Displaying publications 41 - 57 of 57 in total

Abstract:
Sort:
  1. Mocktar FA, Abdul Razab MKA, Mohamed Noor A
    Radiat Prot Dosimetry, 2020 Jul 07;189(1):69-75.
    PMID: 32090244 DOI: 10.1093/rpd/ncaa014
    This study aims to reduce radon gas emanations in the indoor environment by incorporating kenaf and oil palm nanocellulose that act as nano-fillers into building materials. Fabrication of composite brick was carried out according to the MS and ASTM standards. In this research, 40, 80, 120, 160 and 200 ml of nanocellulose were used to replace the usage of sand, stone and cement materials, respectively. Kenaf and oil palm nanocellulose were utilised to reduce the internal and surface porosity as well as to replace the radon resources (stone), which indirectly reduced radon gas emanation. Radon gas emanated from each composite brick was measured within 10 consecutive days in an airtight prototype Perspex room using Radon Monitor Sentinel 1030. A compression test was also carried out to investigate the physical strength of the fabricated composite bricks. The results showed that 40 ml of kenaf and oil palm nanocellulose was the optimum amount in reducing the radon concentration, where the radon readings were 1.4 and 0.93 pCi per l, respectively. Meanwhile, the brick with no nanocellulose exhibited the highest radon reading of 3.77 pCi per l. Moreover, the Young modulus for the composite brick of both kenaf and oil palm nanocellulose was 28.92 and 27.8 N per mm2 compared to the control brick, which was 27 N per mm2. The results proved that radon gas emanations were reduced by 62.86% for kenaf and 75.3% for oil palm by incorporating the organic nanocellulose, which has high potential towards a healthy indoor environment.
  2. Tajudin SM, Namito Y, Sanami T, Hirayama H
    Radiat Prot Dosimetry, 2020 Jul 02;188(4):486-492.
    PMID: 31950186 DOI: 10.1093/rpd/ncz308
    As a reference photon field, several radionuclides have been used frequently, such as 241Am,137Cs and60 Co for calibration. These nuclides provide mono-energy photons for dosemeters covering few tens of keV-MeV. The main energy around 200 keV is important for both environmental and medical fields since the former should consider scattering photons and the later should measure photons from X-ray generator. In our previous work, a backscattered layout can provide a uniform photon field spectra and dose rate with an energy of 190 keV by using an affordable intensity 137 Cs gamma source. Several other quasi-monoenergetic photon fields in the range of 100-200 keV could be obtained by using several available gamma sources. Two calibrated environmental CsI(Tl) survey meters, Horiba PA-1000 and Mr. Gamma A2700, had been measured with the developed backscattered photon field to understand energy-dependent features in order to confirm dosemeter readings. Consequently, both scintillator instruments are sensitive for measurements of the relatively low dose rates at 190 keV.
  3. Bohari A, Hashim S, Mohd Mustafa SN
    Radiat Prot Dosimetry, 2020 Jun 24;188(3):397-402.
    PMID: 31950168 DOI: 10.1093/rpd/ncz299
    Radiation scattered throughout the room during fluoroscopy-guided interventional (FGI) procedures was quantified at different locations using nanoDot optically stimulated luminescence dosemeters. All the tube angulation imaging shows that the radiation spectrum resembled a single peak distribution. The left anterior oblique 90° shows the highest single peak distribution (28.65 mSv/h). The single peak distribution for standard anteroposterior, left anterior oblique 45° and right anterior oblique 45° imaging was 13.32, 22.99 and 17.40 mSv/h, respectively. All tube angulation shows that the position of the interventional radiologist experienced a higher radiation level compared to other staffs. The doses of radiation varied widely around the perimeter of the patient's table and changed in accordance to imaging angles during procedures. Knowledge pertaining to radiation exposure levels is integral in order to avoid adverse risks, particularly among staff.
  4. Rizk C, Askounis P, Okyar HB, Sangau JK, Baradaran S, Al Fares E, et al.
    Radiat Prot Dosimetry, 2020 Aug 28;190(2):217-225.
