Displaying publications 41 - 60 of 69 in total

Abstract:
Sort:
  1. Arief II, Afiyah DN, Wulandari Z, Budiman C
    J Food Sci, 2016 Nov;81(11):M2761-M2769.
    PMID: 27712046 DOI: 10.1111/1750-3841.13509
    Probiotics may be used to enhance the functionality and nutritional values of fermented sausages. This study aims to evaluate the physicochemical and sensory properties of beef sausages fermented by lactic acid bacteria of Lactobacillus plantarum IIA-2C12 and L. acidophilus IIA-2B4. These strains were isolated from beef cattle and have shown to display probiotic features. While the nutrient contents were not affected by the probiotics, the pH, texture, and color varied among the sausages. Further analysis on fatty acids showed different profiles of saturated (C14:0, C17:0, and C20:0) and unsaturated (C14:1, C18:1n9c, C18:2n6c, and C22:6n3) fatty acids in sausages with probiotics. Gas chromatography-mass spectrometry further revealed some flavor development compounds including acid, alcohols, aldehydes, aromatic, ketones, sulfur, hydrocarbons and terpenes, varied among the sausages. Hedonic test showed no difference in the preference toward aroma, texture, and color for untrained panelists.
    Matched MeSH terms: Aldehydes
  2. Siti Balkis Budin, Norfadilah Rejab, Abdul Gapor Mohd Top, Wan Nazaimoon Wan Mohamud, Mokhtar Abu Bakar, Khairul Osman, et al.
    MyJurnal
    This study was conducted to evaluate the oxidative damage in diabetic mellitus induced rats. The evaluation of DNA damage was carried out by the Alkaline Comet Assay using peripheral lymphocyte cells taken from streptozotocin-induced diabetic rats (50 mg/kg) and control rats. The levels of malondealdehyde (MDA), 4-hydroxynonenal (4-HNE), fasting blood glucose (FBG) and HbA1c were also measured. All the induced diabetic rats were hyperglycemic until the end of the study with significantly higher levels of FBG and HbA1c as compared to the control rats. The results showed the percentage of tail DNA and tail moment values were also significantly higher in the diabetic induced rats. The same observations were made on the levels of plasma MDA and 4-HNE. In conclusion, this study indicated that hyperglycemic condition in diabetic induced rats could generate oxidative DNA damage.
    Matched MeSH terms: Aldehydes
  3. MyJurnal
    The present study was to evaluate the toxicity of damnacanthal, nordamnacanthal, betulinic acid and zerumbone isolated from local medicinal plants towards leukemia cell lines and immune cells by using MTT assay and flow cytometry cell cycle analysis. The results showed that damnacanthal significantly inhibited HL-60 cells, CEM-SS and WEHI-3B with the IC50 value of 4.0 µg/mL, 8.0 µg/mL and 3.3 µg/mL, respectively. Nordamnacanthal and betulinic acid showed stronger inhibition towards CEM-SS and HL-60 cells with the IC50 value of 5.7 µg/mL and 5.0 µg/mL, respectively. In contrast, Zerumbone was demonstrated to be more toxic towards those leukemia cells with the IC50 value less than 10 µg/mL. Damnacanthal, nordamnacanthal and betulinic acid were not toxic towards 3T3 and PBMC compared to doxorubicin which showed toxicity effects towards 3T3 and PBMC with the IC50 value of 3.0 µg/mL and 28.0 µg/mL, respectively. The cell cycle analysis exhibited that damnacanthal exerted its toxicity effect towards HL-60 cells by inducing apoptosis with value of 25% after 72 hours treatment. Thus, these compounds could be the potential anticancer drug with less toxic side effect.
    Matched MeSH terms: Aldehydes
  4. Farah Fauzi, Siti Balkis Budin, Shahrul Azwan, Leong, Kok Yuen
    MyJurnal
    Physical training is associated with oxidative stress and improvement in blood antioxidant status. In this study, we investigated the effects of training on plasma malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) as markers of lipid peroxidation, superoxide dismutase (SOD) activity, and ascorbic acid (AA) after a single bout of acute exercise. Twelve healthy, untrained young adult men were recruited for 5 weeks of aerobic training period. They were subjected to a rope-skipping exercise for 20 minutes at the intensity of 65-80% of heart rate reserve, thrice weekly. They also had to perform a single, acute bout of the same exercise protocol prior to and after training period. Venous blood samples were collected at resting condition (BL), immediately (0 h) and 24 hours (24 h) post acute exercise on both single bout sessions. Results showed that the pattern changes of oxidative stress response are quite similar on both acute sessions. The acute bouts of rope-skipping is associated with a significant increased (p = 0.001) in lipid peroxidation markers immediately after cessation of exercise, with a concomitant increases in antioxidant levels, albeit higher when compared to pre-training values (p = 0.001). These changes were followed by a significant decreased (p = 0.001) in all parameters, toward resting values, 24 hours thereafter. The training program seemed to induce a significant increase in MDA and 4-1-INE but also enhanced the antioxidant defense system namely SOD and AA among the untrained subjects.
