Displaying publications 41 - 52 of 52 in total

Abstract:
Sort:
  1. Kong BH, Fung SY
    Int J Med Mushrooms, 2021;23(10):61-68.
    PMID: 34595892 DOI: 10.1615/IntJMedMushrooms.2021040120
    Traditional use of the tiger milk medicinal mushroom, Lignosus rhinocerus, to treat various illnesses has been recorded for > 4 centuries. Successful cultivation of L. rhinocerus using proprietary solid-state fermentation (SSF) technology by LiGNO Biotech has enabled large-scale production of L. rhinocerus sclerotia (termed L. rhinocerus TM02) and further investigations into its medicinal properties. Pharmacological activities of L. rhinocerus TM02, including its antioxidant, anti-inflammatory, anticancer, and immunomodulatory effects and the bioactive components responsible, have been validated by various scientific studies. In this study, we assessed the consistency of the bioactive components in 11 batches of L. rhinocerus TM02 produced over a 9-year period. The different batches of L. rhinocerus TM02 consisted of stable protein, polysaccharide, and glycoprotein contents, and all tested samples were comparable to the wild type. L. rhinocerus TM02 had greater protein, carbohydrate, and glycoprotein contents, which were mostly bioactive compared to another cultivar from a different cultivation technology (TM-UN). Together with previous scientific validations, L. rhinocerus TM02 produced using SSF cultivation is of optimal quality with high consistent bioactive contents, which can be an appropriate indicator for quality validation of the much sought-after medicinal mushroom, L. rhinocerus.
  2. Seow SL, Naidu M, Sabaratnam V, Vidyadaran S, Wong KH
    Int J Med Mushrooms, 2017;19(5):405-418.
    PMID: 28845770 DOI: 10.1615/IntJMedMushrooms.v19.i5.30
    In Malaysia and China, the sclerotium of Lignosus rhinocerotis is used by local communities and traditional medicine practitioners as a general tonic and remedy to treat a variety of ailments, including inflammation-associated disorders. In this study, 10 samples from different preparations of L. rhinocerotis sclerotium, including a hot aqueous extract (HAE), an ethanol extract (EE), fractions from the HAE and EE, and crude polysaccharides, were tested for their in vitro cytotoxic and nitric oxide (NO) inhibitory activities in lipopolysaccharide (LPS)--stimulated BV2 microglia. Of the 10 samples tested, HAE was the least cytotoxic toward BV2 microglia, with a half-maximal inhibitory concentration of 176.23 ± 2.64 mg/mL at 24 hours of incubation and 20.01 ± 1.69 mg/ mL at 48 hours of incubation. The inhibition of NO production was explored by pretreatment of BV2 microglia with samples at 2 incubation time points (4 and 24 hours) before the stimulation by LPS for 24 hours. After 24 hours of pretreatment, 8 of the 10 samples inhibited NO production by 50% or more, and cytotoxic effects were not observed. Among the 8 active samples, 500 µg/mL of HAE, 250 µg/mL of an n-butanol fraction of the HAE, and 250 µg/mL of an ethyl acetate fraction of HAE showed maximum inhibition of NO production by 88.95%, 86.50%, and 85.93%, respectively. These results suggest that the L. rhinocerotis sclerotium may contain secondary metabolites that have the potential to inhibit NO production.
  3. Subramaniam S, Raman J, Sabaratnam V, Heng CK, Kuppusamy UR
    Int J Med Mushrooms, 2017;19(10):849-859.
    PMID: 29256840 DOI: 10.1615/IntJMedMushrooms.2017024355
    This study was conducted to evaluate the mycochemical composition and antiglycemic and antioxidant activities of Ganoderma neo-japonicum hot aqueous extracts, prepared at different boiling durations, and polysaccharides isolated from them. Ground basidiocarps of G. neo-japonicum were double-boiled at 100°C for 0.5, 3, or 4 hours, and the antiglycemic activity was assessed by α-amylase and α-glucosidase enzyme inhibition assays. The antioxidant capacity of the crude hot aqueous extracts (AE-1, AE-2, AE-3) was assessed by DPPH and ABTS radical scavenging and ferric-reducing antioxidant power assays. The total phenolics, protein, and sugar in the crude extracts were also determined. The hot aqueous extract (AE-3) containing a significant amount of total sugar and having enhanced antiglycemic and antioxidant activities was selected for polysaccharide isolation. The isolated crude polysaccharide was separated and purified using diethylaminoethyl-cellulose-52 and Sepharose 6B column chromatography. Fourier transform infrared spectroscopy studies of the purified polysaccharide fraction (PF) showed the presence of typical bands corresponding to polysaccharides. The estimated β-glucan concentration in the PF was 39.26%. In general, the PF exhibited significantly lower antioxidant activity than AE-3. Nevertheless, its potency in inhibiting carbohydratehydrolyzing enzymes may have potential in the management of diabetes mellitus.
