Displaying publications 41 - 60 of 227 in total

Abstract:
Sort:
  1. Apandi NM, Mohamed RMSR, Al-Gheethi A, Kassim AHM
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3226-3242.
    PMID: 30565116 DOI: 10.1007/s11356-018-3937-3
    Microalgal biomass produced from the phycoremediation of wastewater represents an important protein source, lipids, and natural antioxidants and bioproducts. Therefore, the microalgal biomass and their derived compounds are used in animal and aquaculture feed as well as human nutrition and health products. Many microalgal species have shown promising potential for many bioproducts. However, significant processes to find the optimum quality and quantity of microalgal biomass are still required especially when it is used as a replacement for aquaculture feed. The limitations lie in the selection of microalgal species and their production. The present review discusses the potential generation of bioproducts from microalgal biomass resulting from the phycoremediation of wet market wastewater. The consortium approach in wastewater treatment and the comparison between biomass production and available common feeds for aquaculture were reviewed.
    Matched MeSH terms: Aquaculture/methods*
  2. Brunton LA, Desbois AP, Garza M, Wieland B, Mohan CV, Häsler B, et al.
    Sci Total Environ, 2019 Oct 15;687:1344-1356.
    PMID: 31412468 DOI: 10.1016/j.scitotenv.2019.06.134
    Aquaculture systems are highly complex, dynamic and interconnected systems influenced by environmental, biological, cultural, socio-economic and human behavioural factors. Intensification of aquaculture production is likely to drive indiscriminate use of antibiotics to treat or prevent disease and increase productivity, often to compensate for management and husbandry deficiencies. Surveillance or monitoring of antibiotic usage (ABU) and antibiotic resistance (ABR) is often lacking or absent. Consequently, there are knowledge gaps for the risk of ABR emergence and human exposure to ABR in these systems and the wider environment. The aim of this study was to use a systems-thinking approach to map two aquaculture systems in Vietnam - striped catfish and white-leg shrimp - to identify hotspots for emergence and selection of resistance, and human exposure to antibiotics and antibiotic-resistant bacteria. System mapping was conducted by stakeholders at an interdisciplinary workshop in Hanoi, Vietnam during January 2018, and the maps generated were refined until consensus. Thereafter, literature was reviewed to complement and cross-reference information and to validate the final maps. The maps and component interactions with the environment revealed the grow-out phase, where juveniles are cultured to harvest size, to be a key hotspot for emergence of ABR in both systems due to direct and indirect ABU, exposure to water contaminated with antibiotics and antibiotic-resistant bacteria, and duration of this stage. The pathways for human exposure to antibiotics and ABR were characterised as: occupational (on-farm and at different handling points along the value chain), through consumption (bacterial contamination and residues) and by environmental routes. By using systems thinking and mapping by stakeholders to identify hotspots we demonstrate the applicability of an integrated, interdisciplinary approach to characterising ABU in aquaculture. This work provides a foundation to quantify risks at different points, understand interactions between components, and identify stakeholders who can lead and implement change.
    Matched MeSH terms: Aquaculture*
  3. Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH, Folke C, et al.
    Proc Natl Acad Sci U S A, 2014 Sep 16;111(37):13257-63.
    PMID: 25136111 DOI: 10.1073/pnas.1404067111
    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.
