Displaying publications 41 - 60 of 268 in total

Abstract:
Sort:
  1. Law JW, Law LN, Letchumanan V, Tan LT, Wong SH, Chan KG, et al.
    Molecules, 2020 Nov 17;25(22).
    PMID: 33212836 DOI: 10.3390/molecules25225365
    Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  2. Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I
    Molecules, 2021 Feb 22;26(4).
    PMID: 33671796 DOI: 10.3390/molecules26041169
    Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  3. Wickens JM, Alsaab HO, Kesharwani P, Bhise K, Amin MCIM, Tekade RK, et al.
    Drug Discov Today, 2017 Apr;22(4):665-680.
    PMID: 28017836 DOI: 10.1016/j.drudis.2016.12.009
    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  4. Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH
    Oxid Med Cell Longev, 2016;2016:3685671.
    PMID: 27057273 DOI: 10.1155/2016/3685671
    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  5. Tan KX, Danquah MK, Sidhu A, Yon LS, Ongkudon CM
    Curr Drug Targets, 2018 02 08;19(3):248-258.
    PMID: 27321771 DOI: 10.2174/1389450117666160617120926
    BACKGROUND: The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability.

    OBJECTIVE: The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release.

    RESULTS: This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects.

    CONCLUSION: A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with stage-wise delivery mechanism is presented to illustrate the potential efficacy of aptamer- polymer cargos for enhanced cell targeting and drug delivery.

    Matched MeSH terms: Antineoplastic Agents/chemistry
  6. Abdullah AS, Mohammed AS, Abdullah R, Mirghani ME, Al-Qubaisi M
    PMID: 24962691 DOI: 10.1186/1472-6882-14-199
    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  7. Ng CH, Kong SM, Tiong YL, Maah MJ, Sukram N, Ahmad M, et al.
    Metallomics, 2014 Apr;6(4):892-906.
    PMID: 24549332 DOI: 10.1039/c3mt00276d
    Copper compounds can be alternatives to platinum-based anticancer drugs. This study investigated the effects of a series of ternary copper(II) complexes, [Cu(phen)(aa)(H2O)]NO3·xH2O 1-4 (phen = 1,10-phenanthroline; aa = gly (1), DL-ala (2), sar (3), C-dmg (4)), on metastatic and cisplatin-resistant MDA-MB-231 breast cancer cells and MCF10A non-cancerous breast cells, and some aspects of the mechanisms. These complexes were distinctively more antiproliferative towards and induced greater apoptotic cell death in MDA-MB-231 than in MCF10A cells. 2 and 4 could induce cell cycle arrest only in cancer cells. Further evidence from DCFH-DA assay showed higher induction of reactive oxygen species (ROS) in treated cancer cells but minimal ROS increase in normal cells. DNA double-strand breaks, via a γ-H2AX assay, were only detected in cancer cells treated with 5 μM of the complexes. These complexes poorly inhibited chymotrypsin-like activity in the 20S rabbit proteasome while they did not inhibit the three proteolytic sites of MDA-MB-231 cells at 10 μM. However, the complexes could inhibit degradation of ubiquinated proteins of MDA-MB-231 cells. In addition, compound 4 was found to be effective against cervical (Hela), ovarian (SKOV3), lung (A549, PC9), NPC (Hone1, HK1, C666-1), breast (MCF7, T47D), lymphoma and leukemia (Nalmawa, HL60) and colorectal (SW480, SW48, HCT118) cancer cell lines with IC50 values (24 h) in the 1.7-19.0 μM range. Single dose NCI60 screening of 4 showed the complex to be highly cytotoxic to most cancer cell types and more effective than cisplatin.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  8. Ibrahim AA, Khaledi H, Hassandarvish P, Mohd Ali H, Karimian H
    Dalton Trans, 2014 Mar 14;43(10):3850-60.
    PMID: 24442181 DOI: 10.1039/c3dt53032a
    A new thiosemicarbazone (LH2) derived from indole-7-carbaldehyde was synthesized and reacted with Zn(II), Cd(II), Pd(II) and Pt(II) salts. The reactions with zinc and cadmium salts in 2 : 1 (ligand-metal) molar ratio afforded complexes of the type MX2(LH2)2, (X = Cl, Br or OAc), in which the thiosemicarbazone acts as a neutral S-monodentate ligand. In the presence of potassium hydroxide, the reaction of LH2 with ZnBr2 resulted in deprotonation of the thiosemicarbazone at the hydrazine and indole nitrogens to form Zn(L)(CH3OH). The reaction of LH2 with K2PdCl4 in the presence of triethylamine, afforded Pd(L)(LH2) which contains two thiosemicarbazone ligands: one being dianionic N,N,S-tridentate while the other one is neutral S-monodentate. When PdCl2(PPh3)2 was used as the Pd(II) ion source, Pd(L)(PPh3) was obtained. In a similar manner, the analogous platinum complex, Pt(L)(PPh3), was synthesized. The thiosemicarbazone in the latter two complexes behaves in a dianionic N,N,S-tridentate fashion. The platinum complex was found to have significant cytotoxicity toward four cancer cells lines, namely MDA-MB-231, MCF-7, HT-29, and HCT-116 but not toward the normal liver WRL-68 cell line. The apoptosis-inducing properties of the Pt complex was explored through fluorescence microscopy visualization, DNA fragmentation analysis and propidium iodide flow cytometry.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  9. Shafiu Kamba A, Ismail M, Tengku Ibrahim TA, Zakaria ZA
    Biomed Res Int, 2013;2013:587451.