    Matched MeSH terms: Aldehydes
  5. Ahmad S, Zaib S, Jalil S, Shafiq M, Ahmad M, Sultan S, et al.
    Bioorg Chem, 2018 10;80:498-510.
    PMID: 29996111 DOI: 10.1016/j.bioorg.2018.04.012
    In this research work, we report the synthesis and biological evaluation of two new series of 1-benzyl-4-(benzylidenehydrazono)-3,4-dihydro-1H-benzo[c] [1,2]thiazine 2,2-dioxides and 1-benzyl-4-((1-phenylethylidene)hydrazono)-3,4-dihydro-1H-benzo[c][1,2]thiazine 2,2-dioxides. The synthetic plan involves the mesylation of methyl anthranilate with subsequent N-benzylation of the product. The methyl 2-(N-benzylmethylsulfonamido)benzoate was subjected to cyclization reaction in the presence of sodium hydride to obtain 1-benzyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide which was treated with hydrazine hydrate to get corresponding hydrazone precursor. Finally, the titled compounds were obtained by reaction of hydrazone with various substituted aldehydes and ketones. The synthesized derivatives were subjected to carry out their inhibition activities against monoamine oxidases along with modelling investigations to evaluate their binding interactions and dynamic stability during the docking studies. The inhibition profile of potent compounds was found as competitive for both the isozymes. The compounds were more selective inhibitors of MAO-A as compared to MAO-B. Moreover, drug likeness profile of the derivatives was evaluated to have an additional insight into the physicochemical properties. The molecular dynamic simulations predicted the behaviour of amino acids with the active site residues.
    Matched MeSH terms: Aldehydes
  6. Mohd Izham NZ, Yusoff HM, Ul Haq Bhat I, Endo T, Fukumura H, Kwon E, et al.
    Data Brief, 2020 Jun;30:105568.
    PMID: 32368595 DOI: 10.1016/j.dib.2020.105568
    The structural investigation of synthesized compounds can be carried out by various spectroscopic techniques. It is an important prospect in order to elucidate the structure of the desired products before being further utilized. The preparation of new p-nitro stilbene Schiff base derivatives as an electrochemical DNA potential spacer was synthesized using (E)-4-(4-nitrostyryl)aniline from Heck reaction with aldehydes in ethanolic solution. The data presented here in this article contains FTIR, UV-Vis and 1H and 13C NMR of (E)-4-(4-nitrostyryl)aniline and nitrostyryl aniline derivatives.
    Matched MeSH terms: Aldehydes
  7. Suryaningtyas W, Parenrengi MA, Bajamal AH, Rantam FA
    Malays J Med Sci, 2020 May;27(3):34-42.
    PMID: 32684804 DOI: 10.21315/mjms2020.27.3.4
    Background: Hydrocephalus induces mechanical and biochemical changes in neural cells of the brain. Astrogliosis, as the hallmark of cellular changes in white matter, is involved in demyelination process, re-myelination inhibitory effect, and inhibition of axonal elongation and regeneration. The pathophysiology of this process is not well understood. The purpose of the present study is to elucidate the effect of lipid peroxidation product on astrogliosis through WNT/ β-catenin in kaolin-induced hydrocephalic rats.

    Methods: The study used kaolin-induced hydrocephalic rats. Obstructive hydrocephalus was expected to develop within seven days after induction. The hydrocephalus animals were killed at day 7, 14 and 21 after induction. One group of the saline-injected animals was used for sham-treatment.

    Results: We demonstrated that the hydrocephalic rats exhibited a high expression of 4-hydroxynonenal (4-HNE) in the periventricular area. The expression of β-catenin also increased, following the pattern of 4-HNE. Reactive astrocyte, expressed by positive glial fibrillary acidic protein (GFAP), was upregulated in an incremental fashion as well as the microglia.

