Displaying publications 41 - 60 of 113 in total

Abstract:
Sort:
  1. Nawaz M, Abbasi MW, Hisaindee S, Zaki MJ, Abbas HF, Mengting H, et al.
    PMID: 26945123 DOI: 10.1016/j.saa.2016.02.022
    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
  2. Woo HJ, Arof AK
    PMID: 26945998 DOI: 10.1016/j.saa.2016.02.034
    A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94×10(-7)Scm(-1) to 3.82×10(-5)Scm(-1). Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN(-) stretching mode (2030-2090cm(-1)). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4(+) complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.
  3. El-Faham A, Soliman SM, Osman SM, Ghabbour HA, Siddiqui MR, Fun HK, et al.
    PMID: 26845586 DOI: 10.1016/j.saa.2016.01.051
    Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1nm (f=0.1389), 204.2nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.
  4. Gan SM, Pearl ZF, Yuvaraj AR, Lutfor MR, Gurumurthy H
    PMID: 26004096 DOI: 10.1016/j.saa.2015.05.027
    Two new ether substituted azodyes were synthesized and characterized by different spectral analysis such as (1)H NMR, (13)C NMR, FTIR and UV/Vis. Synthesized compounds were used to study the photoisomerization phenomenon by using UV-Vis spectro-photometer. Interesting polarity dependent effect is observed for the first time on these materials. Trans-cis (E-Z) and cis-trans (Z-E) conversion occurred within 41 s and 445 min, respectively for both the compounds in solutions. Polarizing optical microscopy studies revealed that there is no liquid crystal phase for both the compounds. The dramatic variation in the optical property is speculated to be the polarity of the chemical species. These derivatives are useful to fabricate optical data storage devices.
  5. Chidan Kumar CS, Parlak C, Fun HK, Tursun M, Bilge M, Chandraju S, et al.
    PMID: 25989614 DOI: 10.1016/j.saa.2015.05.012
    Molecular structure and properties of 1-(2-hydroxy-4,5-dimethylphenyl)ethanone were experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of the reported compound were supported with computational studies using the density functional theory (DFT), with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set. Potential energy distribution (PED) and potential energy surface (PES) analyses were performed to identify characteristic frequencies and reliable conformational analysis correspondingly. The compound crystallizes in monoclinic space group C2/c with the CO up-OH down conformation. There is a good agreement between the experimentally determined geometrical parameters and vibrational frequencies of the compound to those predicted theoretically.
  6. Choong YK, Lan J, Lee HL, Chen XD, Wang XG, Yang YP
    PMID: 26186395 DOI: 10.1016/j.saa.2015.07.054
    Many macrofungus sclerotia are well-known medicinal herbs, health food and nutritional supplements. However, the prevalent adulterant commercial products are major hindrances to their incorporation into mainstream medical use in many countries. The mushroom sclerotia of Lignosus rhinocerotis, Poria cocos, Polyporus umbellatus, Pleurotus tuber-regium and Omphalia lapidescens are commonly used in traditional Chinese medicine. In this study, IR macro-fingerprint method was used in the identification of these sclerotia. The results showed that the spectrum of L. rhinocerotis (LR) was comparable with P. cocos with 94.4% correlation, except that the peak at 1543cm(-1) of LR appeared in lower intensity. The spectrum of P. umbellatus and P. tuber-regium was also correlated (91.5%), as both spectra could be clearly discriminated in that P. umbellatus spectrum has small base peaks located at the range of 1680-1500cm(-1). O. lapidescens was not comparable with all the other sclerotia as its spectrum was totally different. Its base peak was broad and derivated equally along the range. The first IR has revealed the dissimilarity among five mushrooms sclerotia. The second derivative and 2DIR further enhanced the identification in detail.