    Matched MeSH terms: Aquaculture*
  4. Ramli NM, Verreth JAJ, Yusoff FM, Nurulhuda K, Nagao N, Verdegem MCJ
    PMID: 33015002 DOI: 10.3389/fbioe.2020.01004
    This review investigates the performance and the feasibility of the integration of an algal reactor in recirculating aquaculture systems (RAS). The number of studies related to this topic is limited, despite the apparent benefit of algae that can assimilate part of the inorganic waste in RAS. We identified two major challenges related to algal integration in RAS: first, the practical feasibility for improving nitrogen removal performance by algae in RAS; second, the economic feasibility of integrating an algal reactor in RAS. The main factors that determine high algal nitrogen removal rates are light and hydraulic retention time (HRT). Besides these factors, nitrogen-loading rates and RAS configuration could be important to ensure algal performance in nitrogen removal. Since nitrogen removal rate by algae is determined by HRT, this will affect the size (area or volume) of the algal reactor due to the time required for nutrient uptake by algae and large surface area needed to capture enough light. Constraints related to design, space, light capture, and reactor management could incur additional cost for aquaculture production. However, the increased purification of RAS wastewater could reduce the cost of water discharge in places where this is subject to levees. We believe that an improved understanding of how to manage the algal reactor and technological advancement of culturing algae, such as improved algal reactor design and low-cost artificial light, will increase the practical and economic feasibility of algal integration in RAS, thus improving the potential of mass cultivation of algae in RAS.
    Matched MeSH terms: Aquaculture
  5. Belton B, Little DC, Zhang W, Edwards P, Skladany M, Thilsted SH
    Nat Commun, 2020 11 16;11(1):5804.
    PMID: 33199697 DOI: 10.1038/s41467-020-19679-9
    Recent literature on marine fish farming brands it as potentially compatible with sustainable resource use, conservation, and human nutrition goals, and aligns with the emerging policy discourse of 'blue growth'. We advance a two-pronged critique. First, contemporary narratives tend to overstate marine finfish aquaculture's potential to deliver food security and environmental sustainability. Second, they often align with efforts to enclose maritime space that could facilitate its allocation to extractive industries and conservation interests and exclude fishers. Policies and investments that seek to increase the availability and accessibility of affordable and sustainable farmed aquatic foods should focus on freshwater aquaculture.
    Matched MeSH terms: Aquaculture
  6. Yong CY, Ong HK, Tang HC, Yeap SK, Omar AR, Ho KL, et al.
    PeerJ, 2019;7:e7151.
    PMID: 31341728 DOI: 10.7717/peerj.7151
    The aquaculture of salmonid fishes is a multi-billion dollar industry with production over 3 million tons annually. However, infectious hematopoietic necrosis virus (IHNV), which infects and kills salmon and trout, significantly reduces the revenue of the salmon farming industry. Currently, there is no effective treatment for IHNV infected fishes; therefore, early detection and depopulation of the infected fishes remain the most common practices to contain the spread of IHNV. Apart from hygiene practices in aquaculture and isolation of infected fishes, loss of fishes due to IHNV infection can also be significantly reduced through vaccination programs. In the current review, some of the diagnostic methods for IHNV, spanning from clinical diagnosis to cell culture, serological and molecular methods are discussed in detail. In addition, some of the most significant candidate vaccines for IHNV are also extensively discussed, particularly the DNA vaccines.
    Matched MeSH terms: Aquaculture
  7. Mohd Nasir N, Mohd Yunos FH, Wan Jusoh HH, Mohammad A, Lam SS, Jusoh A
    J Environ Manage, 2019 Nov 01;249:109373.
    PMID: 31415924 DOI: 10.1016/j.jenvman.2019.109373
    Microalgae have been increasingly used to generate biofuel, thus a sustainable technique should be implemented to harvest the biomass to ensure its existence in the environment. Aspergillus niger was used as bio-flocculant to harvest microalgae from aquaculture wastewater via flocculation technique over a range of pH and mixing rate. The bio-flocculant showed ability to adapt at a wide range of pH from 3.0 to 9.0 and at a mixing rate of 100-150 rpm, producing a harvesting efficiency of higher than 90%. The treated water possessed low concentration of chlorophyll-a (0.3-0.6 mg L-1) and cell density (2 × 106-3 × 106 cell mL-1). These indicate that Aspergillus niger is a promising bio-flocculant to be used in harvesting microalgae, thus promoting the use of flocculation as a green technology in aquaculture wastewater treatment.
