Displaying publications 41 - 60 of 162 in total

Abstract:
Sort:
  1. See JX, Samudi C, Saeidi A, Menon N, Choh LC, Vadivelu J, et al.
    PLoS Negl Trop Dis, 2016 Mar;10(3):e0004503.
    PMID: 26974441 DOI: 10.1371/journal.pntd.0004503
    Burkholderia pseudomallei (B. pseudomallei), the causative agent of melioidosis, is a deadly pathogen endemic across parts of tropical South East Asia and Northern Australia. B. pseudomallei can remain latent within the intracellular compartment of the host cell over prolonged periods of time, and cause persistent disease leading to treatment difficulties. Understanding the immunological mechanisms behind persistent infection can result in improved treatment strategies in clinical melioidosis.
  2. Ten Bosch QA, Singh BK, Hassan MR, Chadee DD, Michael E
    PLoS Negl Trop Dis, 2016 05;10(5):e0004680.
    PMID: 27159023 DOI: 10.1371/journal.pntd.0004680
    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control.
  3. Woon YL, Hor CP, Hussin N, Zakaria A, Goh PP, Cheah WK
    PLoS Negl Trop Dis, 2016 05;10(5):e0004575.
    PMID: 27203726 DOI: 10.1371/journal.pntd.0004575
    BACKGROUND: Dengue infection is the fastest spreading mosquito-borne viral disease, which affects people living in the tropical and subtropical countries. Malaysia had large dengue outbreaks in recent years. We aimed to study the demographics and clinical characteristics associated with dengue deaths in Malaysia.

    METHODS: We conducted a retrospective review on all dengue deaths that occurred nationwide between 1st January 2013 and 31st December 2014. Relevant data were extracted from mortality review reports and investigational forms. These cases were categorized into children (<15 years), adults (15-59 years) and elderly (≥60 years) to compare their clinical characteristics.

    RESULTS: A total of 322 dengue deaths were reviewed. Their mean age was 40.7±19.30 years, half were females and 72.5% were adults. The median durations of first medical contact, and hospitalization were 1 and 3 days, respectively. Diabetes and hypertension were common co-morbidities among adults and elderly. The most common warning signs reported were lethargy and vomiting, with lethargy (p = 0.038) being more common in children, while abdominal pain was observed more often in the adults (p = 0.040). But 22.4% did not have any warning signs. Only 34% were suspected of dengue illness at their initial presentation. More adults developed severe plasma leakage (p = 0.018). More than half (54%) suffered from multi-organ involvement, and 20.2% were free from any organ involvement. Dengue deaths occurred at the median of 3 days post-admission. Dengue shock syndrome (DSS) contributed to more than 70% of dengue deaths, followed by severe organ involvement (69%) and severe bleeding (29.7%).

    CONCLUSION: In Malaysia, dengue deaths occurred primarily in adult patients. DSS was the leading cause of death, regardless of age groups. The atypical presentation and dynamic progression of severe dengue in this cohort prompts early recognition and aggressive intervention to prevent deaths.

    TRIAL REGISTRATION: National Medical Research Registry (NMRR, NMRR-14-1374-23352).
  4. Lum LC, Syed Omar SF, Sri La Sri Ponnampalavanar S, Tan LH, Sekaran SD, Kamarulzaman A
    PLoS Negl Trop Dis, 2015 Jun;9(6):e0003836.
    PMID: 26047325 DOI: 10.1371/journal.pntd.0003836
    INTRODUCTION: The increasing incidence of dengue among adults in Malaysia and other countries has important implications for health services. Before 2004, in order to cope with the surge in adult dengue admissions, each of the six medical wards in a university hospital took turns daily to admit and manage patients with dengue. Despite regular in-house training, the implementation of the WHO 1997 dengue case management guidelines by the multiple medical teams was piecemeal and resulted in high variability of care. A restructuring of adult dengue inpatient service in 2004 resulted in all patients being admitted to one ward under the care of the infectious disease unit. Hospital and Intensive Care Unit admission criteria, discharge criteria and clinical laboratory testing were maintained unchanged throughout the study period.