    Conclusion: This work suggests that lipid peroxidation product, 4-HNE, activated the WNT/β-catenin pathway, leading to the development of reactive astrocyte and microglia activation in hydrocephalus.

    Matched MeSH terms: Aldehydes
  8. Chua LYW, Chua BL, Figiel A, Chong CH, Wojdyło A, Szumny A, et al.
    Molecules, 2019 Apr 24;24(8).
    PMID: 31022967 DOI: 10.3390/molecules24081625
    The preservation of active constituents in Cassia alata through the removal of moisture is crucial in producing a final product with high antioxidant activity. This study aims to determine the influences of various drying methods and drying conditions on the antioxidant activity, volatiles and phytosterols content of C. alata. The drying methods used were convective drying (CD) at 40 °C, 50 °C and 60 °C; freeze drying; vacuum microwave drying (VMD) at 6, 9 and 12 W/g; and two-stage convective pre-drying followed by vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g. The drying kinetics of C. alata are best described by the thin-layer model (modified Page model). The highest antioxidant activity, TPC and volatile concentration were achieved with CD at 40 °C. GC-MS analysis identified the presence of 51 volatiles, which were mostly present in all samples but with quantitative variation. The dominant volatiles in fresh C. alata are 2-hexenal (60.28 mg 100 g-1 db), 1-hexanol (18.70 mg 100 g-1 db) and salicylic acid (15.05 mg 100 g-1 db). The concentration of phytosterols in fresh sample was 3647.48 mg 100 g-1 db, and the major phytosterols present in fresh and dried samples were β-sitosterol (1162.24 mg 100 g-1 db). CPD-VMFD was effective in ensuring the preservation of higher phytosterol content in comparison with CD at 50 °C. The final recommendation of a suitable drying method to dehydrate C. alata leaves is CD at 40 °C.
    Matched MeSH terms: Aldehydes/chemistry
  9. Juhari NH, Martens HJ, Petersen MA
    Molecules, 2021 Oct 16;26(20).
    PMID: 34684840 DOI: 10.3390/molecules26206260
    Fresh roselle are high in moisture and deteriorate easily, which makes drying important for extending shelf-life and increasing availability. This study investigated the influence of different drying methods (oven-drying, freeze-drying, vacuum-drying, and sun-drying) on the quality of roselle calyx expressed as physicochemical properties (moisture content, water activity, soluble solids, color), volatile compounds, and microstructure. Oven-drying and freeze-drying reduced moisture content most while vacuum-drying and sun-drying were not as efficient. All drying methods except sun-drying resulted in water activities low enough to ensure safety and quality. Vacuum-drying had no impact on color of the dry calyx and only small impact on color of water extract of calyx. Drying reduced terpenes, aldehydes, and esters but increased furans. This is expected to reduce fruity, floral, spicy, and green odors and increase caramel-like aroma. Sun-drying produced more ketones, alcohols, and esters. Scanning electron microscopy revealed that freeze-drying preserved the cell structure better, and freeze-dried samples resembled fresh samples most compared to other drying techniques. The study concludes that freeze-drying should be considered as a suitable drying method, especially with respect to preservation of structure.
    Matched MeSH terms: Aldehydes/chemistry
  10. Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Ismail NH, et al.
    Asian Pac J Cancer Prev, 2017 Dec 29;18(12):3333-3341.
    PMID: 29286228
    Cancer is one of the most common causes of death in the developed world, with one-third of people diagnosed with
    cancer during their lifetime. Oral cancer commonly occurs involving the buccal mucosa (cheeks), tongue, floor of the
    mouth and lip. It is one of the most devastating and disfiguring of malignancies. Morinda citrifolia L., commonly known
    as ‘noni’, belongs to the Rubiaceae family. It is native to the Pacific islands, Hawaii, Caribbean, Asia and Australia.