    Matched MeSH terms: Aquaculture
  8. Zainol Z, Akhir MF, Zainol Z
    Mar Pollut Bull, 2021 Mar;164:112011.
    PMID: 33485016 DOI: 10.1016/j.marpolbul.2021.112011
    Setiu Wetland is rapidly developing into an aquaculture and agriculture hub, causing concern about its water quality condition. To address this issue, it is imperative to acquire knowledge of the spatial and temporal distributions of pollutants. Consequently, this study applied combinations of hydrodynamic and particle tracking models to identify the transport behaviour of pollutants and calculate the residence time in Setiu Lagoon. The particle tracking results indicated that the residence time in Setiu Lagoon was highly influenced by the release location, where particles released closer to the river mouth exhibited shorter residence times than those released further upstream. Despite this fact, the pulse of river discharges successfully reduced the residence time in the order of two to twelve times shorter. Under different tidal phases, the residence time during the neap tide was longer regardless of heavy rainfalls, implying the domination of tidal flow in the water renewal within the lagoon.
    Matched MeSH terms: Aquaculture
  9. Wei, Kang Chor, Victor Charlie Andin, Chitra Devi Gopalakrishnan, Amierah Amer, Shaheera Mohamed, Hiroyoshi Matsumoto, et al.
    MyJurnal
    A 25-week feeding trial was conducted to assess the growth performance, organoleptic quality, and to estimate the viability of nourishing hybrid grouper (Epinephelus fuscoguttatus x Epinephelus lanceolatus) with low-cost fish (LCF) and commercially compound feed (CCF). A group of 3600 juvenile fish (182g) were released in four sea cages and fed with either LCF or CCF in duplicate. At the end of the trial, the hybrid grouper provided LCF attained a significantly higher (P0.05). Although technicalities of fish fed with LCF suggest that LCF is more efficient than CCF, feeding LCF to high-value fish is an unsustainable practice as LCF is usually obtained through trawling – a destructive fishing method for the marine ecosystem. Therefore, feeding with CCF without the use of LCF as the source of protein for its fishmeal will contribute to sustainable aquaculture. In order to convince the local farmers in Sabah to adopt the practice of feeding CCF, future research should focus on completing the species-specific diet formulation to promote optimum growth, and find ways to reduce the CCF local selling price.
    Matched MeSH terms: Aquaculture
  10. Chu KB, Abdulah A, Abdullah SZ, Bakar RA
    Trop Life Sci Res, 2013 Dec;24(2):77-84.
    PMID: 24575250 MyJurnal
    The mass mortality of cobia (Rachycentron canadum) within 2-3 days was reported by 3 private farms in Bukit Tambun, Pulau Pinang, in February and March 2007. Only cobia with body weights of 3-4 kg were affected. Most diseased cobia swam on the surface and displayed flashing behaviour. All samples were positive for viral nervous necrosis (VNN) with low to medium levels of infection. Infestations by leeches (Zeylanicobdella arugamensis), body monogeneans (Benedenia sp.) and copepods (Caligus sp.) were also found, but no pathogenic bacteria were isolated. All water quality parameters monitored were within optimal ranges for culturing cobia. The main causes of high mortality in cobia remain unclear during the study. However, we believe that the mass mortality of cobia could be probably due to VNN infection and that the rate of mortality will increase further when cobia are subjected to aquaculture-related stresses (e.g., limited space). Traditional cages with a size of 2 (length) × 2 (width) × 1 m (depth) should only be used for rearing cobia below 1 kg in weight given the species' natural behaviours. In addition, cobia fingerlings should be screened for VNN prior to stocking them in cages.
    Matched MeSH terms: Aquaculture
  11. Chin JY, Teoh GH, Ahmad AL, Low SC
    Sci Total Environ, 2021 Nov 10;794:148657.
