Displaying publications 41 - 60 of 225 in total

Abstract:
Sort:
  1. Sahebi M, Hanafi MM, Rafii MY, Azizi P, Abiri R, Kalhori N, et al.
    Biomed Res Int, 2017;2017:9064129.
    PMID: 28191468 DOI: 10.1155/2017/9064129
    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.
    Matched MeSH terms: Antioxidants/metabolism
  2. Sahebi M, Hanafi MM, Mohidin H, Rafii MY, Azizi P, Idris AS, et al.
    Biomed Res Int, 2018;2018:1494157.
    PMID: 29721500 DOI: 10.1155/2018/1494157
    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.
    Matched MeSH terms: Antioxidants/metabolism*
  3. Safdar A, Zakaria R, Aziz CBA, Rashid U, Azman KF
    Biogerontology, 2020 04;21(2):203-216.
    PMID: 31792648 DOI: 10.1007/s10522-019-09854-x
    One of the most significant hallmarks of aging is cognitive decline. D-galactose administration may impair memory and mimic the effects of natural aging. In this study, the efficiency of goat milk to protect against memory decline was tested. Fifty-two male Sprague-Dawley rats were randomly divided into four groups: (i) control group, (ii) goat milk treated group, (iii) D-galactose treated group, and (iv) goat milk plus D-galactose treated group. Subcutaneous injections of D-galactose at 120 mg/kg and oral administrations of goat milk at 1 g/kg were chosen for the study. Goat milk and D-galactose were administered concomitantly for 6 weeks, while the control group received saline. After 6 weeks, novel object recognition and T-maze tests were performed to evaluate memory of rats. Following behavioral tests, the animals were sacrificed, and right brain homogenates were analyzed for levels of lipid peroxidation, antioxidant enzymes and neurotrophic factors. The left brain hemisphere was used for histological study of prefrontal cortex and hippocampus. There was a significant memory impairment, an increase in oxidative stress and neurodegeneration and a reduction in antioxidant enzymes and neurotrophic factors levels in the brain of D-galactose treated rats compared to controls. Goat milk treatment attenuated memory impairment induced by D-galactose via suppressing oxidative stress and neuronal damage and increasing neurotrophic factors levels, thereby suggesting its potential role as a geroprotective food.
    Matched MeSH terms: Antioxidants/metabolism
  4. Roy P, Das S, Auddy RG, Mukherjee A
    Int J Nanomedicine, 2014;9:4723-35.
    PMID: 25336950 DOI: 10.2147/IJN.S65262
    Andrographolide (AG) is one of the most potent labdane diterpenoid-type free radical scavengers available from plant sources. The compound is the principal bioactive component in Andrographis paniculata leaf extracts, and is responsible for anti-inflammatory, anticancer, and immunomodulatory activity. The application of AG in therapeutics, however, is severely constrained, due to its low aqueous solubility, short biological half-life, and poor cellular permeability. Engineered nanoparticles in biodegradable polymer systems were therefore conceived as one solution to aid in further drug-like applications of AG. In this study, a cationic modified poly(lactic-co-glycolic) acid nanosystem was applied for evaluation against experimental mouse hepatotoxic conditions. Biopolymeric nanoparticles of hydrodynamic size of 229.7 ± 17.17 nm and ζ-potential +34.4 ± 1.87 mV facilitated marked restoration in liver functions and oxidative stress markers. Superior dissolution for bioactive AG, hepatic residence, and favorable cytokine regulation in the liver tissues are some of the factors responsible for the newer nanosystem-assisted rapid recovery.
    Matched MeSH terms: Antioxidants/metabolism
  5. Rouhollahi E, Moghadamtousi SZ, Al-Henhena N, Kunasegaran T, Hasanpourghadi M, Looi CY, et al.
    Drug Des Devel Ther, 2015;9:3911-22.
    PMID: 26251570 DOI: 10.2147/DDDT.S84560
    Curcuma purpurascens BI. rhizome, a member of the Zingiberaceae family, is a popular spice in Indonesia that is traditionally used in assorted remedies. Dichloromethane extract of C. purpurascens BI. rhizome (DECPR) has previously been shown to have an apoptosis-inducing effect on colon cancer cells. In the present study, we examined the potential of DECPR to prevent colon cancer development in rats treated with azoxymethane (AOM) (15 mg/kg) by determining the percentage inhibition in incidence of aberrant crypt foci (ACF). Starting from the day immediately after AOM treatment, three groups of rats were orally administered once a day for 2 months either 10% Tween 20 (5 mL/kg, cancer control), DECPR (250 mg/kg, low dose), or DECPR (500 mg/kg, high dose). Meanwhile, the control group was intraperitoneally injected with 5-fluorouracil (35 mg/kg) for 5 consecutive days. After euthanizing the rats, the number of ACF was enumerated in colon tissues. Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA) protein expressions were examined using immunohistochemical and Western blot analyses. Antioxidant enzymatic activity was measured in colon tissue homogenates and associated with malondialdehyde level. The percentage inhibition of ACF was 56.04% and 68.68% in the low- and high-dose DECPR-treated groups, respectively. The ACF inhibition in the treatment control group was 74.17%. Results revealed that DECPR exposure at both doses significantly decreased AOM-induced ACF formation, which was accompanied by reduced expression of PCNA. Upregulation of Bax and downregulation of Bcl-2 suggested the involvement of apoptosis in the chemopreventive effect of DECPR. In addition, the oxidative stress resulting from AOM treatment was significantly attenuated after administration of DECPR, which was shown by the elevated antioxidant enzymatic activity and reduced malondialdehyde level. Taken together, the present data clearly indicate that DECPR significantly inhibits ACF formation in AOM-treated rats and may offer protection against colon cancer development.
    Matched MeSH terms: Antioxidants/metabolism
  6. Rasool AH, Yuen KH, Yusoff K, Wong AR, Rahman AR
    J Nutr Sci Vitaminol (Tokyo), 2006 Dec;52(6):473-8.
    PMID: 17330512
    Tocotrienols are a class of vitamin E reported to be potent antioxidants, besides having the ability to inhibit the HMG-CoA reductase enzyme. This study assessed the effects of 3 doses of tocotrienol-rich vitamin E (TRE) on plasma tocotrienol isomer concentration, arterial compliance, plasma total antioxidant status (TAS), aortic systolic blood pressure (ASBP), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) in healthy males.

