Displaying publications 41 - 60 of 1371 in total

Abstract:
Sort:
  1. Chen M, Wong WW, Law MG, Kiertiburanakul S, Yunihastuti E, Merati TP, et al.
    PLoS ONE, 2016;11(3):e0150512.
    PMID: 26933963 DOI: 10.1371/journal.pone.0150512
    We assessed the effects of hepatitis B (HBV) or hepatitis C (HCV) co-infection on outcomes of antiretroviral therapy (ART) in HIV-infected patients enrolled in the TREAT Asia HIV Observational Database (TAHOD), a multi-center cohort of HIV-infected patients in the Asia-Pacific region.
  2. Khan MU, Hassali MA, Ahmad A, Elkalmi RM, Zaidi ST, Dhingra S
    PLoS ONE, 2016;11(2):e0149623.
    PMID: 26901404 DOI: 10.1371/journal.pone.0149623
    Increasing antimicrobial resistance is one of the pressing concerns globally. Injudicious use of antibiotics is one of the modifiable factors responsible for antimicrobial resistance. Given the widespread use of antimicrobials in community settings, pharmacists have an important role in ensuring appropriate use of antibiotics. The objective of this study was to assess the perception and self-reported practices of community pharmacists towards antimicrobial stewardship.
  3. Tham ML, Chow CO, Xu YH, Ramli N
    PLoS ONE, 2016;11(2):e0148625.
    PMID: 26906398 DOI: 10.1371/journal.pone.0148625
    This paper presents a two-level scheduling scheme for video transmission over downlink orthogonal frequency-division multiple access (OFDMA) networks. It aims to maximize the aggregate quality of the video users subject to the playback delay and resource constraints, by exploiting the multiuser diversity and the video characteristics. The upper level schedules the transmission of video packets among multiple users based on an overall target bit-error-rate (BER), the importance level of packet and resource consumption efficiency factor. Instead, the lower level renders unequal error protection (UEP) in terms of target BER among the scheduled packets by solving a weighted sum distortion minimization problem, where each user weight reflects the total importance level of the packets that has been scheduled for that user. Frequency-selective power is then water-filled over all the assigned subcarriers in order to leverage the potential channel coding gain. Realistic simulation results demonstrate that the proposed scheme significantly outperforms the state-of-the-art scheduling scheme by up to 6.8 dB in terms of peak-signal-to-noise-ratio (PSNR). Further test evaluates the suitability of equal power allocation which is the common assumption in the literature.
  4. Murugan D, Lau YS, Lau CW, Lau WC, Mustafa MR, Huang Y
    PLoS ONE, 2015;10(12):e0145413.
    PMID: 26709511 DOI: 10.1371/journal.pone.0145413
    Angiotensin 1-7 (Ang 1-7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1-7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1-7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1-7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1-7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1-7. In addition, Ang 1-7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1-7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function.
  5. Khor WC, Puah SM, Tan JA, Puthucheary SD, Chua KH
    PLoS ONE, 2015;10(12):e0145933.
    PMID: 26710336 DOI: 10.1371/journal.pone.0145933
    Gram-negative bacilli of the genus Aeromonas are primarily inhabitants of the aquatic environment. Humans acquire this organism from a wide range of food and water sources as well as during aquatic recreational activities. In the present study, the diversity and distribution of Aeromonas species from freshwater lakes in Malaysia was investigated using glycerophospholipid-cholesterol acyltransferase (GCAT) and RNA polymerase sigma-factor (rpoD) genes for speciation. A total of 122 possible Aeromonas strains were isolated and confirmed to genus level using the API20E system. The clonality of the isolates was investigated using ERIC-PCR and 20 duplicate isolates were excluded from the study. The specific GCAT-PCR identified all isolates as belonging to the genus Aeromonas, in agreement with the biochemical identification. A phylogenetic tree was constructed using the rpoD gene sequence and all 102 isolates were identified as: A. veronii 43%, A. jandaei 37%, A. hydrophila 6%, A. caviae 4%, A. salmonicida 2%, A. media 2%, A. allosaccharophila 1%, A. dhakensis 1% and Aeromonas spp. 4%. Twelve virulence genes were present in the following proportions--exu 96%, ser 93%, aer 87%, fla 83%, enolase 70%, ela 62%, act 54%, aexT 33%, lip 16%, dam 16%, alt 8% and ast 4%, and at least 2 of these genes were present in all 102 strains. The ascV, aexU and hlyA genes were not detected among the isolates. A. hydrophila was the main species containing virulence genes alt and ast either present alone or in combination. It is possible that different mechanisms may be used by each genospecies to demonstrate virulence. In summary, with the use of GCAT and rpoD genes, unambiguous identification of Aeromonas species is possible and provides valuable data on the phylogenetic diversity of the organism.