    PMID: 34198076 DOI: 10.1016/j.scitotenv.2021.148657
    Surging growth of aquaculture industry has alarmed the public when the wastewater discharged had an adverse effect on the environment. This current study is a pioneer in the use of membrane distillation (MD) to treat real aquaculture wastewater. In addition to excellent hydrophobicity, the slippery surface of membrane used for MD is another key factor that enhances the performance of MD. The slippery surface of the membrane was tuned by layering high-viscosity and low-viscosity polypropylene (PP) polymers on the electrospun membrane by solvent-exchanged method. While the high-viscosity PP coating (PP/HV) rendered the membrane surface slippery, the low-viscosity PP coating (PP/LV) caused the fish farm wastewater to have stick-slip movement on the membrane surface. In the long-term 70-hour direct contact membrane distillation (DCMD) separation, PP/HV and PP/LV membranes can perfectly eliminate the undesirable components in the fish farm wastewater. The PP/HV membrane has registered a flux of 19.1 kg/m2·h, while the flux of PP/LV membrane was only 7.3 kg/m2·h. The PP/HV membrane also showed excellent anti-scaling properties in relative to the PP/LV membrane. This is because the PP/HV membrane promotes effortless gliding of the feed water along the surface of the membrane, while the surface of the PP/LV membrane has a static water boundary. Therefore, it can be concluded that the application of MD using the membrane coated with high-viscosity PP polymer is a feasible technology for the treatment of aquaculture wastewater.
    Matched MeSH terms: Aquaculture
  12. MyJurnal
    This study evaluates the sanitary and physico-chemical quality of Sg. Jarum Mas shellfish waters in order to establish its suitability as a model farm. Seawater and shellfish from nine stations (4 shellfish harvesting waters, 4 surrounding waters and 1 control site) were collected and analyzed monthly from September 2004 - September 2005. The results show that shellfish harvesting waters in Sg. Jarum Mas can be classified as ‘approved’ and ‘conditionally approved’. Hepatitis A virus was not detected in any of the shellfish examined. Dinophysis caudata and Pseuodonitzshia spp. were the most common harmful alga species observed. Harmful species that are known to produce toxins and cause shellfish poisoning such as Alexandrium spp., Gymnodinum spp., Pyrodinium sp. and Prorocentrum spp. were not detected. The physico-chemical characteristics of shellfish waters in Sg. Jarum Mas imply that they are suitable for aquaculture activity of moderately tolerant species such as shellfish.
    Matched MeSH terms: Aquaculture
  13. Khatune-Jannat M, Mohammad Mustafizur Rahman, Md. Abul Bashar, Md. Nahid Hasan, Ferdous Ahamed, Md Yeamin Hossain
    Sains Malaysiana, 2012;41:1205-1210.
    An experiment was carried out in 6 earthen ponds to investigate the effects of stocking density on growth, survival and production of Thai climbing perch (Anabas testudineus). Three stocking densities (treatments) were compared: ponds with 350, 400 and 550 individuals per decimal (0.01 acre). All treatments were randomly assigned and in duplicate. Artificial feed containing 34% crude protein was applied initially 20% of total fish weight per day. Gradually the feeding rate was reduced to 15, 12, 10, 8 and 5% of total fish weight per day. Feeding rates per pond were adjusted fortnightly after weighing minimum 20% of the fish stocked. The duration of the experiment was 90 days. Results showed that all growth parameters were higher in ponds with lower stocking density than the ponds with higher stocking density, while total fish yield was higher in ponds with higher stocking density than in the ponds with lower stocking density. Cost-benefit analysis revealed that all three systems were economically profitable. However, the ponds with a stocking density of 550 individuals per decimal were the most profitable system. More research is still needed to further optimize stocking density of Thai climbing perch in aquaculture ponds. Until then, stocking 550 individuals of Thai climbing perch per decimal will yield a good production to fish farmers in the South and South-East Asian regions.