    METHODOLOGY: This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken.

    RESULTS: Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS.

    CONCLUSION: TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienol concentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.

    Matched MeSH terms: Antioxidants/metabolism*
  7. Ramalingam A, Santhanathas T, Shaukat Ali S, Zainalabidin S
    PMID: 31726798 DOI: 10.3390/ijerph16224445
    Prolonged exposure to nicotine accelerates onset and progression of renal diseases in habitual cigarette smokers. Exposure to nicotine, either via active or passive smoking is strongly shown to enhance renal oxidative stress and augment kidney failure in various animal models. In this study, we investigated the effects of resveratrol supplementation on nicotine-induced kidney injury and oxidative stress in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg, i.p.) alone or in combination with either resveratrol (8 mg/kg, i.p.), or angiotensin II type I receptor blocker, irbesartan (10 mg/kg, p.o.) for 28 days. Upon completion of treatment, kidneys were investigated for changes in structure, kidney injury markers and oxidative stress. Administration of nicotine alone for 28 days resulted in significant renal impairment as shown by marked increase in plasma creatinine, blood urea nitrogen (BUN) and oxidative stress. Co-administration with resveratrol however successfully attenuated these changes, with a concomitant increase in renal antioxidants such as glutathione similar to the conventionally used angiotensin II receptor blocker, irbesartan. These data altogether suggest that targeting renal oxidative stress with resveratrol could alleviate nicotine-induced renal injury. Antioxidants may be clinically important for management of renal function in habitual smokers.
    Matched MeSH terms: Antioxidants/metabolism
  8. Rad SK, Kanthimathi MS, Abd Malek SN, Lee GS, Looi CY, Wong WF
    PLoS One, 2015;10(12):e0145216.
    PMID: 26700476 DOI: 10.1371/journal.pone.0145216
    BACKGROUND: Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated.

    METHODOLOGY/PRINCIPAL FINDINGS: The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34 ± 3.52 and 32.42 ± 0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia).

    CONCLUSION: Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study.

