Displaying publications 41 - 60 of 393 in total

Abstract:
Sort:
  1. Cosset CCP, Edwards DP
    Ecol Appl, 2017 09;27(6):1932-1945.
    PMID: 28543995 DOI: 10.1002/eap.1578
    Selective logging is the most prevalent land-use change in the tropics. Despite the resulting degradation of forest structure, selectively logged forests still harbor a substantial amount of biodiversity leading to suggestions that their protection is the next best alternative to conserving primary, old-growth forests. Restoring carbon stocks under Reducing Emissions from Deforestation and Forest Degradation (REDD+) schemes is a potential method for obtaining funding to protect logged forests, via enrichment planting and liberation cutting of vines. This study investigates the impacts of restoring logged forests in Borneo on avian phylogenetic diversity, the total evolutionary history shared across all species within a community, and on functional diversity, with important implications for the protection of evolutionarily unique species and the provision of many ecosystem services. Overall and understorey avifaunal communities were studied using point count and mist netting surveys, respectively. Restoration caused a significant loss in phylogenetic diversity and MPD (mean pairwise distance) leaving an overall bird community of less total evolutionary history and more closely related species compared to unlogged forests, while the understorey bird community had MNTD (mean nearest taxon distance) that returned toward the lower levels found in a primary forest, indicating more closely related species pairs. The overall bird community experienced a significant loss of functional strategies and species with more specialized traits in restored forests compared to that of unlogged forests, which led to functional clustering in the community. Restoration also led to a reduction in functional richness and thus niches occupied in the understorey bird community compared to unlogged forests. While there are additional benefits of restoration for forest regeneration, carbon sequestration, future timber harvests, and potentially reduced threat of forest conversion, this must be weighed against the apparent loss of phylogenetic and functional diversity from unlogged forest levels, making the biodiversity-friendliness of carbon sequestration schemes questionable under future REDD+ agreements. To reduce perverse biodiversity outcomes, it is important to focus restoration only on the most degraded areas or at reduced intensity where breaks between regimes are incorporated.
    Matched MeSH terms: Biodiversity*
  2. Carrión O, Gibson L, Elias DMO, McNamara NP, van Alen TA, Op den Camp HJM, et al.
    Microbiome, 2020 06 03;8(1):81.
    PMID: 32493439 DOI: 10.1186/s40168-020-00860-7
    BACKGROUND: Isoprene is the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, with annual global emissions almost equal to those of methane. Despite its importance in atmospheric chemistry and climate, little is known about the biological degradation of isoprene in the environment. The largest source of isoprene is terrestrial plants, and oil palms, the cultivation of which is expanding rapidly, are among the highest isoprene-producing trees.

    RESULTS: DNA stable isotope probing (DNA-SIP) to study the microbial isoprene-degrading community associated with oil palm trees revealed novel genera of isoprene-utilising bacteria including Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea in both oil palm soils and on leaves. Amplicon sequencing of isoA genes, which encode the α-subunit of the isoprene monooxygenase (IsoMO), a key enzyme in isoprene metabolism, confirmed that oil palm trees harbour a novel diversity of isoA sequences. In addition, metagenome-assembled genomes (MAGs) were reconstructed from oil palm soil and leaf metagenomes and putative isoprene degradation genes were identified. Analysis of unenriched metagenomes showed that isoA-containing bacteria are more abundant in soils than in the oil palm phyllosphere.

    CONCLUSION: This study greatly expands the known diversity of bacteria that can metabolise isoprene and contributes to a better understanding of the biological degradation of this important but neglected climate-active gas. Video abstract.

    Matched MeSH terms: Biodiversity*
  3. Messina S, Edwards DP, AbdElgawad H, Beemster GTS, Tomassi S, Benedick S, et al.
    J Anim Ecol, 2020 10;89(10):2222-2234.