    OBJECTIVES: To evaluate the impact of cohorting adult dengue patients on the quality of care and the clinical outcome in a university hospital in Malaysia.

    METHODS: A pre (2003) and post-intervention (2005-6) retrospective study was undertaken.

    INTERVENTION: Cohorting all dengue patients under the care of the Infectious Disease team in a designated ward in 2004.

    RESULTS: The number of patients enrolled was 352 in 2003, 785 in 2005 and 1158 in 2006. The evaluation and detection of haemorrhage remained high (>90%) and unchanged throughout the study period. The evaluation of plasma leakage increased from 35.4% pre-intervention to 78.8% post-intervention (p = <0.001) while its detection increased from 11.4% to 41.6% (p = <0.001). Examination for peripheral perfusion was undertaken in only 13.1% of patients pre-intervention, with a significant increase post-intervention, 18.6% and 34.2% respectively, p = <0.001. Pre-intervention, more patients had hypotension (21.5%) than detected peripheral hypoperfusion (11.4%), indicating that clinicians recognised shock only when patients developed hypotension. In contrast, post-intervention, clinicians recognised peripheral hypoperfusion as an early sign of shock. The highest haematocrit was significantly higher post-intervention but the lowest total white cell counts and platelet counts remained unchanged. A significant and progressive reduction in the use of platelet transfusions occurred, from 21.7% pre-intervention to 14.6% in 2005 and 5.2% in 2006 post-intervention, p<0.001. Likewise, the use of plasma transfusion decreased significantly from 6.1% pre-intervention to 4.0% and 1.6% in the post-intervention years of 2005 and 2006 respectively, p<0.001. The duration of intravenous fluid therapy decreased from 3 days pre-intervention to 2.5 days (p<0.001) post-intervention; the length of hospital stay reduced from 4 days pre- to 3 days (p<0.001) post-intervention and the rate of intensive care admission from 5.8% pre to 2.6% and 2.5% post-intervention, p = 0.005.

    CONCLUSION: Cohorting adult dengue patients under a dedicated and trained team of doctors and nurses led to a substantial improvement in quality of care and clinical outcome.

  5. Chandren JR, Wong LP, AbuBakar S
    PLoS Negl Trop Dis, 2015;9(8):e0003954.
    PMID: 26267905 DOI: 10.1371/journal.pntd.0003954
    BACKGROUND: Dengue is prevalent among Malaysia's indigenous peoples, known as the Orang Asli, and it poses a serious health threat to them. The study aims to look at the socio-demographic factors, health beliefs, and knowledge about dengue and its association to dengue prevention practices among Orang Asli communities in Peninsular Malaysia.

    METHODS: A cross-sectional survey was conducted in 16 randomly selected Orang Asli villages from eight states in Peninsular Malaysia from April 2012 until February 2013.

    RESULTS: A total of 560 Orang Asli were interviewed and 505 completed the survey. Slightly above half of the participants (n = 280, 55.4%) had a total dengue prevention score of 51-100 (of a possible score of 0-100). Multivariate analysis findings showed dengue knowledge, perceived barriers to perform dengue prevention, fogging frequency, and perceived susceptibility to dengue fever as significant factors associated to dengue prevention practices. Participants with a lower dengue knowledge score (score 0-18) were less likely (OR = 0.63, 95%CI = 0.44-0.92 vs. score 19-36, P = 0.015) to practice dengue prevention. Participants with low perceived barriers to prevent dengue (score of 1-5) were more likely (OR = 2.06, 95%CI = 1.21-3.53, vs. score of 6-10, P = 0.008) to practice dengue prevention. Villages that were not fogged (OR = 0.49, 95%CI = 0.24-0.99, P = 0.045) or rarely fogged (OR = 0.40, 95%CI = 0.22-0.75, P = 0.004) had lower dengue prevention practices than villages that were fogged often. Participants with low perceived susceptibility of acquiring dengue (score of 1-5) were less likely (OR = 0.54, 95%CI = 0.33-0.89 vs. score of 6-10, P = 0.018) to practice dengue prevention measures.