    The plant displays broad curative effects in pharmacological studies. Damnacanthal (DAM) and Nordamnacanthal
    (NDAM), anthraquinone compounds isolated from the roots of Morinda citrifolia L., has been used for the treatment
    of several chronic diseases including cancer. The objectives of this study were to evaluate cytotoxicity, morphological
    changes, cell death mode (apoptosis/necrosis), and cell migration induced by DAM and NDAM on the most common
    type of oral cancer, oral squamous cell carcinoma (OSCC)cells. Anti-proliferative effects of these compounds against
    OSCC cell lines were determined by MTT assay. The mode of cell death was analysed by phase contrast and fluorescent
    microscopy as well as flow cytometry. In addition, cell migration was assessed. The results showed that DAM and
    NDAM exerted cytotoxicity against OSCC cells with IC50 values of 1.9 to >30 μg/ml after 72 h treatment. Maximum
    growth inhibition among the tested cell lines for both compounds was observed in H400 cells, and thus it was selected
    for further study. The study demonstrated inhibition of H400 OSCC cell proliferation, marked apoptotic morphological
    changes, induction of early apoptosis, and inhibition of cell migration by DAM and NDAM. Therefore, this information
    suggests that these compounds from noni have potential for used as anti tumor agents for oral cancer therapy.
    Matched MeSH terms: Aldehydes/pharmacology*
  11. Lim JL, Sim KS, Yong KT, Loong BJ, Ting KN, Lim SH, et al.
    Phytochemistry, 2015 Sep;117:317-24.
    PMID: 26125941 DOI: 10.1016/j.phytochem.2015.06.024
    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.
    Matched MeSH terms: Aldehydes/pharmacology; Aldehydes/chemistry
  12. Alqadeeri F, Rukayadi Y, Abbas F, Shaari K
    Molecules, 2019 Aug 26;24(17).
    PMID: 31454974 DOI: 10.3390/molecules24173095
    Piper cubeba L. is the berry of a shrub that is indigenous to Java, Southern Borneo, Sumatra, and other islands in the Indian Ocean. The plant is usually used in folk traditional medicine and is an important ingredient in cooking. The purpose of this study was to isolate and purify the bioactive compounds from P. cubeba L. fractions. In addition, the isolated compounds were tested for their antibacterial and antispore activities against vegetative cells and spores of Bacilluscereus ATCC33019, B. subtilis ATCC6633, B.pumilus ATCC14884, and B.megaterium ATCC14581. The phytochemical investigation of the DCM fraction yielded two known compounds: β-asarone (1), and asaronaldehyde (2) were successfully isolated and identified from the methanol extract and its fractions of P. cubeba L. Results showed that exposing the vegetative cells of Bacillus sp. to isolated compounds resulted in an inhibition zone with a large diameter ranging between 7.21 to 9.61 mm. The range of the minimum inhibitory concentration (MIC) was between 63.0 to 125.0 µg/mL and had minimum bactericidal concentration (MBC) at 250.0 to 500.0 µg/mL against Bacillus sp. Isolated compounds at a concentration of 0.05% inactivated more than 3-Log10 (90.99%) of the spores of Bacillus sp. after an incubation period of four hours, and all the spores were killed at a concentration of 0.1%. The structures were recognizably elucidated based on 1D and 2D-NMR analyses (1H, 13C, COSY, HSQC, and HMBC) and mass spectrometry data. Compounds 1, and 2 were isolated for the first time from this plant. In conclusion, the two compounds show a promising potential of antibacterial and sporicidal activities against Bacillus sp. and thus can be developed as an anti-Bacillus agent.
    Matched MeSH terms: Aldehydes/isolation & purification; Aldehydes/pharmacology*
  13. Hashmi S, Khan S, Shafiq Z, Taslimi P, Ishaq M, Sadeghian N, et al.
    Bioorg Chem, 2021 02;107:104554.
    PMID: 33383322 DOI: 10.1016/j.bioorg.2020.104554
    With the fading of 'one drug-one target' approach, Multi-Target-Directed Ligands (MTDL) has become a central idea in modern Medicinal Chemistry. The present study aimed to design, develop and characterize a novel series of 4-(Diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) and evaluates their biological activity against cholinesterase, carbonic anhydrases and α-glycosidase enzymes. The hCA I isoform was inhibited by these novel 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones (3a-p) in low nanomolar levels, the Ki of which differed between 407.73 ± 43.71 and 1104.11 ± 80.66 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 323.04 ± 56.88 to 991.62 ± 77.26 nM. Also, these novel 4-(diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) effectively inhibited AChE, with Ki values in the range of 121.74 ± 23.52 to 548.63 ± 73.74 nM. For BChE, Ki values were obtained with in the range of 132.85 ± 12.53 to 618.53 ± 74.23 nM. For α-glycosidase, the most effective Ki values of 3b, 3k, and 3g were with Ki values of 77.85 ± 10.64, 96.15 ± 9.64, and 124.95 ± 11.44 nM, respectively. We have identified inhibition mechanism of 3b, 3g, 3k, and 3n on α-glycosidase AChE, hCA I, hCA II, and BChE enzyme activities. Hydrazine-1-carbothioamide and hydroxybenzylidene moieties of compounds play an important role in the inhibition of AChE, hCA I, and hCA II enzymes. Hydroxybenzylidene moieties are critical for inhibition of both BChE and α-glycosidase enzymes. The findings of in vitro and in silico evaluations indicate 4-(diethylamino)-salicylaldehyde-based thiosemicarbazone scaffold to be a promising hit for drug development for multifactorial diseases like Alzheimer's disease.