  4. Nyam KL, Chow CF, Tan CS, Ng ST
    Int J Med Mushrooms, 2017;19(7):607-617.
    PMID: 29199582 DOI: 10.1615/IntJMedMushrooms.2017021186
    Diabetes mellitus is a major cause of morbidity and mortality worldwide. Although scientific evidence supporting its therapeutic efficacy is lacking, the use of the tiger's milk mushroom (TGM; Lignosus rhinocerotis), which is native to tropical areas such as Malaysia, Indonesia, and the Philippines, has been found to contain a very large amount of potential antioxidants. In this study, rats were weighed and then intravenously injected with 35 mg/kg streptozotocin (STZ). Rats were left for 1 week before blood glucose concentrations were measured to determine the onset of diabetes before the next procedure was conducted. Rats with blood glucose exceeding 7.0 mmol/L were considered diabetic and were included in the experiment. All groups were fed their respective treatments twice daily for 2 months throughout the experiment. Antidiabetic and antioxidant properties of freeze-dried TGM powder, such as reduced glutathione (GSH), superoxide dismutase (SOD), lipid peroxidation (LPO), and catalase (CAT) activities, were investigated in liver samples. The biological compounds present in the freeze-dried TGM powder was found to exhibit antidiabetic properties by significantly reducing elevated blood glucose concentrations to a normal range (3.0-7.0 mmol/L) in Sprague-Dawley rats with streptozotocin-induced diabetes, and increasing the body weight of the rats. Freeze-dried TGM powder was also found to possess antioxidant activity by significantly increasing GSH, CAT, and SOD activities while reducing LPO (P < 0.05). THis study shows that freeze-dried TGM powder exhibits significant antidiabetic properties and may be a potential supplement in ameliorating diabetic complications.
  5. Seng CK, Abdullah N, Aminudin N
    Int J Med Mushrooms, 2017;19(9):797-807.
    PMID: 29199554 DOI: 10.1615/IntJMedMushrooms.2017024374
    Amauroderma rugosum fruiting bodies possess excellent cardiovascular benefits, including antioxidative, antihyperlipidemic, antihypertensive, antiinflammatory, anti-platelet aggregation, and antithrombotic effects. In this article, we describe our investigations of the in vitro antioxidant activity and in vitro antiatherosclerotic potential through inhibitory effects on low-density lipoprotein (LDL), LDL peroxidation, and 3-hydroxy3-methylglutaryl-coenzyme A (HMG-CoA) reductase catalytic activity using various fruiting body extracts partitioned with an organic solvent. Among 5 extracts/fractions tested, the semipolar ethyl acetate (EA) fraction demonstrated good antioxidant capacity based on total phenolic content, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging, ferrous ion-chelating ability, cupric ion-reducing antioxidant capacity, and lipid peroxidation assays. The EA fraction also showed the strongest inhibitory effect on Cu2+-induced LDL oxidation via thiobarbituric acid reactive substances formation and HMG-CoA reductase activity. Chemical analysis conjointly identified 10 phenolic compounds (4 benzoic acid derivatives, 3 flavonoids, 1 cinnamic acid, 1 hexahydroxydiphenic acid dilactone, and 1 xanthone derivative), some of which play pivotal roles in arresting the physiopathogenesis of atherosclerosis, thereby attenuating the risk of cardiovascular events occurring.
  6. Kumaran S, Pandurangan AK, Shenbhagaraman R, Esa NM
    Int J Med Mushrooms, 2017;19(8):675-684.
    PMID: 29199567 DOI: 10.1615/IntJMedMushrooms.2017021274
    The growth and lectin production of Ganoderma applanatum, a white rot fungus, was optimized in broth cultures. The fungus was found to have a higher growth rate and higher lectin activity when grown in a medium adjusted to pH 6.5 at 26°C under stationary conditions. Expression of lectin activity started in 5-day-old mycelial culture; maximum activity was expressed after the 15th day of incubation. Among the various carbon and nitrogen sources tested, the carbon source sucrose and the nitrogen source yeast extract support maximum growth and lectin production. Lectin from G. applanatum was purified by ammonium sulfate precipitation and ion exchange chromatography. The purified fraction revealed a single band with a molecular weight of 35.0 kDa. Moreover, carbohydrates such as mannitol, glucose, sucrose, maltose, mannose, galactose, sorbose, and fructose were found to inhibit the hemagglutinating activity of the lectin. The purified lectins from G. applanatum contain cytotoxic and proapoptotic activities against HT-29 colon adenocarcinoma cells.