    Matched MeSH terms: Antioxidants/metabolism
  9. Prasad KN, Chew LY, Khoo HE, Kong KW, Azlan A, Ismail A
    PMID: 20936182 DOI: 10.1155/2010/871379
    Antioxidant capacities of ethylacetate, butanol, and water fractions of peel, pulp, and seeds of Canarium odontophyllum Miq. (CO) were determined using various in vitro antioxidant models. Ethylacetate fraction of peel (EAFPE) exhibited the highest total phenolic (TPC), total flavonoid content (TFC), and antioxidant activities compared to pulp, seeds, and other solvent fractions. Antioxidant capacities were assayed by total antioxidant capability, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical activity, ferric reducing antioxidant power (FRAP), and hemoglobin oxidation assay. Total phenolic content of ethylacetate fractions was positively correlated with the antioxidant activity. This is the first report on the antioxidant activities from CO fruit fractions. Thus, EAFPE can be used potentially as a readily accessible source of natural antioxidants and as a possible pharmaceutical supplement.
    Matched MeSH terms: Antioxidants/metabolism
  10. Pirabbasi E, Najafiyan M, Cheraghi M, Shahar S, Abdul Manaf Z, Rajab N, et al.
    Glob J Health Sci, 2013 Jan;5(1):70-8.
    PMID: 23283038 DOI: 10.5539/gjhs.v5n1p70
    Imbalance between antioxidant and oxidative stress is a major risk factor for pathogenesis of some chronic diseases such as chronic obstructive pulmonary disease (COPD). This study aimed to determine antioxidant and oxidative stress status, and also theirs association with respiratory function of male COPD patients to find the antioxidant predictors' factors. A total of 149 subjects were involved in a cross-sectional study. The study was conducted at two medical centers in Kuala Lumpur, Malaysia. Results of the study showed that plasma vitamin C was low in most of the subjects (86.6%). Total antioxidant capacity was the lowest in COPD stage IV compare to other stages (p < 0.05). Level of plasma vitamin A (p= 0.012) and vitamin C (p= 0.007) were low in malnourished subjects. The predictors for total antioxidant capacity were forced vital capacity (FVC) % predicted and intake of ?-carotene (R2= 0.104, p= 0.002). Number of cigarette (pack/ year) and smoking index (number/ year) were not associated with total antioxidant capacity of this COPD population. Plasma oxidative stress as assessed plasma lipid peroxidation (LPO) was only positively correlated with plasma glutathione (p= 0.002). It might be a need to evaluate antioxidant status especially in older COPD patients to treat antioxidant deficiency which is leading to prevent COPD progression.
    Study site: Outpatient clinics, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM) and Institute of Respiratory Medicine, Kuala Lumpur, Malaysia
    Matched MeSH terms: Antioxidants/metabolism
  11. Paul S, Das S, Tanvir EM, Hossen MS, Saha M, Afroz R, et al.
    Biomed Pharmacother, 2017 Oct;94:256-264.
    PMID: 28763749 DOI: 10.1016/j.biopha.2017.07.080
    Increases in the incidence of cardiovascular disease (CVD) have aroused strong interest in identifying antioxidants from natural sources for use in preventive medicine. Citrus macroptera (C. macroptera), commonly known as "Satkara", is an important herbal and medicinal plant reputed for its antioxidant, nutritious and therapeutic uses. The aim of the present study was to investigate the cardio-protective effects of ethanol extracts of C. macroptera peel and pulp against isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats (n=36) were pre-treated with peel and pulp extracts (500mg/kg) for 45days. They received a challenge with ISO (85mg/kg) on the 44th and 45th days. Our findings indicated that subcutaneous injection of ISO induced severe myocardial injuries associated with oxidative stress, as confirmed by elevated lipid peroxidation (LPO) and decreased cellular reduced glutathione (GSH) and anti-peroxidative enzymes, including glutathione peroxidase, glutathione reductase and glutathione-S-transferase, compared with levels observed in control animals. Pre-treatment with C. macroptera peel and pulp extracts prior to ISO administration however, significantly improved many of the investigated biochemical parameters, i.e., cardiac troponin I, cardiac marker enzymes, lipid profile and oxidative stress markers. The fruit peel extract showed stronger cardio-protective effects than the pulp extract. The biochemical findings were further confirmed by histopathological examinations. Overall, the increased endogenous antioxidant enzyme activity against heightened oxidative stress in the myocardium is strongly suggestive of the cardio-protective potential of C. macroptera.
    Matched MeSH terms: Antioxidants/metabolism
  12. Pandurangan AK, Mohebali N, Norhaizan ME, Looi CY
    Drug Des Devel Ther, 2015;9:3923-34.
    PMID: 26251571 DOI: 10.2147/DDDT.S86345
    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA.