    Matched MeSH terms: Aldehydes/chemistry
  14. Lipsa D, Barrero-Moreno J, Coelhan M
    Chemosphere, 2018 Jan;191:937-945.
    PMID: 29145138 DOI: 10.1016/j.chemosphere.2017.10.065
    Limonene oxidation products (LOPs) have gained interest on their harmful health effects over time. Recently, studies have shown that the selected LOPs: 4-oxopentanal (4-OPA), 3-isopropenyl-6-oxo-heptanal (IPOH) and 4-acetyl-1-methylcyclohexene (4-AMCH) have sensory irritation effects in mice and inflammatory effects in human lung cells. This study was therefore undertaken to investigate the potential capacity of 4-OPA, IPOH and 4-AMCH to cause cell membrane damage, oxidative stress and inflammation in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. Overall results suggest that 4-OPA, IPOH have cytotoxic effects on human lung cells that might be mediated by ROS: the highest concentration applied of IPOH [500 μM] enhanced ROS generation by 100-fold ± 7.7 (A549) and 230-fold ± 19.9 (16HBE14o-) compared to the baseline. 4-OPA [500 μM] increased ROS levels by 1.4-fold ± 0.3 (A549) and by 127-fold ± 10.5 (16HBE14o-), while treatment with 4-AMCH [500 μM] led to 0.9-fold ± 0.2 (A549) and 49-fold ± 12.8 (16HBE14o-) increase. IPOH [500 μM] caused a decrease in the thiol-state balance (e.g. after 2 h, GSH:GSSG was reduced by 37% compared to the untreated 16HBE14o-cells). 4-OPA [500 μM] decreased the GSH:GSSG by 1.3-fold change in A549 cells and 1.4-fold change in 16HBE14o-cells. No statistically significant decrease in the GSH:GSSG in A549 and 16HBE14o-cell lines was observed for 4-AMCH [500 μM]. In addition, IPOH and 4-OPA [31.2 μM] increased the amount of the inflammatory markers: RANTES, VEGF and EGF. On the other hand, 4-AMCH [31.2 μM] did not show inflammatory effects in A549 or 16HBE14o-cells. The 4-OPA, IPOH and 4-AMCH treatment concentration and time-dependently induce oxidative stress and/or alteration of inflammatory markers on human bronchial and alveolar cell lines.
    Matched MeSH terms: Aldehydes/pharmacology
  15. Iqbal M, Okazaki Y, Okada S
    Mol Cell Biochem, 2009 Apr;324(1-2):157-64.
    PMID: 19165575 DOI: 10.1007/s11010-008-9994-z
    Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357-366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33-38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151-160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.
    Matched MeSH terms: Aldehydes/metabolism
  16. Pang KL, Chin KY
    Nutrients, 2018 May 06;10(5).
    PMID: 29734791 DOI: 10.3390/nu10050570
    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
    Matched MeSH terms: Aldehydes/pharmacology*
  17. Hasan HA, Abdulmalek E, Rahman MBA, Shaari KB, Yamin BM, Chan KW
    Chem Cent J, 2018 Dec 20;12(1):145.
    PMID: 30570683 DOI: 10.1186/s13065-018-0509-z
    BACKGROUND: Although the development of antibiotic and antioxidant manufacturing, the problem of bacterial resistance and food and/or cosmetics oxidation still needs more efforts to design new derivatives which can help to minimize these troubles. Benzimidazo[1,2-c]quinazolines are nitrogen-rich heterocyclic compounds that possess many pharmaceutical properties such as antimicrobial, anticonvulsant, immunoenhancer, and anticancer.