    PMID: 32696972 DOI: 10.1093/rpd/ncaa093
    This paper presents the results of the evaluation of the uncertainty in measurement of the personal dose equivalent, Hp(10), at nine individual monitoring services (IMSs) in Asia and the Pacific region. Different types of passive dosemeters were type-tested according to the International Electrotechnical Commission 62387 requirements. The uncertainty in measurement was calculated using the Guide to the Expression of Uncertainty in Measurement approach. Expanded uncertainties ranged between 24 and 86% (average = 38%) for Hp(10) values around 1 mSv and between 14 and 40% (average = 27%) for doses around the annual dose limit, Hp(10) = 20 mSv. The expanded uncertainties were lower than the 1.5 factor in either direction proposed by the International Commission on Radiological Protection for doses near the relevant dose limits. This indicates an acceptable level of uncertainty for all participating IMSs. Uncertainty evaluation will help the IMSs to acknowledge the accuracy of their measurements.
  5. Cheng CS, Jong WL, Ung NM, Wong JHD
    Radiat Prot Dosimetry, 2017 Jul 01;175(3):357-362.
    PMID: 27940494 DOI: 10.1093/rpd/ncw357
    This work evaluated and compared the absorbed doses to selected organs in the head and neck region from the three image guided radiotherapy systems: cone-beam computed tomography (CBCT) and kilovoltage (kV) planar imaging using the On-board Imager® (OBI) as well as the ExacTrac® X-ray system, all available on the Varian Novalis TX linear accelerator. The head and neck region of an anthropomorphic phantom was used to simulate patients' head within the imaging field. Nanodots optically stimulated luminescent dosemeters were positioned at selected sites to measure the absorbed doses. CBCT was found to be delivering the highest dose to internal organs while OBI-2D gave the highest doses to the eye lenses. The setting of half-rotation in CBCT effectively reduces the dose to the eye lenses. Daily high-quality CBCT verification was found to increase the secondary cancer risk by 0.79%.
  6. Jamil A, Mohd MI, Zain NM
    Radiat Prot Dosimetry, 2018 Dec 01;182(4):413-418.
    PMID: 29767799 DOI: 10.1093/rpd/ncy082
    After years of establishment of computed radiography (CR) and digital radiography (DR), manufacturers have introduced exposure indicator/index (EI) as a feedback mechanism for patient dose. However, EI consistency is uncertain for CR. Most manufacturers recommended EI values in a range of numbers for all examination, instead of giving the exact range for a specific body part, raising a concern of inappropriate exposure given to the patient in clinical practice. The aims of this study were to investigate the EI consistency in DR systems produced in constant exposure parameters and clinical condition, and to determine the interaction between the anatomical part and EI. A phantom study of skull, chest, abdomen and hand was carried out and four systems were used for comparison-Fuji CR, Carestream CR, Siemens DR and Carestream DR. For each projection, the phantom positioning and exposure parameters were set according to the standard clinical practice. All exposure parameters and clinical conditions were kept constant. Twenty (20) exposures were taken for each projection and the EI was recorded. Findings showed that EI is not consistent in DR systems despite constant exposure parameters and clinical condition except in Siemens DR, through skull examination. Statistical analysis showed a significant interaction between anatomical parts and EI values (P < 0.05). EI alone was proven to be less reliable to provide technologist a correct feedback on exposure level. The interaction between anatomical parts and EI values intensifies the need for an anatomical-specific EI values set by all manufacturers for accurate feedback on the exposure parameters used and the detector entrance dose.
  7. Maxwell O, Emmanuel JS, Olusegun AO, Cyril EO, Ifeanyi AT, Embong Z
    Radiat Prot Dosimetry, 2019 May 01;183(3):332-335.