  6. Rahman MA, Ramli F, Karimian H, Dehghan F, Nordin N, Mohd Ali H, et al.
    PLoS ONE, 2016;11(3):e0151466.
    PMID: 27019365 DOI: 10.1371/journal.pone.0151466
    Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell lineT1074, with IC50 value of 32.5±0.5μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.
  7. Phyu WK, Ong KC, Wong KT
    PLoS ONE, 2016;11(1):e0147463.
    PMID: 26815859 DOI: 10.1371/journal.pone.0147463
    Enterovirus A71 (EV-A71) causes self-limiting, hand-foot-and-mouth disease (HFMD) that may rarely be complicated by encephalomyelitis. Person-to-person transmission is usually by fecal-oral or oral-oral routes. To study viral replication sites in the oral cavity and other tissues, and to gain further insights into virus shedding and neuropathogenesis, we developed a consistent, orally-infected, 2-week-old hamster model of HFMD and EV-A71 encephalomyelitis. Tissues from orally-infected, 2-week-old hamsters were studied by light microscopy, immunohistochemistry and in situ hybridization to detect viral antigens and RNA, respectively, and by virus titration. Hamsters developed the disease and died after 4-8 days post infection; LD50 was 25 CCID50. Macroscopic cutaneous lesions around the oral cavity and paws were observed. Squamous epithelium in the lip, oral cavity, paw, skin, and esophagus, showed multiple small inflammatory foci around squamous cells that demonstrated viral antigens/RNA. Neurons (brainstem, spinal cord, sensory ganglia), acinar cells (salivary gland, lacrimal gland), lymphoid cells (lymph node, spleen), and muscle fibres (skeletal, cardiac and smooth muscles), liver and gastric epithelium also showed varying amounts of viral antigens/RNA. Intestinal epithelium, Peyer's patches, thymus, pancreas, lung and kidney were negative. Virus was isolated from oral washes, feces, brain, spinal cord, skeletal muscle, serum, and other tissues. Our animal model should be useful to study squamous epitheliotropism, neuropathogenesis, oral/fecal shedding in EV-A71 infection, person-to-person transmission, and to test anti-viral drugs and vaccines.
  8. Saadi Y, Yanto IT, Herawan T, Balakrishnan V, Chiroma H, Risnumawan A
    PLoS ONE, 2016;11(1):e0144371.
    PMID: 26790131 DOI: 10.1371/journal.pone.0144371
    The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems.
  9. Ayatollahitafti V, Ngadi MA, Mohamad Sharif JB, Abdullahi M
    PLoS ONE, 2016;11(1):e0146464.
    PMID: 26771586 DOI: 10.1371/journal.pone.0146464
    Body Area Networks (BANs) consist of various sensors which gather patient's vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol.
  10. Zhao D, Kim MH, Pastor-Barriuso R, Chang Y, Ryu S, Zhang Y, et al.
    PLoS ONE, 2016;11(1):e0146057.
    PMID: 26731527 DOI: 10.1371/journal.pone.0146057
    Intraocular pressure (IOP) reduction or stabilization is the only proven method for glaucoma management. Identifying risk factors for IOP is crucial to understand the pathophysiology of glaucoma.
  11. Low JS, Chin YM, Mushiroda T, Kubo M, Govindasamy GK, Pua KC, et al.
    PLoS ONE, 2016;11(1):e0145774.
    PMID: 26730743 DOI: 10.1371/journal.pone.0145774
    Nasopharyngeal carcinoma (NPC) is a neoplasm of the epithelial lining of the nasopharynx. Despite various reports linking genomic variants to NPC predisposition, very few reports were done on copy number variations (CNV). CNV is an inherent structural variation that has been found to be involved in cancer predisposition.
  12. Ng KM, Reaz MB
    PLoS ONE, 2016;11(1):e0144798.