    PMID: 32535926 DOI: 10.1111/1365-2656.13280
    Selective logging is the dominant form of human disturbance in tropical forests, driving changes in the abundance of vertebrate and invertebrate populations relative to undisturbed old-growth forests. A key unresolved question is understanding which physiological mechanisms underlie different responses of species and functional groups to selective logging. Regulation of oxidative status is thought to be one major physiological mechanism underlying the capability of species to cope with environmental changes. Using a correlational cross-sectional approach, we compared a number of oxidative status markers among 15 understorey bird species in unlogged and selectively logged forest in Borneo in relation to their feeding guild. We then tested how variation of markers between forest types was associated with that in population abundance. Birds living in logged forests had a higher activity of the antioxidant enzyme superoxide dismutase and a different regulation of the glutathione cycle compared to conspecific birds in unlogged forest. However, neither oxidative damage nor oxidized glutathione differed between forest types. We also found that omnivores and insectivores differed significantly in all markers related to the key cellular antioxidant glutathione irrespective of the forest type. Species with higher levels of certain antioxidant markers in a given type of forest were less abundant in that forest type compared to the other. Our results suggest that there was little long-term effect of logging (last logging rotation occurred ~15 years prior to the study) on the oxidative status of understorey bird species. However, it is unclear if this was owing to plasticity or evolutionary change. Our correlative results also point to a potential negative association between some antioxidants and population abundance irrespective of the forest type.
    Matched MeSH terms: Biodiversity*
  4. Geml J, Morgado LN, Semenova-Nelsen TA, Schilthuizen M
    New Phytol, 2017 Jul;215(1):454-468.
    PMID: 28401981 DOI: 10.1111/nph.14566
    The distribution patterns of tropical ectomycorrhizal (ECM) fungi along altitudinal gradients remain largely unknown. Furthermore, despite being an iconic site for biodiversity research, virtually nothing is known about the diversity and spatial patterns of fungi on Mt Kinabalu and neighbouring mountain ranges. We carried out deep DNA sequencing of soil samples collected between 425 and 4000 m above sea level to compare richness and community composition of ECM fungi among altitudinal forest types in Borneo. In addition, we tested whether the observed patterns are driven by habitat or by geometric effect of overlapping ranges of species (mid-domain effect). Community composition of ECM fungi was strongly correlated with elevation. In most genera, richness peaked in the mid-elevation montane forest zone, with the exception of tomentelloid fungi, which showed monotonal decrease in richness with increasing altitude. Richness in lower-mid- and mid-elevations was significantly greater than predicted under the mid-domain effect model. We provide the first insight into the composition of ECM fungal communities and their strong altitudinal turnover in Borneo. The high richness and restricted distribution of many ECM fungi in the montane forests suggest that mid-elevation peak richness is primarily driven by environmental characteristics of this habitat and not by the mid-domain effect.
    Matched MeSH terms: Biodiversity*
  5. Sun ZJ, Zhu W, Zhu WB, Zhao CL, Liao CL, Zou B, et al.
    Zool Res, 2021 Jul 18;42(4):412-416.
    PMID: 34075734 DOI: 10.24272/j.issn.2095-8137.2020.341
    Functional diversity is an integrative approach to better understand biodiversity across space and time. In the present study, we investigated the spatiotemporal patterns (i.e., elevation and season) and environmental determinants of anuran functional diversity on Tianping Mountain, northwest Hunan, China. Specifically, 10 transects were established from low (300 m a.s.l.) to high (1 492 m a.s.l.) elevations, and anuran communities were sampled in spring, early summer, midsummer, and autumn in 2017. Four functional diversity indices were computed for each transect in each season using ecomorphological functional traits. Our results demonstrated that these indices had contrasting responses to increasing elevations. However, they did not differ significantly among seasons in terms of temporal patterns. Interestingly, the unique spatiotemporal functional diversity patterns were impacted by distinct environmental variables, such as leaf litter cover, water temperature, number of trees, and water conductivity.
    Matched MeSH terms: Biodiversity*
  6. Bongalov B, Burslem DFRP, Jucker T, Thompson SED, Rosindell J, Swinfield T, et al.
    Ecol Lett, 2019 Oct;22(10):1608-1619.
    PMID: 31347263 DOI: 10.1111/ele.13357
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.
    Matched MeSH terms: Biodiversity*
  7. Takaoka H, Sofian-Azirun M, Ya'cob Z, Chen CD, Lau KW, Pham HT
    Trop Biomed, 2014 Dec;31(4):742-8.
    PMID: 25776600 MyJurnal
    A total of 29 female black flies were captured by a hand net as they swarmed around humans in Tam Dao National Park, Vinh Phuc Province, Vietnam. They included one species of the subgenus Gomphostilbia (Simulium (Gomphostilbia) asakoae Takaoka & Davies) and five species of the subgenus Simulium, of which one species is described as Simulium (Simulium) vietnamense sp. nov. and the other four species (S. (S.) chungi Takaoka & Huang, S. (S.) grossifilum Takaoka & Davies, S. (S.) maenoi Takaoka & Choochote, and S. (S.) rufibasis Brunetti) are newly recorded from Vietnam.