    PMID: 30085254 DOI: 10.1093/rpd/ncy121
    Building materials of different brands were assessed for the concentrations of 226Ra, 232Th and 40K using HPGe detector. The activity concentrations in the measured samples ranged from 27 ± 8 to 82 ± 8 Bq kg-1 for 226Ra, 41 ± 4 to 101 ± 8 Bq kg-1 for 232Th and 140 ± 8 to 940 ± 19 Bq kg-1 for 40K, respectively. The Radium equivalent (Raeq) activity from the samples was found to be <370 Bq kg-1 as the recommended value for construction materials. This study will set a baseline data for significant standards on radiation exposure of the measured radionuclides in the selected building materials used in Nigeria.
  8. Rizk C, Long S, Okyar HB, Baradaran S, Al Fares E, Sangau JK, et al.
    Radiat Prot Dosimetry, 2019 Dec 31;187(4):418-425.
    PMID: 31605130 DOI: 10.1093/rpd/ncz182
    An intercomparison exercise (IC) on whole body dosemeters to determine the quantity personal dose equivalent Hp (10) in photon radiation fields was jointly organised and conducted by the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for individual monitoring services (IMS) in Asia and the Pacific region. This was arranged to help the IMS in the region to achieve a more accurate dosimetry service and to improve their performance. Twenty-four IMS participated in this IC. Four sets of dosemeters were irradiated using X-ray and gamma radiation qualities at 0° and 20° angle of incidence, respectively. All the IMS provided results that were within the acceptable limits defined by the IAEA. However, only a minority of participants reported confidence intervals that included the reference dose, for each exposure scenario. For few systems, the overall performance could be significantly improved by reviewing calibration procedures.
  9. Wong JHD, Bakhsh M, Cheah YY, Jong WL, Khor JS, Ng KH
    Radiat Prot Dosimetry, 2019 Dec 31;187(4):451-460.
    PMID: 31650160 DOI: 10.1093/rpd/ncz186
    This study characterises and evaluates an Al2O3:C-based optically stimulated luminescent dosemeter (OSLD) system, commercially known as the nanoDot™ dosemeter and the InLight® microStar reader, for personal and in vivo dose measurements in diagnostic radiology. The system characteristics, such as dose linearity, reader accuracy, reproducibility, batch homogeneity, energy dependence and signal stability, were explored. The suitability of the nanoDot™ dosemeters was evaluated by measuring the depth dose curve, in vivo dose measurement and image perturbation. The nanoDot™ dosemeters were observed to produce a linear dose with ±2.8% coefficient variation. Significant batch inhomogeneity (8.3%) was observed. A slight energy dependence (±6.1%) was observed between 60 and 140 kVp. The InLight® microStar reader demonstrated good accuracy and a reproducibility of ±2%. The depth dose curve measured using nanoDot™ dosemeters showed slightly lower responses than Monte Carlo simulation results. The total uncertainty for a single dose measurement using this system was 11%, but it could be reduced to 9.2% when energy dependence correction was applied.
  10. Yarima MH, Khandaker MU, Nadhiya A, Olatunji MA
    Radiat Prot Dosimetry, 2019 Oct 01;184(3-4):359-362.
    PMID: 31089715 DOI: 10.1093/rpd/ncz115
    Uranium, thorium and potassium are the most abundant naturally occurring radioactive materials (NORMs) found in soils and other environmental media including foodstuffs. Since the human exposures to NORMs is an unavoidable phenomenon, in such a way that they can easily find their way to human being via food chain, detailed knowledge on their presence in foodstuffs is necessary to assess the radiation dose to the population. Thus, the present study concerns the assessment of natural radioactivity in maize, a staple foodstuff for Nigerian, via HPGe gamma-ray spectrometry. Activity concentrations (Bq/kg) in the maize samples were found to be in the range of 6.1 ± 0.6-8.2 ± 1.3, 2.2 ± 0.4-5.1 ± 0.7 and 288 ± 16-401 ± 24 for 226Ra, 232Th and 40K, respectively. Measured data for 226Ra and 232Th show below the world average values of 67 Bq/kg and 82 Bq/kg, respectively, while the activity of 40K exceeds the global average of 310 Bq/kg. The annual effective dose via the maize consumption was found to be far below the UNSCEAR recommended ingestion dose limit of 290 μSv/y, and the estimated lifetime cancer risk show lower than the ICRP (1991) cancer risk factor of 2.5 × 10-3 based on the additional annual dose limit of 1 mSv for general public, thus pose no adverse health risk to the Nigerian populace.