    PMID: 24324966 DOI: 10.1155/2013/587451
    The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO₃/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO₃/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO₃/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO₃ nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  10. Lau BF, Abdullah N, Aminudin N, Lee HB
    J Ethnopharmacol, 2013 Oct 28;150(1):252-62.
    PMID: 23993912 DOI: 10.1016/j.jep.2013.08.034
    The sclerotium of the "tiger's milk mushroom" (Lignosus rhinocerotis) is used as tonic and folk medicine for the treatment of cancer, fever, cough and asthma by the local and indigenous communities. It is traditionally prepared by either boiling or maceration-like methods; however, there is no attempt to understand how different processing methods might affect their efficacies as anticancer agents.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  11. Ng CH, Wang WS, Chong KV, Win YF, Neo KE, Lee HB, et al.
    Dalton Trans, 2013 Jul 28;42(28):10233-43.
    PMID: 23728518 DOI: 10.1039/c3dt50884f
    Chiral enantiomers [Cu(phen)(L-threo)(H2O)]NO3 1 and [Cu(phen)(D-threo)(H2O)]NO3 2 (threo = threoninate) underwent aldol-type condensation with formaldehyde, with retention of chirality, to yield their respective enantiomeric ternary copper(II) complexes, viz. L- and D-[Cu(phen)(5MeOCA)(H2O)]NO3·xH2O (3 and 4; phen = 1,10-phenanthroline; 5MeOCA = 5-methyloxazolidine-4-carboxylate; x = 0-3) respectively. These chiral complexes were characterized by FTIR, elemental analysis, circular dichroism, UV-Visible spectroscopy, fluorescence spectroscopy (FL), molar conductivity measurement, ESI-MS and X-ray crystallography. Analysis of restriction enzyme inhibition by these four complexes revealed modulation of DNA binding selectivity by the type of ligand, ligand modification and chirality. Their interaction with bovine serum albumin was investigated by FL and electronic spectroscopy. With the aid of the crystal structure of BSA, spectroscopic evidence suggested their binding at the cavity containing Trp134 with numerous Tyr residues in subdomain IA. The products were more antiproliferative than cisplatin against cancer cell lines HK-1, MCF-7, HCT116, HSC-2 and C666-1 except HL-60, and were selective towards nasopharyngeal cancer HK-1 cells over normal NP69 cells of the same organ type.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  12. Haque RA, Salman AW, Budagumpi S, Abdullah AA, Majid AM
    Metallomics, 2013 Jun;5(6):760-9.
    PMID: 23645390 DOI: 10.1039/c3mt00051f
    Unsymmetrically substituted sterically tuned Pd(II)–NHC complexes of the general formula [PdCl2(NHC)2] (NHC = 1-allyl-3-methylimidazolin-2-ylidene, 7; 1-allyl-3-butylimidazol-2-ylidene, 8; 1-benzyl-3-butyl imidazolin-2-ylidene, 9) were prepared through transmetallation from their corresponding Ag(I)–NHC complexes. The Pd complexes were structurally characterized by different spectroscopic and X-ray diffraction methods. Complexes 7 and 9 adopted a trans–anti arrangement of the NHC ligands, whereas complex 8 adopted a cis–syn arrangement. Preliminary antibiogram studies using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria showed that Ag(I)–NHC complexes demonstrate higher activity compared with Pd(I)–NHC complexes. Furthermore, Pd(II)–NHC complexes were evaluated for their anticancer potential using the human colorectal cancer cell line. A higher anticancer activity was observed for complexes 8 and 9, with 26.5 and 6.6 mM IC50 values, respectively.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  13. Mutee AF, Salhimi SM, Ghazali FC, Aisha AF, Lim CP, Ibrahim K, et al.
    Pak J Pharm Sci, 2012 Oct;25(4):697-703.