    Matched MeSH terms: Biodiversity*
  8. Wearn OR, Carbone C, Rowcliffe JM, Bernard H, Ewers RM
    Ecol Appl, 2016 Jul;26(5):1409-1420.
    PMID: 27755763 DOI: 10.1890/15-1363
    Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains.
    Matched MeSH terms: Biodiversity*
  9. Gray REJ, Ewers RM, Boyle MJW, Chung AYC, Gill RJ
    Sci Rep, 2018 03 23;8(1):5131.
    PMID: 29572517 DOI: 10.1038/s41598-018-23272-y
    Understanding how anthropogenic disturbance influences patterns of community composition and the reinforcing interactive processes that structure communities is important to mitigate threats to biodiversity. Competition is considered a primary reinforcing process, yet little is known concerning disturbance effects on competitive interaction networks. We examined how differences in ant community composition between undisturbed and disturbed Bornean rainforest, is potentially reflected by changes in competitive interactions over a food resource. Comparing 10 primary forest sites to 10 in selectively-logged forest, we found higher genus richness and diversity in the primary forest, with 18.5% and 13.0% of genera endemic to primary and logged respectively. From 180 hours of filming bait cards, we assessed ant-ant interactions, finding that despite considered aggression over food sources, the majority of ant interactions were neutral. Proportion of competitive interactions at bait cards did not differ between forest type, however, the rate and per capita number of competitive interactions was significantly lower in logged forest. Furthermore, the majority of genera showed large changes in aggression-score with often inverse relationships to their occupancy rank. This provides evidence of a shuffled competitive network, and these unexpected changes in aggressive relationships could be considered a type of competitive network re-wiring after disturbance.
    Matched MeSH terms: Biodiversity*
  10. Chan BKK, Xu G, Kim HK, Park JH, Kim W
    PLoS One, 2018;13(5):e0196309.
    PMID: 29715264 DOI: 10.1371/journal.pone.0196309
    Corals and their associated fauna are extremely diverse in tropical waters and form major reefs. In the high-latitude temperate zone, corals living near their distribution limit are considered marginal communities because they are particularly extremely sensitive to environmental and climatic changes. In this study, we examined the diversity and host usage of coral-associated barnacles on Jeju Island, Korea, the northern coral distribution limit in the East China Sea. In this study, only three coral-associated barnacles-from two genera in two subfamilies-were collected. The Pyrgomatinid barnacles Cantellius arcuatus and Cantellius cf. euspinulosum were found only on the corals Montipora millepora and Alveopora japonica, respectively. The Megatrematinid barnacle Pyrgomina oulastreae, relatively a generalist, was found on Psammocora spp. (both profundacella and albopicta) and Oulastrea crispata corals. The host usage of these three barnacles does not overlap. DNA barcode sequences of the C. arcuatus specimens collected in the present study matched those collected in Kochi in Japan, Taiwan, Malaysia and Papua New Guinea, suggesting that this species has a wide geographical distribution. C. arcuatus covers a wider host range in Taiwan waters, inhabiting Montipora spp. and Porites spp., which suggests that the host specificity of coral-associated barnacles varies with host availability. C. cf. euspinulosum probably has a very narrow distribution and host usage. The sequences of C. cf. euspinulosum on Jeju Island do not match those of any known sequences of Cantellius barnacles in the Indo-Pacific region. P. oulastreae probably prefers cold water because it has been reported in temperate regions. Coral-associated barnacles in marginal communities have considerably lower diversity than their subtropical and tropical counterparts. When host availability is limited, marginal coral-associated barnacles exhibit higher host specificity than those in subtropical and tropical reef systems.
    Matched MeSH terms: Biodiversity*
  11. Flury JM, Haas A, Brown RM, Das I, Pui YM, Boon-Hee K, et al.
    Mol Phylogenet Evol, 2021 10;163:107210.