  11. Salah H, Al-Mohammed HI, Mayhoub FH, Sulieman A, Alkhorayef M, Abolaban FA, et al.
    Radiat Prot Dosimetry, 2021 Oct 12;195(3-4):349-354.
    PMID: 34144608 DOI: 10.1093/rpd/ncab077
    This study has sought to evaluate patient exposures during the course of particular diagnostic positron emission tomography and computed tomography (PET/CT) techniques. A total of 73 patients were examined using two types of radiopharmaceutical: 18F-fluorocholine (FCH, 48 patients) and 68Ga-prostate-specific membrane antigen (PSMA, 25 patients). The mean and range of administered activity (AA) in MBq, and effective dose (mSv) for FCH were 314.4 ± 61.6 (462.5-216.8) and 5.9 ± 1.2 (8.8-4.11), respectively. Quoted in the same set of units, the mean and range of AA and effective dose for 68Ga-PSMA were 179.3 ± 92.3 (603.1-115.1) and 17.9 ± 9.2 (60.3-11.5). Patient effective doses from 18F-FCH being a factor of two greater than the dose resulting from 68Ga-PSMA PET/CT procedures. CT accounts for some 84 and 23% for 18F-FCH and 68Ga-PSMA procedures, accordingly CT acquisition parameter optimization is recommended. Patient doses have been found to be slightly greater than previous studies.
  12. Sulieman A, Mayhoub F, Ibrahim HS, Omer H, Alkhorayef M, Abolaban FA, et al.
    Radiat Prot Dosimetry, 2021 Oct 12;195(3-4):314-318.
    PMID: 34265851 DOI: 10.1093/rpd/ncab107
    The objective of this study is to estimate the annual effective dose for cardiologists and nurses by measuring Hp(10) and Hp(0.07) during cardiac catheterization procedures. A total of 16 staffs members were working in interventional cardiology during 1 year at a tertiary hospital. The occupational dose was measured using calibrated thermo-luminescent dosemeters (TLD-100, LiF:Mg,Ti). The overall mean and range of the annual Hp(10) and Hp(0.07) (mSv) for cardiologists were 3.7 (0.13-14.5) and 3.2 (0.21-14.7), respectively. Cardiologists were frequently exposed to higher doses compared with nurses and technologists. The exposure showed wide variations, which depend on occupation and workload. Staff is adhered to radiation protection guidelines regarding shielding the trunk, thyroid shield, thus appropriately protected. Lens dose measurement is recommended to ensure that dose limit is not exceeded.
  13. Abuzaid MM, Elshami W, Tekin HO, Sulieman A, Bradley DA
    Radiat Prot Dosimetry, 2021 Nov 03;196(1-2):10-16.
    PMID: 34423365 DOI: 10.1093/rpd/ncab125
    The present study compares three different multidetector CT (MDCT) scanners for routine brain imaging in terms of image quality and radiation doses. The volume CT dose index (CTDIvol), dose-length product (DLP), and effective dose (E) were calculated. Subjective image assessment was obtained based on a scale ranging from 1 (unacceptable) to 5 (optimum). All images scored 3.5 or over, with the 160-slice MDCT images being favoured. For the 4-, 16- and 160-slice MDCT scanners, the respective median values for CTDIvol were 57 mGy, 41 mGy, and 28 mGy; DLP values were 901 mGy.cm, 680 mGy.cm, and 551 mGy.cm; and effective doses were 2 mSv, 1.5 mSv, and 1 mSv, respectively. Compared to the 160-slice MDCT, the dose values for the 4- and 16-slice units were significantly greater. In practice, the CT modality used must be carefully selected to avoid elevated radiation doses and maintain image quality.
  14. Khandaker MU, Zayadi NSB, Sani SFA, Bradley DA, Osman H, Alzamil Y, et al.
    Radiat Prot Dosimetry, 2023 Nov 02;199(18):2174-2178.
