Displaying publications 41 - 60 of 171 in total

Abstract:
Sort:
  1. Fleagle JG
    Folia Primatol., 1976;26(4):245-69.
    PMID: 1010498
    Wild, adult siamang were observed for over 800 h in lowland dipterocarp forest in the Krau Game Reserve, Pahang, West Malaysia. Siamang use four patterns of locomotion: brachiation, climbing, bipedalism and leaping. The pattern of locomotion used by the siamang varies with the size of arboreal supports and with major behavioral activity. Travel is primarily by brachiation along large boughs. Locomotion during feeding is primarily climbing among small branches. In feeding, siamang use suspensory postures among small supports and seated postures on large supports. Comparison of siamang locomotion and posture with that of other apes suggest that quadramanous climbing during feeding is the basic hominoid locomotor adaptation.
    Matched MeSH terms: Biological Evolution*
  2. Gelabert P, Sandoval-Velasco M, Serres A, de Manuel M, Renom P, Margaryan A, et al.
    Curr Biol, 2020 01 06;30(1):108-114.e5.
    PMID: 31839456 DOI: 10.1016/j.cub.2019.10.066
    As the only endemic neotropical parrot to have recently lived in the northern hemisphere, the Carolina parakeet (Conuropsis carolinensis) was an iconic North American bird. The last surviving specimen died in the Cincinnati Zoo in 1918 [1]. The cause of its extinction remains contentious: besides excessive mortality associated to habitat destruction and active hunting, their survival could have been negatively affected by its range having become increasingly patchy [2] or by the exposure to poultry pathogens [3, 4]. In addition, the Carolina parakeet showed a predilection for cockleburs, an herbaceous plant that contains a powerful toxin, carboxyatractyloside, or CAT [5], which did not seem to affect them but made the birds notoriously toxic to most predators [3]. To explore the demographic history of this bird, we generated the complete genomic sequence of a preserved specimen held in a private collection in Espinelves (Girona, Spain), as well as of a close extant relative, Aratinga solstitialis. We identified two non-synonymous genetic changes in two highly conserved proteins known to interact with CAT that could underlie a specific dietary adaptation to this toxin. Our genomic analyses did not reveal evidence of a dramatic past demographic decline in the Carolina parakeet; also, its genome did not exhibit the long runs of homozygosity that are signals of recent inbreeding and are typically found in endangered species. As such, our results suggest its extinction was an abrupt process and thus likely solely attributable to human causes.
    Matched MeSH terms: Biological Evolution*
  3. Oettlé AC, Demeter FP, L'abbé EN
    Anat Rec (Hoboken), 2017 01;300(1):196-208.
    PMID: 28000408 DOI: 10.1002/ar.23469
    The variable development of the zygoma, dictating its shape and size variations among ancestral groups, has important clinical implications and valuable anthropological and evolutionary inferences. The purpose of the study was to review the literature regarding the variations in the zygoma with ancestry. Ancestral variation in the zygoma reflects genetic variations because of genetic drift as well as natural selection and epigenetic changes to adapt to diet and climate variations with possible intensification by isolation. Prominence of the zygoma, zygomaxillary tuberosity, and malar tubercle have been associated with Eastern Asian populations in whom these features intensified. Prominence of the zygoma is also associated with groups from Eastern Europe and the rest of Asia. Diffusion of these traits occurred across the Behring Sea to the Arctic areas and to North and South America. The greatest zygomatic projections are exhibited in Arctic groups as an adaptation to extreme cold conditions, while Native South American groups also present with other features of facial robusticity. Groups from Australia, Malaysia, and Oceania show prominence of the zygoma to a certain extent, possibly because of archaic occupations by undifferentiated Southeast Asian populations. More recent interactions with Chinese groups might explain the prominent cheekbones noted in certain South African groups. Many deductions regarding evolutionary processes and diversifications of early groups have been made. Cognisance of these ancestral variations also have implications for forensic anthropological assessments as well as plastic and reconstructive surgery. More studies are needed to improve accuracy of forensic anthropological identification techniques. Anat Rec, 300:196-208, 2017. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Biological Evolution*
  4. Gonçalves DA Silva A, Campos-Arceiz A, Zavada MS
    Integr Zool, 2012 Dec;7(4):329-330.
    PMID: 23253364 DOI: 10.1111/1749-4877.12015
    Matched MeSH terms: Biological Evolution*
  5. Soo TCC, Bhassu S
    PLoS One, 2023;18(1):e0280250.