    CONCLUSION: Findings imply that educational and health programmes should focus on enhancing dengue knowledge and perceived susceptibility of acquiring dengue and reducing perceived barriers to performing dengue prevention practices among the Orang Asli. More outreach on mosquito control campaigns should be carried out especially in villages where mosquito fogging is frequent.

  6. Hotez PJ, Bottazzi ME, Strych U, Chang LY, Lim YA, Goodenow MM, et al.
    PLoS Negl Trop Dis, 2015 Apr;9(4):e0003575.
    PMID: 25880767 DOI: 10.1371/journal.pntd.0003575
    The ten member states of the Association of Southeast Asian Nations (ASEAN) constitute an economic powerhouse, yet these countries also harbor a mostly hidden burden of poverty and neglected tropical diseases (NTDs). Almost 200 million people live in extreme poverty in ASEAN countries, mostly in the low or lower middle-income countries of Indonesia, the Philippines, Myanmar, Viet Nam, and Cambodia, and many of them are affected by at least one NTD. However, NTDs are prevalent even among upper middle-income ASEAN countries such as Malaysia and Thailand, especially among the indigenous populations. The three major intestinal helminth infections are the most common NTDs; each helminthiasis is associated with approximately 100 million infections in the region. In addition, more than 10 million people suffer from either liver or intestinal fluke infections, as well as schistosomiasis and lymphatic filariasis (LF). Intestinal protozoan infections are widespread, while leishmaniasis has emerged in Thailand, and zoonotic malaria (Plasmodium knowlesi infection) causes severe morbidity in Malaysia. Melioidosis has emerged as an important bacterial NTD, as have selected rickettsial infections, and leptospirosis. Leprosy, yaws, and trachoma are still endemic in focal areas. Almost 70 million cases of dengue fever occur annually in ASEAN countries, such that this arboviral infection is now one of the most common and economically important NTDs in the region. A number of other arboviral and zoonotic viral infections have also emerged, including Japanese encephalitis; tick-borne viral infections; Nipah virus, a zoonosis present in fruit bats; and enterovirus 71 infection. There are urgent needs to expand surveillance activities in ASEAN countries, as well as to ensure mass drug administration is provided to populations at risk for intestinal helminth and fluke infections, LF, trachoma, and yaws. An ASEAN Network for Drugs, Diagnostics, Vaccines, and Traditional Medicines Innovation provides a policy framework for the development of new control and elimination tools. Together with prominent research institutions and universities, the World Health Organization (WHO), and its regional offices, these organizations could implement important public health improvements through NTD control and elimination in the coming decade.
  7. Kar SK, Dwibedi B, Kerketa AS, Maharana A, Panda SS, Mohanty PC, et al.
    PLoS Negl Trop Dis, 2015 Mar;9(3):e0003583.
    PMID: 25781977 DOI: 10.1371/journal.pntd.0003583
    Although current programmes to eliminate lymphatic filariasis have made significant progress it may be necessary to use different approaches to achieve the global goal, especially where compliance has been poor and 'hot spots' of continued infection exist. In the absence of alternative drugs, the use of higher or more frequent dosing with the existing drugs needs to be explored. We examined the effect of higher and/or more frequent dosing with albendazole with a fixed 300 mg dose of diethylcarbamazine in a Wuchereria bancrofti endemic area in Odisha, India. Following screening, 104 consenting adults were randomly assigned to treatment with the standard regimen annually for 24 months (S1), or annually with increased dose (800 mg albendazole)(H1) or with increased frequency (6 monthly) with either standard (S2) or increased (H2) dose. Pre-treatment microfilaria counts (GM) ranged from 348 to 459 mf/ml. Subjects were followed using microfilaria counts, OG4C3 antigen levels and ultrasound scanning for adult worm nests. Microfilarial counts tended to decrease more rapidly with higher or more frequent dosing at all time points. At 12 months, Mf clearance was marginally greater with the high dose regimens, while by 24 months, there was a trend to higher Mf clearance in the arm with increased frequency and 800 mg of albendazole (76.9%) compared to other arms, (S1:64%, S2:69.2% & H1:73.1%). Although higher and/or more frequent dosing showed a trend towards a greater decline in antigenemia and clearance of "nests", all regimens demonstrated the potential macrofilaricidal effect of the combination. The higher doses of albendazole did not result in a greater number or more severe side effects. The alternative regimens could be useful in the later stages of existing elimination programmes or achieving elimination more rapidly in areas where programmes have yet to start.
  8. Sapsutthipas S, Leong PK, Akesowan S, Pratanaphon R, Tan NH, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2015 Mar;9(3):e0003609.
    PMID: 25774998 DOI: 10.1371/journal.pntd.0003609
    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma "Malayan pit viper" (CR), and Daboia siamensis "Russell's viper" (DS). Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies.
  9. Ishak IH, Kamgang B, Ibrahim SS, Riveron JM, Irving H, Wondji CS
    PLoS Negl Trop Dis, 2017 01;11(1):e0005302.
    PMID: 28114328 DOI: 10.1371/journal.pntd.0005302
    BACKGROUND: Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance.

    METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb.

    CONCLUSION/SIGNIFICANCE: The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia.

  10. Sodahlon Y, Ross DA, McPhillips-Tangum C, Lawrence J, Taylor R, McFarland DA, et al.
    PLoS Negl Trop Dis, 2020 10;14(10):e0008565.
    PMID: 33031387 DOI: 10.1371/journal.pntd.0008565
  11. Brown R, Chua TH, Fornace K, Drakeley C, Vythilingam I, Ferguson HM
    PLoS Negl Trop Dis, 2020 09;14(9):e0008617.
    PMID: 32886679 DOI: 10.1371/journal.pntd.0008617
    The zoonotic malaria parasite, Plasmodium knowlesi, is now a substantial public health problem in Malaysian Borneo. Current understanding of P. knowlesi vector bionomics and ecology in Sabah comes from a few studies near the epicentre of human cases in one district, Kudat. These have incriminated Anopheles balabacensis as the primary vector, and suggest that human exposure to vector biting is peri-domestic as well as in forest environments. To address the limited understanding of vector ecology and human exposure risk outside of Kudat, we performed wider scale surveillance across four districts in Sabah with confirmed transmission to investigate spatial heterogeneity in vector abundance, diversity and infection rate. Entomological surveillance was carried out six months after a cross-sectional survey of P. knowlesi prevalence in humans throughout the study area; providing an opportunity to investigate associations between entomological indicators and infection. Human-landing catches were performed in peri-domestic, farm and forest sites in 11 villages (3-4 per district) and paired with estimates of human P. knowlesi exposure based on sero-prevalence. Anopheles balabacensis was present in all districts but only 6/11 villages. The mean density of An. balabacensis was relatively low, but significantly higher in farm (0.094/night) and forest (0.082/night) than peri-domestic areas (0.007/night). Only one An. balabacensis (n = 32) was infected with P. knowlesi. Plasmodium knowlesi sero-positivity in people was not associated with An. balabacensis density at the village-level however post hoc analyses indicated the study had limited power to detect a statistical association due low vector density. Wider scale sampling revealed substantial heterogeneity in vector density and distribution between villages and districts. Vector-habitat associations predicted from this larger-scale surveillance differed from those inferred from smaller-scale studies in Kudat; highlighting the importance of local ecological context. Findings highlight potential trade-offs between maximizing temporal versus spatial breadth when designing entomological surveillance; and provide baseline entomological and epidemiological data to inform future studies of entomological risk factors for human P. knowlesi infection.
  12. Chong YM, Sam IC, Chong J, Kahar Bador M, Ponnampalavanar S, Syed Omar SF, et al.
    PLoS Negl Trop Dis, 2020 11;14(11):e0008744.
    PMID: 33253226 DOI: 10.1371/journal.pntd.0008744
    Malaysia had 10,219 confirmed cases of COVID-19 as of September 20, 2020. About 33% were associated with a Tablighi Jamaat religious mass gathering held in Kuala Lumpur between February 27 and March 3, 2020, which drove community transmission during Malaysia's second wave. We analysed genome sequences of SARS-CoV-2 from Malaysia to better understand the molecular epidemiology and spread. We obtained 58 SARS-CoV-2 whole genome sequences from patients in Kuala Lumpur and performed phylogenetic analyses on these and a further 57 Malaysian sequences available in the GISAID database. Nine different SARS-CoV-2 lineages (A, B, B.1, B.1.1, B.1.1.1, B.1.36, B.2, B.3 and B.6) were detected in Malaysia. The B.6 lineage was first reported a week