    PMID: 34029720 DOI: 10.1016/j.ympev.2021.107210
    One of the most urgent contemporary tasks for taxonomists and evolutionary biologists is to estimate the number of species on earth. Recording alpha diversity is crucial for protecting biodiversity, especially in areas of elevated species richness, which coincide geographically with increased anthropogenic environmental pressures - the world's so-called biodiversity hotspots. Although the distribution of Puddle frogs of the genus Occidozyga in South and Southeast Asia includes five biodiversity hotspots, the available data on phylogeny, species diversity, and biogeography are surprisingly patchy. Samples analyzed in this study were collected throughout Southeast Asia, with a primary focus on Sundaland and the Philippines. A mitochondrial gene region comprising ~ 2000 bp of 12S and 16S rRNA with intervening tRNA Valine and three nuclear loci (BDNF, NTF3, POMC) were analyzed to obtain a robust, time-calibrated phylogenetic hypothesis. We found a surprisingly high level of genetic diversity within Occidozyga, based on uncorrected p-distance values corroborated by species delimitation analyses. This extensive genetic diversity revealed 29 evolutionary lineages, defined by the > 5% uncorrected p-distance criterion for the 16S rRNA gene, suggesting that species diversity in this clade of phenotypically homogeneous forms probably has been underestimated. The comparison with results of other anuran groups leads to the assumption that anuran species diversity could still be substantially underestimated in Southeast Asia in general. Many genetically divergent lineages of frogs are phenotypically similar, indicating a tendency towards extensive morphological conservatism. We present a biogeographic reconstruction of the colonization of Sundaland and nearby islands which, together with our temporal framework, suggests that lineage diversification centered on the landmasses of the northern Sunda Shelf. This remarkably genetically structured group of amphibians could represent an exceptional case for future studies of geographical structure and diversification in a widespread anuran clade spanning some of the most pronounced geographical barriers on the planet (e.g., Wallace's Line). Studies considering gene flow, morphology, ecological and bioacoustic data are needed to answer these questions and to test whether observed diversity of Puddle frog lineages warrants taxonomic recognition.
    Matched MeSH terms: Biodiversity*
  12. Nakabayashi M, Kanamori T, Matsukawa A, Tangah J, Tuuga A, Malim PT, et al.
    Sci Rep, 2021 10 06;11(1):19819.
    PMID: 34615956 DOI: 10.1038/s41598-021-99341-6
    To propose proper conservation measures and to elucidate coexistence mechanisms of sympatric carnivore species, we assessed temporal activity patterns of the sympatric carnivore species using 37,379 photos collected for more than 3 years at three study sites in Borneo. We categorized activity patterns of nine carnivore species (one bear, three civets, two felids, one skunk, one mustelid, one linsang) by calculating the photo-capturing proportions at each time period (day, night, twilight). We then evaluated temporal activity overlaps by calculating the overlap coefficients. We identified six nocturnal (three civets, one felid, one skunk, one linsang), two diurnal (one felid, one mustelid), and one cathemeral (bear) species. Temporal activity overlaps were high among the nocturnal species. The two felid species possessing morphological and ecological similarities exhibited clear temporal niche segregation, but the three civet species with similar morphology and ecology did not. Broad dietary breadth may compensate for the high temporal niche overlaps among the nocturnal species. Despite the high species richness of Bornean carnivores, almost half are threatened with extinction. By comparing individual radio-tracking and our data, we propose that a long-term study of at least 2 or 3 years is necessary to understand animals' temporal activity patterns, especially for sun bears and civets, by camera-trapping and to establish effective protection measures.
    Matched MeSH terms: Biodiversity*
  13. Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al.
    Nat Ecol Evol, 2017 Nov;1(11):1677-1682.
    PMID: 28993667 DOI: 10.1038/s41559-017-0332-2
    The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.
    Matched MeSH terms: Biodiversity*
  14. Azhar B, Saadun N, Prideaux M, Lindenmayer DB
    J Environ Manage, 2017 Dec 01;203(Pt 1):457-466.
    PMID: 28837912 DOI: 10.1016/j.jenvman.2017.08.021
    Most palm oil currently available in global markets is sourced from certified large-scale plantations. Comparatively little is sourced from (typically uncertified) smallholders. We argue that sourcing sustainable palm oil should not be determined by commercial certification alone and that the certification process should be revisited. There are so-far unrecognized benefits of sourcing palm oil from smallholders that should be considered if genuine biodiversity conservation is to be a foundation of 'environmentally sustainable' palm oil production. Despite a lack of certification, smallholder production is often more biodiversity-friendly than certified production from large-scale plantations. Sourcing palm oil from smallholders also alleviates poverty among rural farmers, promoting better conservation outcomes. Yet, certification schemes - the current measure of 'sustainability' - are financially accessible only for large-scale plantations that operate as profit-driven monocultures. Industrial palm oil is expanding rapidly in regions with weak environmental laws and enforcement. This warrants the development of an alternative certification scheme for smallholders. Greater attention should be directed to deforestation-free palm oil production in smallholdings, where production is less likely to cause large scale biodiversity loss. These small-scale farmlands in which palm oil is mixed with other crops should be considered by retailers and consumers who are interested in promoting sustainable palm oil production. Simultaneously, plantation companies should be required to make their existing production landscapes more compatible with enhanced biodiversity conservation.