  7. Heng MP, Sinniah SK, Teoh WY, Sim KS, Ng SW, Cheah YK, et al.
    PMID: 26057090 DOI: 10.1016/j.saa.2015.05.095
    Testosterone thiosemicarbazone, L and its nickel (II) complex 1 were synthesized and characterized by using FTIR, CHN, (1)H NMR, and X-ray crystallography. X-ray diffraction study confirmed the formation of L from condensation of testosterone and thiosemicarbazide. Mononuclear complex 1 is coordinated to two Schiff base ligands via two imine nitrogens and two tautomeric thiol sulfurs. The cytotoxicity of both compounds was investigated via MTT assay with cisplatin as positive reference standard. L is more potent towards androgen-dependent LNCaP (prostate) and HCT 116 (colon). On the other hand, complex 1, which is in a distorted square planar environment with L acting as a bidentate NS-donor ligand, is capable of inhibiting the growth of all the cancer cell lines tested, including PC-3 (prostate). It is noteworthy that both compounds are less toxic towards human colon cell CCD-18Co. The intrinsic DNA binding constant (Kb) of both compounds were evaluated via UV-Vis spectrophotometry. Both compounds showed Kb values which are comparable to the reported Kb value of typical classical intercalator such as ethidium bromide. The binding constant of the complex is almost double compared with ligand L. Both compounds were unable to inhibit the action topoisomerase I, which is the common target in cancer treatment (especially colon cancer). This suggest a topoisomerase I independent-cell death mechanism.
  8. Vikneswaran R, Syafiq MS, Eltayeb NE, Kamaruddin MN, Ramesh S, Yahya R
    PMID: 26046495 DOI: 10.1016/j.saa.2015.05.087
    Copper ion recognition and DNA interaction of a newly synthesized fluorescent Schiff base (HPyETSC) were investigated using UV-vis and fluorescent spectroscopy. Examination using these two techniques revealed that the detection of copper by HPyETSC is highly sensitive and selective, with a detection limit of 0.39 μm and the mode of interaction between HPyETSC and DNA is electrostatic, with a binding constant of 8.97×10(4) M(-1). Furthermore, gel electrophoresis studies showed that HPyETSC exhibited nuclease activity through oxidative pathway.
  9. Aissaoui T, AlNashef IM, Hayyan M, Hashim MA
    PMID: 25985123 DOI: 10.1016/j.saa.2015.05.001
    Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs.
  10. Parlak C, Ramasami P, Kumar CS, Tursun M, Quah CK, Rhyman L, et al.
    PMID: 25974671 DOI: 10.1016/j.saa.2015.04.022
    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one [C21H15ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of HF, MP2, BP86, BLYP, BMK, B3LYP, B3PW91, B3P86 and M06-2X functionals. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the triclinic space group P-1 with the cis-trans-trans form. There is a good agreement between the experimentally determined structural parameters and vibrational frequencies of the compound and those predicted theoretically using the density functional theory with the BLYP and BP86 functionals.
  11. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR
    PMID: 26186612 DOI: 10.1016/j.saa.2015.07.009
    Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 μg/ml.
  12. Abdollahi Y, Sairi NA, Said SB, Abouzari-lotf E, Zakaria A, Sabri MF, et al.
    PMID: 26119355 DOI: 10.1016/j.saa.2015.06.036
    It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up.
  13. Thanigaimani K, Arshad S, Khalib NC, Razak IA, Arunagiri C, Subashini A, et al.
    PMID: 25942090 DOI: 10.1016/j.saa.2015.04.028
    The structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one (C19H13BrO) crystallized in the triclinic system of P-1 space group. The unit cell dimensions are: a=5.8944 (9)Å, b=7.8190 (12)Å, c=16.320 (2)Å, α=102.4364 (19)°, β=95.943 (2)°, γ=96.274 (2)° and Z=2. The physical properties of this compound was determined by the spectroscopic methods (FTIR and (1)H and (13)C NMR). Quantum chemical investigations have been employed to investigate the structural and spectral properties. The molecular structure, vibrational assignments, (1)H and (13)C NMR chemical shift values, non-linear optical (NLO) effect, HOMO-LUMO analysis and natural bonding orbital (NBO) analysis were calculated using HF and DFT/B3LYP methods with 6-311++G(d,p) basis set in the ground state. The results show that the theoretical calculation of the geometrical parameters, vibrational frequencies and chemical shifts are comparable with the experimental data. The crystal structure is influenced and stabilized by weak C-H⋯π interactions connecting the molecules into infinite supramolecular one dimensional ladder-like arrangement. Additionally, this compound is evaluated for their antibacterial activities against gram positive and gram negative strains using a micro dilution procedure and shows activities against a panel of microorganisms.