after the Tablighi mass gathering and became predominant (65.2%) despite being relatively rare (1.4%) globally. Direct epidemiological links between lineage B.6 viruses and the mass gathering were identified. Increases in reported total cases, Tablighi-associated cases, and community-acquired B.6 lineage strains were temporally linked. Non-B.6 lineages were mainly travel-associated and showed limited onward transmission. There were also temporally correlated increases in B.6 sequences in other Southeast Asian countries, India and Australia, linked to participants returning from this event. Over 95% of global B.6 sequences originated from Asia Pacific. We also report a nsp3-C6310A substitution found in 47.3% of global B.6 sequences which was associated with reduced sensitivity using a commercial diagnostic real-time PCR assay. Lineage B.6 became the predominant cause of community transmission in Malaysia after likely introduction during a religious mass gathering. This event also contributed to spikes of lineage B.6 in other countries in the Asia-Pacific. Mass gatherings can be significant causes of local and global spread of COVID-19. Shared genomic surveillance can be used to identify SARS-CoV-2 transmission chains to aid prevention and control, and to monitor diagnostic molecular assays. Clinical Trial Registration: COVID-19 paper.
  13. Chaisakul J, Alsolaiss J, Charoenpitakchai M, Wiwatwarayos K, Sookprasert N, Harrison RA, et al.
    PLoS Negl Trop Dis, 2019 10;13(10):e0007338.
    PMID: 31644526 DOI: 10.1371/journal.pntd.0007338
    BACKGROUND: Daboia siamensis (Eastern Russell's viper) is a medically important snake species found widely distributed across Southeast Asia. Envenomings by this species can result in systemic coagulopathy, local tissue injury and/or renal failure. While administration of specific antivenom is an effective treatment for Russell's viper envenomings, the availability of, and access to, geographically-appropriate antivenom remains problematic in many rural areas. In this study, we determined the binding and neutralizing capability of antivenoms manufactured by the Thai Red Cross in Thailand against D. siamensis venoms from four geographical locales: Myanmar, Taiwan, China and Thailand.

    METHODOLOGY/PRINCIPLE FINDINGS: The D. siamensis monovalent antivenom displayed extensive recognition and binding to proteins found in D. siamensis venom, irrespective of the geographical origin of those venoms. Similar immunological characteristics were observed with the Hemato Polyvalent antivenom, which also uses D. siamensis venom as an immunogen, but binding levels were dramatically reduced when using comparator monovalent antivenoms manufactured against different snake species. A similar pattern was observed when investigating neutralization of coagulopathy, with the procoagulant action of all four geographical venom variants neutralized by both the D. siamensis monovalent and the Hemato Polyvalent antivenoms, while the comparator monovalent antivenoms were ineffective. These in vitro findings translated into therapeutic efficacy in vivo, as the D. siamensis monovalent antivenom was found to effectively protect against the lethal effects of all four geographical venom variants preclinically. Assessments of in vivo nephrotoxicity revealed that D. siamensis venom (700 μg/kg) significantly increased plasma creatinine and blood urea nitrogen levels in anaesthetised rats. The intravenous administration of D. siamensis monovalent antivenom at three times higher than the recommended scaled therapeutic dose, prior to and 1 h after the injection of venom, resulted in reduced levels of markers of nephrotoxicity and prevented renal morphological changes, although lower doses had no therapeutic effect.