  7. Seng CK, Abdullah N, Aminudin N
    Int J Med Mushrooms, 2017;19(12):1101-1111.
    PMID: 29431071 DOI: 10.1615/IntJMedMushrooms.2017024589
    Dyslipidemia is the key precursor of atherosclerotic cardiovascular disease. The aim of this study was to investigate the lipid-modifying potential of organic solvent-partitioned extracts from fruiting bodies of Amauroderma rugosum in vitro using oleate-induced human hepatocellular liver carcinoma (HepG2) cells. Our results demonstrated that oleate-induced HepG2 cells treated with ethyl acetate (EA) extract greatly decreased intracellular and secreted total triglyceride (TG) and total cholesterol (TC) compared with other extracts. Further investigation of cellular expression of selected apolipoproteins also revealed that oleate-induced HepG2 cells treated with the EA extract best attenuated the apolipoprotein (Apo) profile by downregulating ApoB-100 and ApoE while upregulating ApoA1. Because both ApoB-100 and ApoE are key components of low-density lipoprotein (LDL) and very LDL (VLDL), which are recognized as "bad cholesterol," this result indicates that treatment with the EA extract inhibited LDL and VLDL production in oleate-induced HepG2 cells. On the other hand, increasing ApoA1 evidence shows antiatherogenic benefits to increasing ApoA1, the key component of high-density lipoprotein (HDL), particularly in relation to its role in promoting reverse cholesterol transport and preventing LDL oxidation; this indicates that the EA extract upregulated the production of HDL ("good cholesterol"). Hence, the EA extract is a good source of lipid-ameliorating agents in the management of dyslipidemia.
  8. Fung SY, Tan NH, Kong BH, Lee SS, Tan YS, Sabaratnam V
    Int J Med Mushrooms, 2017;19(12):1093-1099.
    PMID: 29431070 DOI: 10.1615/IntJMedMushrooms.2017024550
    Amauroderma rugosum is a wild medicinal mushroom also known as budak cendawan sawan. Members of the indigenous Malaysian Temuan community wear the fresh stipes as a necklace to prevent epileptic seizure and unremitting crying by babies. In our previous studies, A. rugosum exhibited significant antioxidant and anti-inflammatory activities. The aim of this study was to determine the toxicity (in the event that a stipe is accidentally bitten) and cytotoxicity of this mushroom on Sprague-Dawley rats and selected cell lines. A. rugosum was orally administered to test chemicals according to Organisation for Economic and Co-operation and Development guidelines (TG 425, adopted October 3, 2008). Blood samples were hematologically and biochemically analyzed and multiple tissue sections from each organ were examined using light microscopy. Cytotoxicity of various A. rugosum extracts was also determined against MCF-7 and A-549 cell lines. Our results showed that oral administration of a single dose of mycelial powder (2000 mg/kg) had no adverse effect on the growth rate or hematological and clinical biochemical parameters. Histological studies showed that the treatments did not induce any pathological changes in the organs of the tested animals. All the treated rats survived beyond the 14-day observation period. Methanol and cold and hot water extracts of the freeze-dried mycelial culture of A. rugosum exhibited no or little cytotoxic effect against the MCF-7 and A-549 cell lines.
  9. Yuan BZ, Sun J
    Int J Med Mushrooms, 2023;25(1):29-44.
    PMID: 36734917 DOI: 10.1615/IntJMedMushrooms.2022046684
    This study analyzed 1,739 papers on medicinal mushrooms published from 1999 to July 18, 2022 based on Web of Science (WoS). Papers were mainly written in English (1,733, 99.655%), from 6,502 authors, 92 countries or territories, 1,862 organizations and published in 311 journals and 3 book series. International Journal of Medicinal Mushrooms published 1,069 (61.472%) papers. Top 5 countries or regions were P.R. China, India, Taiwan, USA, and Malaysia; each published more than 87 papers. From the average citations, papers from Ukraine, Israel, Netherlands, Serbia, and Thailand show the highest citations per paper (more than 22.9 times per paper). The top five affiliations were Chinese Academy of Sciences, University of Malaya, University of Haifa, National Chung Hsing University, and Shanghai Academy of Agricultural Sciences, each with more than 49 papers. Top five authors are Wasser SP, Hyde KD, Mau JL, Sabaratnam V, Yang Y; each published more than 26 papers. The paper with the most was Wasser SP in Applied Microbiology and Biotechnology (2002), which has 1442 citations and the average number of citations is 68.67 times per year. Based on the ESI database, there are 13 top papers with 13 highly cited papers and 1 hot paper. All keywords in medicinal mushrooms research were separated into ten clusters according to different research topics. The results will help researchers clarify the current situation and provide guidance for future research.