  14. Panicker CY, Varghese HT, Narayana B, Divya K, Sarojini BK, War JA, et al.
    PMID: 25863457 DOI: 10.1016/j.saa.2015.03.064
    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of Methyl N-({[2-(2-methoxyacetamido)-4-(phenylsulfanyl) phenyl]amino} [(methoxycarbonyl)imino]methyl)carbamate have been investigated using HF and DFT levels of calculations. The geometrical parameters are in agreement with XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential study was also performed. The first and second hyperpolarizability was calculated in order to find its role in nonlinear optics. Molecular docking studies are also reported. Prediction of Activity Spectra analysis of the title compound predicts anthelmintic and antiparasitic activity as the most probable activity with Pa (probability to be active) value of 0.808 and 0.797, respectively. Molecular docking studies show that both the phenyl groups and the carbonyl oxygens of the molecule are crucial for bonding and these results draw us to the conclusion that the compound might exhibit pteridine reductase inhibitory activity.
  15. Panicker CY, Varghese HT, Nayak PS, Narayana B, Sarojini BK, Fun HK, et al.
    PMID: 25863456 DOI: 10.1016/j.saa.2015.03.065
    FT-IR spectrum of (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one was recorded and analyzed. The vibrational wavenumbers were computed using HF and DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign IR bands. Potential energy distribution was done using GAR2PED software. The geometrical parameters of the title compound are in agreement with the XRD results. NBO analysis, HOMO-LUMO, first and second hyperpolarizability and molecular electrostatic potential results are also reported. The possible electrophile attacking sites of the title molecule is identified using MEP surface plot study. Molecular docking results predicted the anti-leishmanic activity for the compound.
  16. Tursun M, Kumar CS, Bilge M, Rhyman L, Fun HK, Parlak C, et al.
    PMID: 25829021 DOI: 10.1016/j.saa.2015.03.022
    Molecular structure and properties of 2-fluoro-4-bromobenzaldehyde (FBB, C7H4BrFO) was experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of FBB were supported with computational studies using the density functional theory, with the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Molecular dimer formed by the intermolecular hydrogen bonding was investigated. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. FBB crystallizes in orthorhombic space group P2(1)2(1)2(1) with the O-trans conformation. In order to investigate halogen effect, the chloro- (CBB) and bromo- (BBB) analogs of FBB have also been studied theoretically. It is observed that all compounds prefer the stable O-trans conformation. Although the free energy difference between the O-cis and O-trans conformers is less than 2.5 kcal/mol, the free energy rotational barrier is at least 7.4 kcal/mol. There is a good agreement between the experimentally determined structural parameters, and vibrational frequencies of FBB and those predicted theoretically.
  17. Barakat A, Al-Najjar HJ, Al-Majid AM, Soliman SM, Mabkhot YN, Shaik MR, et al.
    PMID: 25827772 DOI: 10.1016/j.saa.2015.03.016
    The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained.
  18. Kumar CS, Parlak C, Tursun M, Fun HK, Rhyman L, Ramasami P, et al.
    PMID: 25767992 DOI: 10.1016/j.saa.2015.02.079
    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed.
  19. Murthy MB, Daya Sagar BS, Patil RL
    PMID: 12659896
    The electronic absorption spectra of eight substituted acetic acids have been measured at room temperature in several solvents. The ground state dipole moments are evaluated experimentally for these molecules. These ground state values are used in conjunction with the spectral results to evaluate their first electronically excited state dipole moments. For all the molecules investigated here the dipole moments in the excited state are higher than their ground state values.
  20. Ghani KA, Sudik S, Omar AF, Mail MH, Seeni A
    PMID: 31216502 DOI: 10.1016/j.saa.2019.117241
    Cancer is increasing in incidence and the leading cause of death worldwide. Controlling and reducing cancer requires early detection and technique to accurately detect and quantify predictive biomarkers. Optical spectroscopy has shown promising non-destructive ability to display distinctive spectral characteristics between cancerous and normal tissues from different part of human organ. Nonetheless, not many information is available on spectroscopic properties of cancer cell lines. In this research, the visible-near infrared (VIS-NIR) absorbance spectroscopy measurement of cultured cervical cancer (HeLa) and prostate cancer cells (DU145) lines has been performed to develop spectral signature of cancer cells and to generate algorithm to quantify cancer cells. Spectroscopic measurement on mouse skin fibroblast (L929) was also taken for comparative purposes. In visible region, the raw cells' spectra do not produce any noticeable peak absorbance that provides information on color because the medium used for cells is colorless and transparent. NIR wavelength between 950 and 975 nm exhibit significant peak due to water absorbance by the medium. Development of spectral signature for the cells through the application of regression technique significantly enhances the diverse characteristics between L929, HeLa and DU145. The application of multiple linear regression allows high measurement accuracy of the cells with coefficient of determination above 0.94.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links