    PMID: 36634148 DOI: 10.1371/journal.pone.0280250
    In recent years, shrimp aquaculture industry had grown significantly to become the major source of global shrimp production. Despite that, shrimp aquaculture production was impeded by various shrimp diseases over the past decades. Interestingly, different shrimp species demonstrated variable levels of immune strength and survival (immune-survival) ability towards different diseases, especially the much stronger immune-survival ability shown by the ancient shrimp species, Macrobrachium rosenbergii compared to other shrimp species. In this study, two important shrimp species, M. rosenbergii and Penaeus monodon (disease tolerant strain) (uninfected control and VpAHPND-infected) were compared to uncover the potential underlying genetic factors. The shrimp species were sampled, followed by RNA extraction and cDNA conversion. Five important immune-survival genes (C-type Lectin, HMGB, STAT, ALF3, and ATPase 8/6) were selected for PCR, sequencing, and subsequent genetics analysis. The overall genetic analyses conducted, including Analysis of Molecular Variance (AMOVA) and population differentiation, showed significant genetic differentiation (p<0.05) between different genes of M. rosenbergii and P. monodon. There was greater genetic divergence identified between HMGB subgroups of P. monodon (uninfected control and VpAHPND-infected) compared to other genes. Besides that, based on neutrality tests conducted, purifying selection was determined to be the main evolutionary driving force of M. rosenbergii and P. monodon with stronger purifying selection exhibited in M. rosenbergii genes. Potential balancing selection was identified for VpAHPND-infected HMGB subgroup whereas directional selection was detected for HMGB (both species) and ATPase 8/6 (only P. monodon) genes. The divergence times between M. rosenbergii and P. monodon genes were estimated through Bayesian molecular clock analysis, which were 438.6 mya (C-type Lectin), 1885.4 mya (HMGB), 432.6 mya (STAT), 448.1 mya (ALF3), and 426.4 mya (ATPase 8/6) respectively. In conclusion, important selection forces and evolutionary divergence information of immune-survival genes between M. rosenbergii and P. monodon were successfully identified.
    Matched MeSH terms: Biological Evolution*
  6. Froufe E, Bolotov I, Aldridge DC, Bogan AE, Breton S, Gan HM, et al.
    Heredity (Edinb), 2020 Jan;124(1):182-196.
    PMID: 31201385 DOI: 10.1038/s41437-019-0242-y
    Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201-226 Ma) that coincided with the Triassic-Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called "problematic" Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous-Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events.
    Matched MeSH terms: Biological Evolution*
  7. Moleón M, Sánchez-Zapata JA, Donázar JA, Revilla E, Martín-López B, Gutiérrez-Cánovas C, et al.
    Proc Biol Sci, 2020 03 11;287(1922):20192643.
    PMID: 32126954 DOI: 10.1098/rspb.2019.2643
    Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.
    Matched MeSH terms: Biological Evolution
  8. Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH, Schneider CJ
    Proc Biol Sci, 2001 Jul 7;268(1474):1381-6.
    PMID: 11429138
    We present evidence that a relatively widespread and common bat from South East Asia comprises two morphologically cryptic but acoustically divergent species. A population of the bicoloured leaf-nosed bat (Hipposideros bicolor) from Peninsular Malaysia exhibits a bimodal distribution of echolocation call frequencies, with peaks in the frequency of maximum energy at ca. 131 and 142 kHz. The two phonic types are genetically distinct, with a cytochrome b sequence divergence of just under 7%. We consider the mechanisms by which acoustic divergence in these species might arise. Differences in call frequency are not likely to effect resource partitioning by detectable prey size or functional range. However, ecological segregation may be achieved by differences in microhabitat use; the 131kHz H. bicolor is characterized by significantly longer forearms, lower wing loading, a lower aspect ratio and a more rounded wingtip, features that are associated with greater manoeuvrability in flight that may enable it to forage in more cluttered environments relative to the 142 kHz phonic type. We suggest that acoustic divergence in these species is a consequence of social selection for a clear communication channel, which is mediated by the close link between the acoustic signal and receptor systems imposed by the highly specialized nature of the hipposiderid and rhinolophid echolocation system.