    PMID: 37934995 DOI: 10.1093/rpd/ncad179
    Present study concerns the radiological character of Malaysian honey. A total of 18 samples (representative of the various most common types) were obtained from various honey bee farms throughout the country. Using a high-purity germanium γ-ray spectroscopic system, the samples were analysed for the naturally occurring radionuclides 226Ra, 228Ra and 40K. The respective range of activities (in Bq/kg) was: 3.49 ± 0.35 to 4.51 ± 0.39, 0.99 ± 0.37 to 1.74 ± 0.39 and 41.37 ± 3.26 to 105.02 ± 6.91. The estimated associated committed effective doses were derived from prevailing data on national consumption of honey, the annual dose being found low compared with the UNSCEAR reference dose limit of 290 μSv y-1. The estimated threshold consumption rate for honey indicates a maximum intake of 339 g/d, which poses an insignificant radiological risk to public health; however, the total dietary exposure may not, the guidance level of 290 μSv y-1 being applicable to dietary intake of all foodstuffs. The study is in support of the cultivation of a healthy lifestyle, acknowledging prevailing radioactivity within the environment.
  15. Nadhiya A, Khandaker MU, Mahmud S, Abdullah WH
    Radiat Prot Dosimetry, 2023 Nov 02;199(18):2224-2228.
    PMID: 37934996 DOI: 10.1093/rpd/ncad213
    Concentrations of heavy metals in Yellowfin and Skipjack tuna fishes from the Laccadive sea were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) to evaluate the human health hazards via their consumption. The samples were collected from different atolls of Maldives to ensure a good representation of sample distribution. The metal concentration in tuna fish is found to be below the maximum tolerable limit set by different international organisations. The target hazard quotient values for individual metals were well below the limiting value of 1, indicating an insignificant health risk via the dietary intake of fish. The maximum targeted cancer risk value was 10 -4, indicating low carcinogenic risk from the consumption of tuna fish from the Maldives. Hence, the consumption of tuna from the Laccadive Sea is safe for human health.
  16. Ahmed Shaker Hegian Z, Moh'd Abu Tahoun L, Ramli RM, Noor Azman NZ
    Radiat Prot Dosimetry, 2023 Dec 29;200(1):25-31.
    PMID: 37738470 DOI: 10.1093/rpd/ncad259
    The mean glandular dose (MGD) is a measurement used in mammography to assess the amount of radiation absorbed. By considering specific exposure radiation dose criteria, MGD ensures minimal radiation while maintaining image quality for detecting abnormalities. The relationship between MGD and compressed breast thickness (CBT) is commonly utilized in mammographic dose surveys. This study aims to estimate the MGD-CBT relationship based on patient age in Jordan through retrospective analysis. The analysis involved 3465 screening mammography images of women aged 40-80, divided into three age groups: 40-49, 50-64 and 65-80 years. Each group had a specific CBT range (16.5-156 mm). The results indicate that MGD ranges from 1.6 to 1.7 mGy across all three age groups, independent of CBT. Thus, a significant and positive correlation exists between MGD and CBT in all age groups.
  17. Wahabi JM, Ung NM, Mahdiraji GA, Wong JHD
    Radiat Prot Dosimetry, 2024 Mar 02;200(3):264-273.
    PMID: 38123475 DOI: 10.1093/rpd/ncad303
    The radioluminescent (RL) dosemeter is excellent for real-time radiation measurement and can be used in various applications. A plastic scintillator is often the choice sensor because of its size and tissue equivalency. This study aims to characterise a novel plastic scintillator irradiated with high-energy photon beams. An RL dosimetry system was developed using the plastic scintillator. The RL dosimetry system was irradiated using a linear accelerator to characterise the dose linearity, dose rate, energy dependency and depth dose. The developed system showed a linear response toward the dose and dose rate. An energy dependency factor of 1.06 was observed. Depth dose measurement showed a mean deviation of 1.21% from the treatment planning system. The response and characteristics of the plastic scintillator show that it may be used as an alternative in an RL dosimetry system.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links