    CONCLUSIONS/SIGNIFICANCE: This study highlights the potential broad geographical utility of the Thai D. siamensis monovalent antivenom for treating envenomings by the Eastern Russell's viper. However, only the early delivery of high antivenom doses appears to be capable of preventing venom-induced nephrotoxicity.

  14. Silver ZA, Kaliappan SP, Samuel P, Venugopal S, Kang G, Sarkar R, et al.
    PLoS Negl Trop Dis, 2018 01;12(1):e0006153.
    PMID: 29346440 DOI: 10.1371/journal.pntd.0006153
    BACKGROUND: Soil-transmitted helminth (STH) infections are among the most prevalent neglected tropical diseases (NTD) worldwide. Since the publication of the WHO road map to combat NTD in 2012, there has been a renewed commitment to control STH. In this study, we analysed the geographical distribution and effect of community type on prevalence of hookworm, Trichuris and Ascaris in south Asia and south east Asia.

    METHODOLOGY: We conducted a systematic review of open-access literature published in PubMed Central and the Global Atlas of Helminth Infection. A total of 4182 articles were available and after applying selection criteria, 174 studies from the region were retained for analysis.

    PRINCIPAL FINDINGS: Ascaris was the commonest STH identified with an overall prevalence of 18% (95% CI, 14-23%) followed by Trichuris (14%, 9-19%) and hookworm (12%, 9-15%). Hookworm prevalence was highest in Laos, Vietnam and Cambodia. We found a geographical overlap in countries with high prevalence rates for Trichuris and Ascaris (Malaysia, Philippines, Myanmar, Vietnam and Bangladesh). When the effect of community type was examined, prevalence rates of hookworm was comparable in rural (19%, 14-24%) and tribal communities (14%, 10-19%). Tribal communities, however, showed higher prevalence of Trichuris (38%, 18-63%) and Ascaris (32%, 23-43%) than rural communities (13%, 9-20% and 14%, 9-20% respectively). Considerable between and within country heterogeneity in the distribution of STH (I2 >90%) was also noted. When available data from school aged children (SAC) were analysed, prevalence of Ascaris (25% 16-31%) and Trichuris (22%, 14-34%) were higher than among the general population while that of hookworm (10%, 7-16%) was comparable.

    CONCLUSIONS/SIGNIFICANCE: Our analysis showed significant variation in prevalence rates between and within countries in the region. Highlighting the importance of community type in prevalence and species mix, we showed that tribal and rural communities had higher hookworm infections than urban communities and for ascariasis and trichuriasis, tribal populations had higher levels of infection than rural populations. We also found a higher prevalence of ascariasis and trichuriasis in SAC compared to the general population but comparable levels of hookworm infections. These key findings need to be taken into account in planning future MDA and other interventions.

  15. Lin Y, Hu Z, Zhao Q, Alias H, Danaee M, Wong LP
    PLoS Negl Trop Dis, 2020 12;14(12):e0008961.
    PMID: 33332359 DOI: 10.1371/journal.pntd.0008961
    BACKGROUND: This study attempts to understand coronavirus disease 2019 (COVID-19) vaccine demand and hesitancy by assessing the public's vaccination intention and willingness-to-pay (WTP). Confidence in COVID-19 vaccines produced in China and preference for domestically-made or foreign-made vaccines was also investigated.

    METHODS: A nationwide cross-sectional, self-administered online survey was conducted on 1-19 May 2020. The health belief model (HBM) was used as a theoretical framework for understanding COVID-19 vaccination intent and WTP.