    PMID: 26731745 DOI: 10.1371/journal.pone.0144798
    Platoon based traffic flow models form the underlying theoretical framework in traffic simulation tools. They are essentially important in facilitating efficient performance calculation and evaluation in urban traffic networks. For this purpose, a new platoon-based macroscopic model called the LWR-IM has been developed in [1]. Preliminary analytical validation conducted previously has proven the feasibility of the model. In this paper, the LWR-IM is further enhanced with algorithms that describe platoon interactions in urban arterials. The LWR-IM and the proposed platoon interaction algorithms are implemented in the real-world class I and class II urban arterials. Another purpose of the work is to perform quantitative validation to investigate the validity and ability of the LWR-IM and its underlying algorithms to describe platoon interactions and simulate performance indices that closely resemble the real traffic situations. The quantitative validation of the LWR-IM is achieved by performing a two-sampled t-test on queues simulated by the LWR-IM and real queues observed at these real-world locations. The results reveal insignificant differences of simulated queues with real queues where the p-values produced concluded that the null hypothesis cannot be rejected. Thus, the quantitative validation further proved the validity of the LWR-IM and the embedded platoon interactions algorithm for the intended purpose.
  13. Kristmundsson Á, Erlingsdóttir Á, Freeman MA
    PLoS ONE, 2015;10(12):e0144685.
    PMID: 26684810 DOI: 10.1371/journal.pone.0144685
    Due to the total and unexpected collapse of the Iceland scallop, Chlamys islandica, stocks around Iceland during the 2000s, a commercial fishing ban has been imposed on this valuable resource since 2003. Following the initial identification of an apicomplexan parasite in the scallops, a long-term surveillance program was established to evaluate the effect of the parasite on the population. The infections were highly prevalent in all shell sizes throughout the study. However, the parasite only impacts mature scallops where they cause severe macroscopic changes, characterized by an extensively diminished and abnormally coloured adductor muscle. A highly significant relationship was observed between infection intensity and gonad and adductor muscle indices. The first four years of the study, were characterized by high infection intensity and very poor condition of the adductor muscle and gonads, whilst during subsequent years, infections gradually decreased and the condition of the scallops improved. Histopathological changes were restricted to the presence of apicomplexan zoites which were widely distributed, causing varying degrees of pathology in all organs. In heavy infections, muscular and connective tissues were totally necrotized, destroying significant parts of numerous organs, especially the adductor muscle, digestive gland and gonads. The progression of the disease was in good synchrony with the mortality rates and the subsequent decline observed in the scallop stock and recruitment indices. Our findings strongly suggest that the apicomplexan parasite played a major role in the collapse of the Iceland scallop stock in Breidafjordur. In addition to causing mortality, the infections significantly impact gonad development which contributes further to the collapse of the stock in the form of lower larval recruitment. Furthermore, compelling evidence exists that this apicomplexan pathogen is causing serious disease outbreaks in other scallop populations. Similar abnormal adductor muscles and the parasite itself have been identified or observed in association with other mass mortality events in several different scallop species and commercial stocks in the northern hemisphere.
  14. Humada AM, Hojabri M, Sulaiman MH, Hamada HM, Ahmed MN
    PLoS ONE, 2016;11(4):e0152766.
    PMID: 27035575 DOI: 10.1371/journal.pone.0152766
    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
  15. Low LL, Tong SF, Low WY
    PLoS ONE, 2016;11(1):e0147127.
    PMID: 26812053 DOI: 10.1371/journal.pone.0147127
    BACKGROUND: Diabetes Mellitus is a multifaceted chronic illness and its life-long treatment process requires patients to continuously engage with the healthcare system. The understanding of how patients manoeuvre through the healthcare system for treatment is crucial in assisting them to optimise their disease management. This study aims to explore issues determining patients' treatment strategies and the process of patients manoeuvring through the current healthcare system in selecting their choice of treatment for T2DM.

    METHODS: The Grounded Theory methodology was used. Twelve patients with Type 2 Diabetes Mellitus, nine family members and five healthcare providers from the primary care clinics were interviewed using a semi-structured interview guide. Three focus group discussions were conducted among thirteen healthcare providers from public primary care clinics. Both purposive and theoretical samplings were used for data collection. The interviews were audio-taped and transcribed verbatim, followed by line-by-line coding and constant comparison to identify the categories and core category.

    RESULTS: The concept of "experimentation" was observed in patients' help-seeking behaviour. The "experimentation" process required triggers, followed by information seeking related to treatment characteristics from trusted family members, friends and healthcare providers to enable decisions to be made on the choice of treatment modalities. The whole process was dynamic and iterative through interaction with the healthcare system. The decision-making process in choosing the types of treatment was complex with an element of trial-and-error. The anchor of this process was the desire to fulfil the patient's expected outcome.