    PMID: 23009983
    Acanthaster planci, the crown-of-thorns starfish, naturally endowed with the numerous toxic spines around the dorsal area of its body. Scientific investigations demonstrated several toxico-pharmacological efficacies of A. planci such as, myonecrotic activity, hemorrhagic activity, hemolytic activity, mouse lethality, phospholipase A2 (PLA2) activity, capillary permeability-increasing activity, edema-forming activity, anticoagulant activity and histamine-releasing activity from mast cells. The present study was performed to evaluate the cytotoxic activity of A. planci extracts obtained by different methods of extraction on MCF-7 and HCT-116, human breast and colon cancer cell lines, respectively. Results of the cell proliferation assay showed that PBS extract exhibited very potent cytotoxic activity against both MCF-7 and HCT-116 cell lines with IC(50) of 13.48 μg/mL and 28.78 μg/mL, respectively, while the extracts prepared by Bligh and Dyer method showed moderate cytotoxicity effect against MCF-7 and HCT-116 cell lines, for chloroform extract, IC(50) = 121.37 μg/mL (MCF-7) and 77.65 μg/mL (HCT-116), and for methanol extract, IC(50) = 46.11 μg/mL (MCF-7) and 59.29 μg/mL (HCT-116). However, the extracts prepared by sequential extraction procedure from dried starfish found to be ineffective. This study paves the way for further investigation on the peptide composition in the PBS extract of the starfish to discover potential chemotherapeutic agents.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  14. Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S
    Molecules, 2012 May 25;17(6):6179-95.
    PMID: 22634834 DOI: 10.3390/molecules17066179
    Several chalcones were synthesized and their in vitro cytotoxicity against various human cell lines, including human breast adenocarcinoma cell line MCF-7, human lung adenocarcinoma cell line A549, human prostate cancer cell line PC3, human adenocarcinoma cell line HT-29 (colorectal cancer) and human normal liver cell line WRL-68 was evaluated. Most of the compounds being active cytotoxic agents, four of them with minimal IC₅₀ values were chosen and studied in detail with MCF-7 cells. The compounds 1, 5, 23, and 25 were capable in eliciting apoptosis in MCF-7 cells as shown by multiparameter cytotoxicity assay and caspase-3/7, -8, and -9 activities (p < 0.05). The ROS level showed 1.3-fold increase (p < 0.05) at the low concentrations used and thus it was concluded that the compounds increased the ROS level eventually leading to apoptosis in MCF-7 cells through intrinsic as well as extrinsic pathways.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  15. Khoo BY, Chua SL, Balaram P
    Int J Mol Sci, 2010;11(5):2188-99.
    PMID: 20559509 DOI: 10.3390/ijms11052188
    Chrysin is a natural flavonoid currently under investigation due to its important biological anti-cancer properties. In most of the cancer cells tested, chrysin has shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells. Moreover, structure-activity relationships have revealed that the chemical structure of chrysin meets the key structural requirements of flavonoids for potent cytotoxicity in leukemia cells. It is possible that combination therapy or modified chrysin could be more potent than single-agent use or administration of unmodified chrysin. This study may help to develop ways of improving the effectiveness of chrysin in the treatment of leukemia and other human cancers in vitro.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  16. Lim SH, Wu L, Burgess K, Lee HB
    Anticancer Drugs, 2009 Jul;20(6):461-8.
    PMID: 19387338 DOI: 10.1097/CAD.0b013e32832b7bee
    Conventional cytotoxic anticancer drugs that target all rapidly dividing cells are nonselective in their mechanism of action, because they disrupt essential components that are crucial to both malignant and proliferating normal cells. Instead, targeting cellular functions that are distinctly different between normal and cancer cells may provide a basis for selective killing of tumor cells. One such strategy that is still largely unexplored is to utilize the relatively higher negative mitochondrial membrane potential in carcinoma cells compared with adjacent normal epithelial cells to enhance accumulation and retention of cytotoxic lipophilic cations in the former. In this study, the anticancer activities of a new class of rosamines with cyclic amine substituents and their structure-activity relationships were investigated. From an in-vitro cell growth inhibition assay, 14 of the rosamines inhibited the growth of human leukemia HL-60 cells by 50% at micromolar or lower concentrations. Derivatives containing hydrophilic substituents had less potent activity, whereas aryl substitution at the meso position conferred extra activity with thiofuran and para-iodo aryl substitutions being the most potent. In addition, both compounds were at least 10-fold more cytotoxic than rhodamine 123 against a panel of cell lines of different tissue origin and similar to rhodamine 123, exhibited more cytotoxicity against cancer cells compared with immortalized normal epithelial cells of the same organ type. In subsequent experiments, the para-iodo aryl substituted rosamine was found to localize exclusively within the mitochondria and induced apoptosis as the major mode of cell death. Our results suggest that these compounds offer potential for the design of mitochondria-targeting agents that either directly kill or deliver cytotoxic drugs to selectively kill cancer cells.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  17. Ng CH, Kong KC, Von ST, Balraj P, Jensen P, Thirthagiri E, et al.