    Matched MeSH terms: Antioxidants/metabolism
  13. Pandurangan AK, Ismail S, Saadatdoust Z, Esa NM
    Oxid Med Cell Longev, 2015;2015:605208.
    PMID: 26075036 DOI: 10.1155/2015/605208
    The objective of this study is to evaluate the effect of allicin (10 mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and IL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P < 0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein IκB and inducing inhibition of the nuclear translocation of nuclear factor (NF)-κB-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-κB and IL-6/p-STAT3(Y705) pathways.
    Matched MeSH terms: Antioxidants/metabolism
  14. Othman FB, Mohamed HJBJ, Sirajudeen KNS, Noh MFBM, Rajab NF
    J Trace Elem Med Biol, 2017 Sep;43:106-112.
    PMID: 28065595 DOI: 10.1016/j.jtemb.2016.12.009
    Selenium is involved in the complex system of defense against oxidative stress in diabetes through its biological function of selenoproteins and the antioxidant enzyme. A case-control study was carried out to determine the association of plasma selenium with oxidative stress and body composition status presented in Type 2 Diabetes Mellitus (T2DM) patient and healthy control. This study involved 82 newly diagnosed T2DM patients and 82 healthy controls. Plasma selenium status was determined with Graphite Furnace Atomic Absorption Spectrometry. Body Mass Index, total body fat and visceral fat was assessed for body composition using Body Composition Analyzer (TANITA). Oxidative DNA damage and total antioxidant capacity were determined for oxidative stress biomarker status. In age, gender and BMI adjustment, no significant difference of plasma selenium level between T2DM and healthy controls was observed. There was as a significant difference of Oxidative DNA damage and total antioxidant capacity between T2DM patients and healthy controls with tail DNA% 20.62 [95% CI: 19.71,21.49] (T2DM), 17.67 [95% CI: 16.87,18.56] (control); log tail moment 0.41[95% CI: 0.30,0.52] (T2DM), 0.41[95% CI: 0.30,0.52] (control); total antioxidant capacity 0.56 [95% CI: 0.54,0.58] (T2DM), 0.60 [95% CI: 0.57,0.62] (control). Waist circumference, BMI, visceral fat, body fat and oxidative DNA damage in the T2DM group were significantly lower in the first plasma selenium tertile (38.65-80.90μg/L) compared to the second (80.91-98.20μg/L) and the third selenium tertiles (98.21-158.20μg/L). A similar trend, but not statistically significant, was observed in the control group.
    Matched MeSH terms: Antioxidants/metabolism*
  15. Osman WNW, Mohamed S
    Phytother Res, 2018 Oct;32(10):2078-2085.
    PMID: 29993148 DOI: 10.1002/ptr.6151
    The antifatigue properties of Morinda elliptica (ME) leaf were compared with Morinda citrifolia (MC) leaf extracts. Sixty Balb/C mice were administered (N = 10): control water, standardized green tea extract (positive control 200 mg/kg body weight [BW]), either 200 or 400 mg MC/kg BW, or either 200 or 400 mg ME/kg BW). The mice performances, biochemical, and mRNA expressions were evaluated. After 6 weeks, the weight-loaded swimming time to exhaustion in the mice consuming 400 mg MC/kg, were almost five times longer than the control mice. The gene expressions analysis suggested the extracts enhanced performance by improving lipid catabolism, carbohydrate metabolism, electron transport, antioxidant responses, energy production, and tissue glycogen stores. The MC and ME extracts enhanced stamina by reducing blood lactate and blood urea nitrogen levels, increasing liver and muscle glycogen reserve through augmenting the glucose metabolism (glucose transporter type 4 and pyruvate dehydrogenase kinase 4), lipid catabolism (acyl-Coenzyme A dehydrogenases and fatty acid translocase), antioxidant (superoxide dismutase 2) defence responses, electron transport (COX4I2), and energy production (PGC1α, NRF1, NRF2, cytochrome C electron transport, mitochondrial transcription factor A, UCP1, and UCP3) biomarkers. The MC (containing scopoletin and epicatechin) was better than ME (containing only scopoletin) or green tea (containing epicatechin and GT catechins) for alleviating fatigue.
    Matched MeSH terms: Antioxidants/metabolism
  16. Nurdiana S, Goh YM, Ahmad H, Dom SM, Syimal'ain Azmi N, Noor Mohamad Zin NS, et al.
    BMC Complement Altern Med, 2017 Jun 02;17(1):290.
    PMID: 28576138 DOI: 10.1186/s12906-017-1762-8
    BACKGROUND: The potential application of Ficus deltoidea and vitexin for the management of symptomatologies associated with diabetes mellitus (DM) has gained much attention. However, less firm evidence comes from data to augment our understanding of the role of F. deltoidea and vitexin in protecting pancreatic β-cells. The aim of this study was to assess histological and oxidative stress changes in the pancreas of streptozotocin (STZ)-induced diabetic rats following F. deltoidea extract and vitexin treatment.