    Matched MeSH terms: Biodiversity*
  15. Takeuchi Y, Soda R, Diway B, Kuda TA, Nakagawa M, Nagamasu H, et al.
    PLoS One, 2017;12(11):e0187273.
    PMID: 29186138 DOI: 10.1371/journal.pone.0187273
    This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover), but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.
    Matched MeSH terms: Biodiversity*
  16. Hadi UK, Takaoka H
    Acta Trop, 2018 Sep;185:133-137.
    PMID: 29452114 DOI: 10.1016/j.actatropica.2018.02.013
    Indonesia is one of the megadiversity country in the world endowed with rich and unique biodiversity insects such as blackflies species (Diptera: Simuliidae). Blackflies are found almost anywhere with running water suitable as habitat for the immature stages. This family is one of the most important groups of blood-sucking insects. This study collates the records of Simulium (Diptera: Simuliidae) in previous publications related fauna of Indonesia. Based on the results of this study, there were 124 species of blackflies in Indonesian Archipelago. All species are assigned to the genus Simulium Latreille s.l., and are placed into five subgenera, i.e. Gomphostilbia Enderlein, Morops Enderlein, Nevermannia Enderlein, Simulium Latreille s.str. and Wallacellum Takaoka. Further classification into 27 species groups within the subgenera were also made. Checklists of Indonesian Simuliidae are provided including data on the distribution of each species.
    Matched MeSH terms: Biodiversity*
  17. Lechner AM, Chan FKS, Campos-Arceiz A
    Nat Ecol Evol, 2018 03;2(3):408-409.
    PMID: 29335571 DOI: 10.1038/s41559-017-0452-8
    Matched MeSH terms: Biodiversity*
  18. Garcia C, Gibbins CN, Pardo I, Batalla RJ
    Sci Total Environ, 2017 Feb 15;580:1453-1459.
    PMID: 28027801 DOI: 10.1016/j.scitotenv.2016.12.119
    Here we provide the first evidence of long term reductions in flow in temporary streams on the Mediterranean island of Mallorca and use a simple metric of the degree of water permanence (the number of days with water) to highlight the implications of flow change for aquatic invertebrate diversity. Analysis of a 33year data set for 13 streams on the island yielded evidence of consistent downward trends in water permanence, particularly in spring and summer. Data from 27 relatively undisturbed mountain streams indicate that the diversity of benthic invertebrates in temporary streams across the island is directly related to water permanence. Streams with lower values of water permanence support few species overall and have less abundant invertebrate assemblages; the abundance and species richness of sensitive mayfly, stonefly and caddisfly taxonomic groups is also reduced in streams with lower water permanence. Although developed using spatial data, these flow-invertebrate relationships suggest that future reductions in water permanence may lead to reduced diversity. We argue that the 'number of days with water' is a simple but ecologically-relevant metric of water permanence that can be used effectively to monitor change in threatened temporary streams worldwide.
    Matched MeSH terms: Biodiversity*
  19. Zhong Y, Chu C, Myers JA, Gilbert GS, Lutz JA, Stillhard J, et al.
    Nat Commun, 2021 May 25;12(1):3137.
    PMID: 34035260 DOI: 10.1038/s41467-021-23236-3
    Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
    Matched MeSH terms: Biodiversity*
  20. Habibullah MS, Din BH, Tan SH, Zahid H
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1073-1086.
    PMID: 34341937 DOI: 10.1007/s11356-021-15702-8
    The present study investigates the impact of climate change on biodiversity loss using global data consisting of 115 countries. In this study, we measure biodiversity loss using data on the total number of threatened species of amphibians, birds, fishes, mammals, mollusks, plants, and reptiles. The data were compiled from the Red List published by the International Union for Conservation of Nature (IUCN). For climate change variables, we have included temperature, precipitation, and the number of natural disaster occurrences. As for the control variable, we have considered governance indicator and the level of economic development. By employing ordinary least square with robust standard error and robust regression (M-estimation), our results suggest that all three climate change variables - temperature, precipitation, and the number of natural disasters occurrences - increase biodiversity loss. Higher economic development also impacted biodiversity loss positively. On the other hand, good governance such as the control of corruption, regulatory quality, and rule of law reduces biodiversity loss. Thus, practicing good governance, promoting conservation of the environment, and the control of greenhouse gasses would able to mitigate biodiversity loss.
    Matched MeSH terms: Biodiversity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links