    Dalton Trans, 2008 Jan 28.
    PMID: 18185860 DOI: 10.1039/b709269e
    A series of ternary metal(ii) complexes {M(phen)(edda); 1a (Cu), 1b (Co), 1c (Zn), 1d (Ni); H(2)edda = N,N(')-ethylenediaminediacetic acid} of N,N'-ethylene-bridged diglycine and 1,10-phenanthroline were synthesized and characterized by elemental analysis, FTIR, UV-visible spectroscopy and magnetic susceptibility measurement. The interaction of these complexes with DNA was investigated using CD and EPR spectroscopy. MTT assay results of 1a-1c , screened on MCF-7 cancer cell lines, show that synergy between the metal and ligands results in significant enhancement of their antiproliferative properties. Preliminary results from apoptosis and cell cycle analyses with flow cytometry are reported. seems to be able to induce cell cycle arrest at G(0)/G(1). The crystal structure of 1a is also included.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  18. Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS, et al.
    Phytochemistry, 2007 Mar;68(6):904-12.
    PMID: 17234223
    The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.
    Matched MeSH terms: Antineoplastic Agents/chemistry
  19. Hosseinzadeh M, Hadi AH, Mohamad J, Khalilzadeh MA, Cheahd SC, Fadaeinasab M
    Comb Chem High Throughput Screen, 2013 Feb;16(2):160-6.
    PMID: 23173924
    A new linderone A, namely 2-cinnamoyl-3-hydroxy-4, 5-dimethoxycyclopenta-2, 4-dienone (5), together with three known flavonoids (1-3) and one linderone (4), were isolated from the bark of Lindera oxyphylla. Extensive spectroscopic analysis including 1D and 2D-NMR spectra determined their sturctures. In addition, the antioxidant activity of all the compounds has been determined using 2, 2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferric reducing antioxidant power (FRAP) and ferrous ion chelating (FIC) methods. Compound 3 showed excellent DPPH scavenging activity with IC50% value of 8.5 ± 0.004% (μg/mL) which is comparable with vitamin C. This compound, also showed an absorbance value of 1.00 ± 0.06% through FRAP test when compared with Butyl Hydroxy Aniline (BHA). However, FIC showed low activity for all the isolated compounds (chelating activity less than 50%) in comparison with ethylene diamine tetra acetic acid (EDTA). Anticancer activity for all compounds has also been measured on A375 human melanoma, HT-29 colon adenocarcinoma, MCF-7 human breast adenocarcinoma cells, WRL-68 normal hepatic cells, A549 non-small cell lung cancer cells and PC-3 prostate adenocarcinoma cell line. Compound 1 showed A549=65.03%, PC-3=30.12%, MCF-7=47.67, compound 2 showed PC-3=90.13%, compound 3 showed MCF-7=79.57 and for compound 5 MCF-7 is 96.33.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  20. Tan ML, Sulaiman SF, Najimuddin N, Samian MR, Muhammad TS
    J Ethnopharmacol, 2005 Jan 4;96(1-2):287-94.
    PMID: 15588681
    Currently, breast cancer is the leading cause of cancer-related death in women. Therefore, there is an urgent need to develop alternative therapeutic measures against this deadly disease. Here, we report the cytotoxicity activity and the mechanism of cell death exhibited by the methanol extract prepared from Pereskia bleo (Kunth) DC. (Cactaceae) plant against human breast carcinoma cell line, T-47D. In vitro cytotoxicity screening of methanol extract of Pereskia bleo plant indicated the presence of cytotoxicity activity of the extract against T-47D cells with EC50 of 2.0 microg/ml. T-47D cell death elicited by the extract was found to be apoptotic in nature based a clear indication of DNA fragmentation which is a hallmark of apoptosis. In addition, ultrastructural analysis also revealed apoptotic characteristics (the presence of chromatin margination and apoptotic bodies) in the extract-treated cells. RT-PCR analysis showed the mRNA expression levels of c-myc, and caspase 3 were markedly increased in the cells treated with the plant extract. However, p53 expression was only slightly increased as compared to caspase 3 and c-myc. Thus, the results from this study strongly suggest that the methanol extract of Pereskia bleo may contain bioactive compound(s) that caused breast carcinoma, T-47D cell death by apoptosis mechanism via the activation of caspase-3 and c-myc pathways.
    Matched MeSH terms: Antineoplastic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links