  10. Naguib AM, Apparoo Y, Xiong C, Phan CW
    Int J Med Mushrooms, 2023;25(2):11-22.
    PMID: 36749053 DOI: 10.1615/IntJMedMushrooms.2022046849
    Neurodegeneration is one of the most common manifestations in an aging population. The occurrence of oxidative stress and neuroinflammation are the main contributors to the phenomenon. Neurologic conditions such as Alzheimer's disease (AD) and Parkinson's disease (PD) are challenging to treat due to their irreversible manner as well as the lack of effective treatment. Grifola frondosa (Dicks.: Fr.) S.F. Gray, or maitake mushroom, is believed to be a potential choice as a therapeutic agent for neurodegenerative diseases. G. frondosa is known to be a functional food that has a wide variety of medicinal purposes. Thus, this review emphasizes the neuroprotective effects and the chemical composition of G. frondosa. Various studies have described that G. frondosa can protect and proliferate neuronal cells through neurogenesis, antioxidative, anti-inflammatory, and anti-β-amyloid activities. The mechanism of action behind these therapeutic findings in various in vitro and in vivo models has also been intensively studied. In this mini review, we also summarized the chemical composition of G. frondosa to provide a better understanding of the presence of nutritional compounds in G. frondosa.
  11. Subramaniam S, Ong KC, Sabaratnam V, Chua KH, Kuppusamy UR
    Int J Med Mushrooms, 2023;25(4):27-42.
    PMID: 37075082 DOI: 10.1615/IntJMedMushrooms.2023047595
    Ganoderma neo-japonicum Imazeki is a medicinal mushroom consumed by the indigenous people in Malaysia as a remedy for diabetes. This study aims to validate the efficacy of G. neo-japonicum polysaccharides (GNJP) on obesity-induced type 2 diabetes mellitus (T2DM) in C57BL/6J mice. Mice were divided into seven groups; normal diet (ND)-control, high-fat-diet (HFD)-control, HFDGNJP-treated (50, 100, 200 mg/kg b.w.), HFDMET (metformin 50 mg/kg; positive-control) and ND-GNJP (200 mg/kg b.w.). Mice were administered GNJP or metformin orally for 10 weeks (thrice/week) and sacrificed after an oral glucose tolerance test. Body weight, serum biochemicals, liver histology, adipocyte gene expressions, glucose and insulin levels were measured. HFD caused obesity, dyslipidemia, and diabetes in the untreated groups. GNJP (50 mg/kg b.w.) supplementation prevented weight gain and liver steatosis, improved serum lipid profile and glucose tolerance and attenuated hyperglycemia and hyperinsulinemia more effectively when compared with the other treatment groups. The prevention of obesity and lipid dysregulation is plausibly attributed to the increased hormone-sensitive lipase and reduced Akt-1 and Ppary gene expressions while the up-regulation of AdipoQ (adiponectin), Prkag2 and Slc2a4 genes served to sensitize insulin and improve glucose uptake. Thus, supplementation with an appropriate dose of GNJP has promising efficacies in preventing HFD aka obesity-induced T2DM and associated metabolic abnormalities.
  12. Yahya TSANT, Azmi NC, Yee FS, Chyang PJ, Ting NS, Seng TC
    Int J Med Mushrooms, 2024;26(3):55-66.
    PMID: 38505903 DOI: 10.1615/IntJMedMushrooms.2024052325
    Leukemia can be a result of genetic changes associated with protein tyrosine kinase activity such as in MPL W515L and BCR/ABL genes. However, the current conventional treatment of leukemia produces severe side effects that urge the approach to use natural products. A medicinal mushroom, Lignosus rhinocerus shows potential as an anti-cancer treatment. To investigate the efficacy and mechanism of action of the L. rhinocerus cultivar (TM02®) extract on leukemogenic tyrosine kinase cell lines, a cold-water extract (CWE) was produced by using TM02® sclerotia powder at 4°C. The carbohydrate and protein contents were found to be 77.24% and 1.75% respectively. In comparison to the normal Ba/F3 cell, the CWE TM02® shows significant effects on exhibiting proliferation of Ba/F3 expressed MPL W515L and BCR/ABL, possibly due to the presence of phenolic compounds and antioxidant properties of TM02®, which contribute to act on various signaling pathways, and the reported apoptotic activity of CWE TM02®. In contrast, CWE TM02® significantly exhibited high scavenging activity of both Ba/F3 expressed MPL W515L and BCR/ABL. At concentrations of 125 μg/mL and 500 μg/mL of CWE TM02® decreased 49.5% and 67.5% of cell migration activity of Ba/F3 expressed MPL W515L and BCR/ABL respectively. Therefore, we postulate that CWE TM02® has the capability to mediate the migration route of the leukemogenic tyrosine kinase cell lines.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links