte differentiation by in vitro study. Exposure to EFD has elevated the mRNA levels of all tested marker genes by 0.7-9.2 folds. Then, in vivo efficacy study was conducted on 20 female subjects for 14 days to evaluate skin biophysical assessment of hydration. EFD topical formulation treatment successfully increased skin hydration on day 7 (43.74%) and day 14 (47.23%). In silico study by molecular docking was performed to identify intermolecular binding interactions of vitexin and isovitexin with the interested proteins of tested marker genes. The result of molecular docking to the interested proteins revealed a similar trend with real-time PCR data. In conclusion, EFD potentially enhanced the skin barrier function and hydration of human skin cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links