    METHODS: F. deltoidea and vitexin was administrated orally to six-weeks STZ-induced diabetic rats over 8 weeks period. The glucose and insulin tolerances were assessed by intraperitoneal glucose (2 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Subsequently, insulin resistance was assessed by homeostasis assessment model of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and the insulin/triglyceride-derived McAuley index. The histological changes in the pancreas were then observed by hematoxylin-eosin (H&E) staining. Further, the pattern of fatty acid composition and infrared (IR) spectra of the serum and pancreas were monitored by gas chromatography (GC) method and Fourier Transform Infrared (FT-IR) spectroscopy.

    RESULTS: F. deltoidea and vitexin increased pancreatic antioxidant enzymes and promoted islet regeneration. However, a significant increase in insulin secretion was observed only in rats treated with F. deltoidea. More importantly, reduction of fasting blood glucose is consistent with reduced FT-IR peaks at 1200-1000 cm-1.

    CONCLUSIONS: These results accentuate that F. deltoidea and vitexin could be a potential agent to attenuate pancreatic oxidative damage and advocate their therapeutic potential for treating DM.

    Matched MeSH terms: Antioxidants/metabolism
  17. Nur Azlina MF, Kamisah Y, Chua KH, Ibrahim IA, Qodriyah HM
    PLoS One, 2015;10(10):e0139348.
    PMID: 26465592 DOI: 10.1371/journal.pone.0139348
    This study aimed to investigate the possible gastroprotective effect of tocotrienol against water-immersion restraint stress (WIRS) induced gastric ulcers in rats by measuring its effect on gastric mucosal nitric oxide (NO), oxidative stress, and inflammatory biomarkers. Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) orally. After 28 days, rats from one control group and both treated groups were subjected to WIRS for 3.5 hours once. Malondialdehyde (MDA), NO content, and superoxide dismutase (SOD) activity were assayed in gastric tissue homogenates. Gastric tissue SOD, iNOS, TNF-α and IL1-β expression were measured. WIRS increased the gastric MDA, NO, and pro-inflammatory cytokines levels significantly when compared to the non-stressed control group. Administration of tocotrienol and omeprazole displayed significant protection against gastric ulcers induced by exposure to WIRS by correction of both ulcer score and MDA content. Tissue content of TNF-α and SOD activity were markedly reduced by the treatment with tocotrienol but not omeprazole. Tocotrienol significantly corrected nitrite to near normal levels and attenuated iNOS gene expression, which was upregulated in this ulcer model. In conclusion, oral supplementation with tocotrienol provides a gastroprotective effect in WIRS-induced ulcers. Gastroprotection is mediated through 1) free radical scavenging activity, 2) the increase in gastric mucosal antioxidant enzyme activity, 3) normalisation of gastric mucosal NO through reduction of iNOS expression, and 4) attenuation of inflammatory cytokines. In comparison to omeprazole, it exerts similar effectiveness but has a more diverse mechanism of protection, particularly through its effect on NO, SOD activity, and TNF-α.
    Matched MeSH terms: Antioxidants/metabolism
  18. Nordin N, Salama SM, Golbabapour S, Hajrezaie M, Hassandarvish P, Kamalidehghan B, et al.
    PLoS One, 2014;9(11):e111925.
    PMID: 25379712 DOI: 10.1371/journal.pone.0111925
    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.
    Matched MeSH terms: Antioxidants/metabolism
  19. Norazlina M, Ima-Nirwana S, Abul Gapor MT, Abdul Kadir Khalid B
    Asia Pac J Clin Nutr, 2002;11(3):194-9.
    PMID: 12230232