    Matched MeSH terms: Aquaculture
  14. Zarina Zakaria, Noor Hasyierah Mohd Salleh, Alina Rahayu Mohamed, Ahmad Anas N, Siti Nur Amirah Idris
    Sains Malaysiana, 2012;41:1071-1077.
    The optimization of protein content in earthworm-based fish feed formulation was investigated in the study. Full factorial design (FFD) and central composite design (CCD) were used as a statistical tool to screen the range of the selected parameters and to optimize the process, respectively. Three components were combined in the fish feed formulation
    namely earthworm powder, chicken guts and soybean waste as the protein source. The optimum nutritional values were obtained at 25%, 25% and 5.95% for earthworm powder, soybean waste and chicken guts, respectively, to give an optimum protein content of 35.97%. Formulation of fish feed from earthworm powder can be an alternative in aquaculture industry in the near future.
    Matched MeSH terms: Aquaculture
  15. Miskon FM, Noor Azhar Mord Shazili, Faridah Mohammad, Kamaruzzaman Yunus
    Sains Malaysiana, 2014;43:529-534.
    The selected trace metals in the soft tissue of Thais clavigera from 11 sampling sites along the coastal waters of the east coast of Peninsular Malaysia were studied. Significant inter-spatial variations in trace metals were recorded. Sites with relatively high concentrations of the contaminant metals Hg, Cd, Pb and Zn are correlated to their close proximity to industrial and urban sites or to boating and aquaculture activities. This could possibly be contributed by the high growth of industrial activities like port and sewage release. Interspatial comparison with previous studies indicated lower measurement. Meanwhile, comparison with other studies around the world also designated lower values except for Zn. The metal accumulation patterns indicated an enrichment of essential metals over non-essential metals. Comparison of metal concentration with maximum permissible limits of toxic metals in food established in different countries, as well as Malaysian Food Act 1983 and Food Regulations 1985 Fourteen Schedule, indicated the values were well within safety levels.
    Matched MeSH terms: Aquaculture
  16. Tang KFJ, Bondad-Reantaso MG
    Rev. - Off. Int. Epizoot., 2019 Sep;38(2):477-490.
    PMID: 31866681 DOI: 10.20506/rst.38.2.2999
    Acute hepatopancreatic necrosis disease (AHPND) has caused severe losses in farmed populations of marine shrimp Penaeus vannamei and P. monodon. The causative agents are unique strains of the bacteria Vibrio parahaemolyticus and related Vibrio species. The disease emerged in the People's Republic of China (China) and Vietnam in 2010 and spread throughout South-East Asia; it was later reported in countries in both North and South America. The disease has had significant economic impacts on the shrimp aquaculture industry. From 2010 to 2016, combined losses from China, Malaysia, Mexico, Thailand and Vietnam due primarily to outbreaks of AHPND, including losses at the farm gate and those resulting from a drop in feed sales and exports, were estimated at over US$ 44 billion. Other economic losses include those associated with processing facilities, decreased community revenues resulting from increased unemployment, financial investments, and the costs of implementing diagnostic and control measures. The reduced employment opportunities and increases in debt burden and investment risk have had sociological impacts. The responses to the disease have led to a gradual recovery of the shrimp industry in affected countries. These response efforts have included the implementation of changes in farming systems and management, including, among others, enhanced biosecurity and the use of AHPND-free and AHPND-resistant shrimp. This situation of losses and recovery illustrates the importance of having a multi-level response plan in place to prevent, or to reduce the risk of, outbreaks of disease.
    Matched MeSH terms: Aquaculture
  17. Mian S, Ishak SD, Noordin NM, Kader MA, Abduh YM, Khatoon H, et al.
    Data Brief, 2020 Apr;29:105287.