    CONCLUSION: Patients with Type 2 Diabetes Mellitus continuously used "experimentation" in their treatment strategies and help-seeking process. The "experimentation" process was experiential, with continuous evaluation, information seeking and decision-making tinged with the element of trial-and-error. The theoretical model generated from this study is abstract, is believed to have a broad applicability to other diseases, may be applied at varying stages of disease development and is non-context specific.

  16. Priyadarshani N, Marsland S, Castro I, Punchihewa A
    PLoS ONE, 2016;11(1):e0146790.
    PMID: 26812391 DOI: 10.1371/journal.pone.0146790
    Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings.
  17. Jesudason CG
    PLoS ONE, 2016;11(1):e0145026.
    PMID: 26760507 DOI: 10.1371/journal.pone.0145026
    The Carnot cycle and its deduction of maximum conversion efficiency of heat inputted and outputted isothermally at different temperatures necessitated the construction of isothermal and adiabatic pathways within the cycle that were mechanically "reversible", leading eventually to the Kelvin-Clausius development of the entropy function S with differential dS = dq/T such that [symbol: see text]C dS = 0 where the heat absorption occurs at the isothermal paths of the elementary Carnot cycle. Another required condition is that the heat transfer processes take place infinitely slowly and "reversibly", implying that rates of transfer are not explicitly featured in the theory. The definition of 'heat' as that form of energy that is transferred as a result of a temperature difference suggests that the local mode of transfer of "heat" in the isothermal segments of the pathway implies a Fourier-like heat conduction mechanism which is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the conducting material, and which is deemed reversible mechanically. These paradoxes are circumvented here by first clarifying the terms used before modeling heat transfer as a thermodynamically reversible but mechanically irreversible process and applied to a one dimensional atomic lattice chain of interacting particles subjected to a temperature difference exemplifying Fourier heat conduction. The basis of a "recoverable trajectory" i.e. that which follows a zero entropy trajectory is identified. The Second Law is strictly maintained in this development. A corollary to this zero entropy trajectory is the generalization of the Zeroth law for steady state non-equilibrium systems with varying temperature, and thus to a statement about "equilibrium" in steady state non-thermostatic conditions. An energy transfer rate term is explicitly identified for each particle and agrees quantitatively (and independently) with the rate of heat absorbed at the reservoirs held at different temperatures and located at the two ends of the lattice chain in MD simulations, where all energy terms in the simulation refer to a single particle interacting with its neighbors. These results validate the theoretical model and provides the necessary boundary conditions (for instance with regard to temperature differentials and force fields) that thermodynamical variables must comply with to satisfy the conditions for a recoverable trajectory, and thus determines the solution of the differential and integral equations that are used to model these processes. These developments and results, if fully pursued would imply that not only can the Carnot cycle be viewed as describing a local process of energy-work conversion by a single interacting particle which feature rates of energy transfer and conversion not possible in the classical Carnot development, but that even irreversible local processes might be brought within the scope of this cycle, implying a unified treatment of thermodynamically (i) irreversible (ii) reversible (iii) isothermal and (iv) adiabatic processes by conflating the classically distinct concept of work and heat energy into a single particle interactional process. A resolution to the fundamental and long-standing conjecture of Benofy and Quay concerning the Fourier principle is one consequence of the analysis.
  18. Khor KH, Moore TA, Shiels IA, Greer RM, Arumugam TV, Mills PC
    PLoS ONE, 2016;11(1):e0146022.
    PMID: 26727203 DOI: 10.1371/journal.pone.0146022
    Inflammation may contribute to the pathogenesis of specific cardiovascular diseases, but it is uncertain if mediators released during the inflammatory process will affect the continued efficacy of drugs used to treat clinical signs of the cardiac disease. We investigated the role of the complement 5a receptor 1 (C5aR1/CD88) in the cardiac response to inflammation or atenolol, and the effect of C5aR1 deletion in control of baseline heart rate in an anesthetized mouse model.
  19. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Liu WW, Poopalan P, et al.
    PLoS ONE, 2015;10(12):e0144964.
    PMID: 26694656 DOI: 10.1371/journal.pone.0144964
    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.
  20. Qureshi MA, Noor RM, Shamim A, Shamshirband S, Raymond Choo KK
    PLoS ONE, 2016;11(3):e0152727.
    PMID: 27031989 DOI: 10.1371/journal.pone.0152727
    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links