    In this study the effects of vitamin E deficiency and supplementation on bone calcification were determined using 4-month-old female Sprague-Dawley rats. The rats weighed between 180 and 200 g. The study was divided in three parts. In experiment I the rats were given normal rat chow (RC, control group), a vitamin E deficient (VED) diet or a 50% vitamin E deficient (50%VED) diet. In experiment 2 the rats were given VED supplemented with 30 mg/kg palm vitamin E (PVE30), 60 mg/kg palm vitamin E (PVE60) or 30 mg/kg pure alpha-tocopherol (ATF). In experiment 3 the rats were fed RC and given the same supplements as in experiment 2. The treatment lasted 8 months. Vitamin E derived from palm oil contained a mixture of ATF and tocotrienols. Rats on the VED and 50%VED diets had lower bone calcium content in the left femur compared to the RC group (91.6 +/- 13.3 mg and 118.3 +/- 26.0 mg cf 165.7 +/- 15.2 mg; P < 0.05) and L5 vertebra (28.3 +/- 4.0 mg and 39.5 +/- 6.2 mg compared with 51.4 +/- 5.8 mg; P < 0.05). Supplementing the VED group with PVE60 improved bone calcification in the left femur (133.6 +/- 5.0 mg compared with 91.6 +/- 13.3 mg; P < 0.05) and L5 vertebra (41.3 +/- 3.3 mg compared with 28.3 +/- 4.0 mg; P < 0.05) while supplementation with PVE30 improved bone calcium content in the L5 vertebra (35.6 +/- 3.1 mg compared with 28.3 +/- 4.0 mg; P < 0.05). However, supplementation with ATF did not change the lumbar and femoral bone calcium content compared to the VED group. Supplementing the RC group with PVE30, PVE60 or ATF did not cause any significant changes in bone calcium content. In conclusion, vitamin E deficiency impaired bone calcification. Supplementation with the higher dose of palm vitamin E improved bone calcium content, but supplementation with pure ATF alone did not. This effect may be attributed to the tocotrienol content of palm vitamin E. Therefore, tocotrienols play an important role in bone calcification.
    Matched MeSH terms: Antioxidants/metabolism*
  20. Nna VU, Ujah GA, Mohamed M, Etim KB, Igba BO, Augustine ER, et al.
    Biomed Pharmacother, 2017 Oct;94:109-123.
    PMID: 28756368 DOI: 10.1016/j.biopha.2017.07.087
    This study assessed the effect of quercetin (QE) on cadmium chloride (CdCl2) - induced testicular toxicity, as well as the effect of withdrawal of CdCl2 treatment on same. Thirty male Wistar rats aged 10 weeks old and weighing 270-300g were assigned into 5 groups and used for this study. Rats in groups 1-4 were administered vehicle, CdCl2 (5mg/kg bwt), CdCl2+QE (5mg/kg bwt and 20mg/kg bwt, respectively) or QE (20mg/kg bwt) orally for 4 weeks. Group 5 rats received CdCl2, with 4 weeks recovery period. Results showed that cadmium accumulated in serum, testis and epididymis, decreased body weight, testicular and epididymal weights, sperm count, motility and viability. Cadmium decreased serum concentrations of reproductive hormones, but increased testicular glucose, lactate and lactate dehydrogenase activity. Cadmium decreased testicular enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic (glutathione, vitamins C and E) antioxidants, and increased malondialdehyde and hydrogen peroxide. Cadmium down-regulated Bcl-2 protein, up-regulated Bax protein, increased Bax/Bcl-2 ratio and cleaved caspase-3 activity. Histopathology of the testis showed decreased Johnsen's score and Leydig cell count. These negative effects were attenuated by QE administration, while withdrawal of CdCl2 did not appreciably reverse toxicity. We conclude that QE better protected the testis from CdCl2 toxicity than withdrawal of CdCl2 administration.
    Matched MeSH terms: Antioxidants/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links