    RESULTS: A total of 3,541 complete responses were received. The majority reported a probably yes intent (54.6%), followed by a definite yes intent (28.7%). The perception that vaccination decreases the chances of getting COVID-19 under the perceived benefit construct (OR = 3.14, 95% CI 2.05-4.83) and not being concerned about the efficacy of new COVID-19 vaccines under the perceived barriers construct (OR = 1.65, 95% CI 1.31-2.09) were found to have the highest significant odds of a definite intention to take the COVID-19 vaccine. The median (interquartile range [IQR]) of WTP for COVID-19 vaccine was CNY¥200/US$28 (IQR CNY¥100-500/USD$14-72). The highest marginal WTP for the vaccine was influenced by socio-economic factors. The majority were confident (48.7%) and completely confident (46.1%) in domestically-made COVID-19 vaccine. 64.2% reported a preference for a domestically-made over foreign-made COVID-19 vaccine.

    CONCLUSIONS: The findings demonstrate the utility of HBM constructs in understanding COVID-19 vaccination intent and WTP. It is important to improve health promotion and reduce the barriers to COVID-19 vaccination.

  16. Boey K, Shiokawa K, Rajeev S
    PLoS Negl Trop Dis, 2019 08;13(8):e0007499.
    PMID: 31398190 DOI: 10.1371/journal.pntd.0007499
    BACKGROUND: The role of rodents in Leptospira epidemiology and transmission is well known worldwide. Rats are known to carry different pathogenic serovars of Leptospira spp. capable of causing disease in humans and animals. Wild rats (Rattus spp.), especially the Norway/brown rat (Rattus norvegicus) and the black rat (R. rattus), are the most important sources of Leptospira infection, as they are abundant in urban and peridomestic environments. In this study, we compiled and summarized available data in the literature on global prevalence of Leptospira exposure and infection in rats, as well as compared the global distribution of Leptospira spp. in rats with respect to prevalence, geographic location, method of detection, diversity of serogroups/serovars, and species of rat.

    METHODS: We conducted a thorough literature search using PubMed without restrictions on publication date as well as Google Scholar to manually search for other relevant articles. Abstracts were included if they described data pertaining to Leptospira spp. in rats (Rattus spp.) from any geographic region around the world, including reviews. The data extracted from the articles selected included the author(s), year of publication, geographic location, method(s) of detection used, species of rat(s), sample size, prevalence of Leptospira spp. (overall and within each rat species), and information on species, serogroups, and/or serovars of Leptospira spp. detected.

    FINDINGS: A thorough search on PubMed retrieved 303 titles. After screening the articles for duplicates and inclusion/exclusion criteria, as well as manual inclusion of relevant articles, 145 articles were included in this review. Leptospira prevalence in rats varied considerably based on geographic location, with some reporting zero prevalence in countries such as Madagascar, Tanzania, and the Faroe Islands, and others reporting as high as >80% prevalence in studies done in Brazil, India, and the Philippines. The top five countries that were reported based on number of articles include India (n = 13), Malaysia (n = 9), Brazil (n = 8), Thailand (n = 7), and France (n = 6). Methods of detecting or isolating Leptospira spp. also varied among studies. Studies among different Rattus species reported a higher Leptospira prevalence in R. norvegicus. The serovar Icterohaemorrhagiae was the most prevalent serovar reported in Rattus spp. worldwide. Additionally, this literature review provided evidence for Leptospira infection in laboratory rodent colonies within controlled environments, implicating the zoonotic potential to laboratory animal caretakers.

    CONCLUSIONS: Reports on global distribution of Leptospira infection in rats varies widely, with considerably high prevalence reported in many countries. This literature review emphasizes the need for enhanced surveillance programs using standardized methods for assessing Leptospira exposure or infection in rats. This review also demonstrated several weaknesses to the current methods of reporting the prevalence of Leptospira spp. in rats worldwide. As such, this necessitates a call for standardized protocols for the testing and reporting of such studies, especially pertaining to the diagnostic methods used. A deeper understanding of the ecology and epidemiology of Leptospira spp. in rats in urban environments is warranted. It is also pertinent for rat control programs to be proposed in conjunction with increased efforts for public awareness and education regarding leptospirosis transmission and prevention.