    PMID: 32123713 DOI: 10.1016/j.dib.2020.105287
    The data collection was initiated to evaluate the effects of supplementary phospholipid to non-fishmeal based diet in order to make functional diets for the Malaysian Mahseer, Tor tambroides. Four iso-nitrogenous and iso-lipidic diets were formulated to consist 100% fishmeal (FM100), 0% fishmeal or full fishmeal replacement (FM0), and 0% fishmeal supplemented with 4% phospholipids (FM0+4%PL), 6% phospholipids (FM0+6%PL). A 60-day feeding trial was conducted and data collection was carried out for the following parameters; growth indices, somatic parameters, whole body nutrient composition, muscle fatty acid composition, haematocrit value and serum lysozyme activity. Fish fed FM0 diets showed significantly poor performance (P 
    Matched MeSH terms: Aquaculture
  18. Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, et al.
    Chemosphere, 2022 Mar;291(Pt 2):133036.
    PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036
    The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.
    Matched MeSH terms: Aquaculture
  19. Ahmad A, Kurniawan SB, Abdullah SRS, Othman AR, Hasan HA
    Chemosphere, 2022 Mar;290:133319.
    PMID: 34922971 DOI: 10.1016/j.chemosphere.2021.133319
    The contamination of aquaculture products and effluents by contaminants of emerging concern (CECs) from the direct chemical use in aquaculture activities or surrounding industries is currently an issue of increasing concern as these CECs exert acute and chronic effects on living organisms. CECs have been detected in aquaculture water, sediment, and culture species, and antibiotics, antifoulants, and disinfectants are the commonly detected groups. Through accumulation, CECs can reside in the tissue of aquaculture products and eventually consumed by humans. Currently, effluents containing CECs are discharged to the surrounding environment while producing sediments that eventually contaminate rivers as receiving bodies. The rearing (grow-out) stages of aquaculture activities are issues regarding CECs-contamination in aquaculture covering water, sediment, and aquaculture products. Proper regulations should be imposed on all aquaculturists to control chemical usage and ensure compliance to guidelines for appropriate effluent treatment. Several techniques for treating aquaculture effluents contaminated by CECs have been explored, including adsorption, wetland construction, photocatalysis, filtration, sludge activation, and sedimentation. The challenges imposed by CECs on aquaculture activities are discussed for the purpose of obtaining insights into current issues and providing future approaches for resolving associated problems. Stakeholders, such as researchers focusing on environment and aquaculture, are expected to benefit from the presented results in this article. In addition, the results may be useful in establishing aquaculture-related CECs regulations, assessing toxicity to living biota, and preventing pollution.
    Matched MeSH terms: Aquaculture
  20. Jimoh JO, Rahmah S, Mazelan S, Jalilah M, Olasunkanmi JB, Lim LS, et al.
    Environ Pollut, 2023 Jan 15;317:120769.
    PMID: 36455766 DOI: 10.1016/j.envpol.2022.120769
    Microplastic pollution in our environment, especially water bodies is an emerging threat to food security and human health. Inevitably, the outbreak of Covid-19 has necessitated the constant use of face masks made from polymers such as polypropylene, polyurethane, polyacrylonitrile, polystyrene, polycarbonate, polyethylene, or polyester which eventually will disintegrate into microplastic particles. They can be broken down into microplastics by the weathering action of UV radiation from the sun, heat, or ocean wave-current and precipitate in natural environments. The global adoption of face masks as a preventive measure to curb the spread of Covid-19 has made the safe management of wastes from it cumbersome. Microplastics gain access into aquaculture facilities through water sources and food including planktons. The negative impacts of microplastics on aquaculture cannot be overemphasized. The impacts includes low growth rates of animals, hindered reproductive functions, neurotoxicity, low feeding habit, oxidative stress, reduced metabolic rate, and increased mortality rate among aquatic organisms. With these, there is every tendency of microplastic pollution to negatively impact fish production through aquaculture if the menace is not curbed. It is therefore recommended that biodegradable materials rather than plastics to be considered in the production of face mask while recycle of already produced ones should be encouraged to reduce waste.
    Matched MeSH terms: Aquaculture
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links