    RESULTS: A comparative study between two methods, (microwave-assisted and conventional heating approaches), was performed to synthesise a new quinazoline derivative from 2-(2-aminophenyl)-1H-benzimidazole and octanal to produce 6-heptyl-5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazoline (OCT). The compound was characterised using FTIR, 1H and 13C NMR, DIMS, as well as X-ray crystallography. The most significant peak in the 13C NMR spectrum is C-7 at 65.5 ppm which confirms the cyclisation process. Crystal structure analysis revealed that the molecule grows in the monoclinic crystal system P21/n space group and stabilised by an intermolecular hydrogen bond between the N1-H1A…N3 atoms. The crystal packing analysis showed that the molecule adopts zig-zag one dimensional chains. Fluorescence study of OCT revealed that it produces blue light when expose to UV-light and its' quantum yield equal to 26%. Antioxidant activity, which included DPPH· and ABTS·+ assays was also performed and statistical analysis was achieved via a paired T-test using Minitab 16 software with P 

    Matched MeSH terms: Aldehydes
  18. Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, et al.
    Mol Divers, 2021 Mar 01.
    PMID: 33650031 DOI: 10.1007/s11030-021-10196-5
    A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
    Matched MeSH terms: Aldehydes
  19. Chen L, Xie W, Luo Y, Ding X, Fu B, Gopinath SCB, et al.
    PMID: 33786878 DOI: 10.1002/bab.2155
    A highly sensitive silica-alumina (Si-Al)-modified capacitive non-Faradaic glucose biosensor was introduced to monitor gestational diabetes. Glucose oxidase (GOx) was attached to the Si-Al electrode surface as the probe through amine-modification followed by glutaraldehyde premixed GOx as aldehyde-amine chemistry. This Si-Al (∼50 nm) modified electrode surface has increased the current flow upon binding of GOx with glucose. Capacitance values were increased by increasing the glucose concentrations. A mean capacitance value was plotted and the detection limit was found as 0.03 mg/mL with the regression coefficient value, R² = 0.9782 [y = 0.8391x + 1.338] on the linear range between 0.03 and 1 mg/mL. Further, a biofouling experiment with fructose and galactose did not increase the capacitance, indicating the specific glucose detection. This Si-Al-modified capacitance sensor detects a lower level of glucose presence and helps in monitoring gestational diabetes.
    Matched MeSH terms: Aldehydes
  20. Jiang X, Li Y, Feng JL, Nik Nabil WN, Wu R, Lu Y, et al.
    Front Cell Dev Biol, 2020;8:598620.
    PMID: 33392189 DOI: 10.3389/fcell.2020.598620
    The re-proliferation of quiescent cancer cells is considered to be the primary contributor to prostate cancer (Pca) recurrence and progression. In this study, we investigated the inhibitory effect of safranal, a monoterpene aldehyde isolated from Crocus sativus (saffron), on the re-proliferation of quiescent Pca cells in vitro and in vivo. The results showed that safranal efficiently blocked the re-activation of quiescent Pca cells by downregulating the G0/G1 cell cycle regulatory proteins CDK2, CDK4, CDK6, and phospho-Rb at Ser807/811 and elevating the levels of cyclin-dependent kinase inhibitors, p21 and p27. Further investigation on the underlying mechanisms revealed that safranal suppressed the mRNA and protein expression levels of Skp2, possibly through the deregulation of the transcriptional activity of two major transcriptional factors, E2F1 and NF-κB subunits. Moreover, safranal inhibited AKT phosphorylation at Ser473 and deregulated both canonical and non-canonical NF-κB signaling pathways. Safranal suppressed the tumor growth of quiescent Pca cell xenografts in vivo. Furthermore, safranal-treated tumor tissues exhibited a reduction in Skp2, E2F1, NF-κB p65, p-IκBα (Ser32), c-MYC, p-Rb (Ser807), CDK4, CDK6, and CDK2 and an elevation of p27 and p21 protein levels. Therefore, our findings demonstrate that safranal suppresses cell cycle re-entry of quiescent Pca cells in vitro and in vivo plausibly by repressing the transcriptional activity of two major transcriptional activators of Skp2, namely, E2F1 and NF-κB, through the downregulation of AKT phosphorylation and NF-κB signaling pathways, respectively.
    Matched MeSH terms: Aldehydes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links