  17. Ramli SR, Moreira GMSG, Zantow J, Goris MGA, Nguyen VK, Novoselova N, et al.
    PLoS Negl Trop Dis, 2019 01;13(1):e0007131.
    PMID: 30677033 DOI: 10.1371/journal.pntd.0007131
    BACKGROUND: Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens.

    METHODOLOGY/PRINCIPAL FINDINGS: Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75).

    CONCLUSIONS/SIGNIFICANCE: This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen.

  18. Williams HF, Mellows BA, Mitchell R, Sfyri P, Layfield HJ, Salamah M, et al.
    PLoS Negl Trop Dis, 2019 01;13(1):e0007041.
    PMID: 30695027 DOI: 10.1371/journal.pntd.0007041
    Snakebite is a major neglected tropical health issue that affects over 5 million people worldwide resulting in around 1.8 million envenomations and 100,000 deaths each year. Snakebite envenomation also causes innumerable morbidities, specifically loss of limbs as a result of excessive tissue/muscle damage. Snake venom metalloproteases (SVMPs) are a predominant component of viper venoms, and are involved in the degradation of basement membrane proteins (particularly collagen) surrounding the tissues around the bite site. Although their collagenolytic properties have been established, the molecular mechanisms through which SVMPs induce permanent muscle damage are poorly understood. Here, we demonstrate the purification and characterisation of an SVMP from a viper (Crotalus atrox) venom. Mass spectrometry analysis confirmed that this protein is most likely to be a group III metalloprotease (showing high similarity to VAP2A) and has been referred to as CAMP (Crotalus atrox metalloprotease). CAMP displays both collagenolytic and fibrinogenolytic activities and inhibits CRP-XL-induced platelet aggregation. To determine its effects on muscle damage, CAMP was administered into the tibialis anterior muscle of mice and its actions were compared with cardiotoxin I (a three-finger toxin) from an elapid snake (Naja pallida) venom. Extensive immunohistochemistry analyses revealed that CAMP significantly damages skeletal muscles by attacking the collagen scaffold and other important basement membrane proteins, and prevents their regeneration through disrupting the functions of satellite cells. In contrast, cardiotoxin I destroys skeletal muscle by damaging the plasma membrane, but does not impact regeneration due to its inability to affect the extracellular matrix. Overall, this study provides novel insights into the mechanisms through which SVMPs induce permanent muscle damage.
  19. Schnetterle M, Gorgé O, Nolent F, Boughammoura A, Sarilar V, Vigier C, et al.
    PLoS Negl Trop Dis, 2021 Feb;15(2):e0008913.
    PMID: 33592059 DOI: 10.1371/journal.pntd.0008913
    BACKGROUND: Melioidosis is an endemic disease in southeast Asia and northern Australia caused by the saprophytic bacteria Burkholderia pseudomallei, with a high mortality rate. The clinical presentation is multifaceted, with symptoms ranging from acute septicemia to multiple chronic abscesses. Here, we report a chronic case of melioidosis in a patient who lived in Malaysia in the 70s and was suspected of contracting tuberculosis. Approximately 40 years later, in 2014, he was diagnosed with pauci-symptomatic melioidosis during a routine examination. Four strains were isolated from a single sample. They showed divergent morphotypes and divergent antibiotic susceptibility, with some strains showing resistance to trimethoprim-sulfamethoxazole and fluoroquinolones. In 2016, clinical samples were still positive for B. pseudomallei, and only one type of strain, showing atypical resistance to meropenem, was isolated.

    PRINCIPAL FINDINGS: We performed whole genome sequencing and RT-qPCR analysis on the strains isolated during this study to gain further insights into their differences. We thus identified two types of resistance mechanisms in these clinical strains. The first one was an adaptive and transient mechanism that disappeared during the course of laboratory sub-cultures; the second was a mutation in the efflux pump regulator amrR, associated with the overexpression of the related transporter.

    CONCLUSION: The development of such mechanisms may have a clinical impact on antibiotic treatment. Indeed, their transient nature could lead to an undiagnosed resistance. Efflux overexpression due to mutation leads to an important multiple resistance, reducing the effectiveness of antibiotics during treatment.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links