    Matched MeSH terms: Biological Evolution
  9. Sobani Din, Fadzilah Ismail, Teh, Carren Sui Lin, Raudha Ezaty Ruslan, Shiraz Qamil Muhammad Abdul Kadar, Azuin Izzati Arshad
    MyJurnal
    The current COVID-19 pandemic has forced many clinical disciplines to evolve to function safely and still provide the necessary care. Otorhinolaryngology (ORL) is a field that has been greatly affected by this highly transmissible viral pathogen. Aerosolizing procedures, proximity examination and other common procedures must be revamped to suit current time. The usual norm ORL procedures need also be altered to incorporate safeguards to protect both patient and healthcare workers. This recommendation for current practices aims to give a practical approach to modify current practices to maintain safety during the pandemic. These recommendations are the consensus amongst ORL practitioners in Hospital Sungai Buloh which is the designated COVID-19 centre for Malaysia’s central region and is currently being practised.
    Matched MeSH terms: Biological Evolution
  10. Liew TS, Marzuki ME, Schilthuizen M, Chen Y, Vermeulen JJ, Mohd-Azlan J
    PeerJ, 2020;8:e9416.
    PMID: 32714659 DOI: 10.7717/peerj.9416
    Borneo has gone through dramatic changes in geology and topography from the early Eocene until the early Pliocene and experienced climatic cycling during the Pleistocene. However, how these changes have shaped the present-day patterns of high diversity and complex distribution are still poorly understood. In this study, we use integrative approaches by estimating phylogenetic relationships, divergence time, and current and past niche suitability for the Bornean endemic land snail genus Everettia to provide additional insight into the evolutionary history of this genus in northern Borneo in the light of the geological vicariance events and climatic fluctuations in the Pleistocene. Our results show that northern Borneo Everettia species belong to two deeply divergent lineages: one contains the species that inhabit high elevation at the central mountain range, while the other contains lowland species. Species diversification in these lineages has taken place before the Pliocene. Climate changes during the Pleistocene did not play a significant role in species diversification but could have shaped contemporary species distribution patterns. Our results also show that the species-rich highland habitats have acted as interglacial refugia for highland species. This study of a relatively sedentary invertebrate supports and enhances the growing understanding of the evolutionary history of Borneo. Species diversification in Everettia is caused by geological vicariance events between the early Miocene and the Pliocene, and the distribution patterns were subsequently determined by climatic fluctuations in the Pleistocene.
    Matched MeSH terms: Biological Evolution
  11. Abdul-Kadir, M.A., Ariffin, J.
    ASM Science Journal, 2012;6(2):128-137.
    MyJurnal
    This paper reviews the advances made on studies related to bank erosion. Bank erosion has been an area of interest by researchers in geological, geotechnical, hydraulic, hydrology and river engineering disciplines. With anticipated global challenges from climate change impacts, bank erosion studies could support challenges faced in ensuring sustainable environmental management. The evolution in the theoretical and laboratory findings have led to the advances in bank erosion and contributed to new knowledge in the said field. This review summarises the findings of previous investigators including measurements approach and prediction of rates of bank erosion through the use of physical models and numerical approach.
    Matched MeSH terms: Biological Evolution
  12. Zug GR, Mulcahy DG, Vindum JV
    Zookeys, 2017.
    PMID: 28331413 DOI: 10.3897/zookeys.657.11600
    Recent fieldwork in southern Tanintharyi revealed the presence of a small Green Crested Lizard in the wet evergreen forest. We generated mtDNA sequence data (ND2) that demonstrates that this population's nearest relative is Bronchocela rayaensis Grismer et al., 2015 of Pulau Langkawi, northwestern Peninsular Malaysia and Phuket Island. Morphologically the Burmese Bronchocela shares many features with Bronchocela rayaensis, which potentially would make this recently described Thai-Malay species a synonym of Bronchocela burmana Blanford, 1878; however, we interpret the genetic and morphological differences to reflect evolutionary divergence and recommend the recognition of both species.
    Matched MeSH terms: Biological Evolution
  13. Moyle RG, Manthey JD, Hosner PA, Rahman M, Lakim M, Sheldon FH
    PeerJ, 2017;5:e3335.
    PMID: 28533979 DOI: 10.7717/peerj.3335
    Topographically complex regions often contain the close juxtaposition of closely related species along elevational gradients. The evolutionary causes of these elevational replacements, and thus the origin and maintenance of a large portion of species diversity along elevational gradients, are usually unclear because ecological differentiation along a gradient or secondary contact following allopatric diversification can produce the same pattern. We used reduced representation genomic sequencing to assess genetic relationships and gene flow between three parapatric pairs of closely related songbird taxa (Arachnothera spiderhunters, Chloropsis leafbirds, and Enicurus forktails) along an elevational gradient in Borneo. Each taxon pair presents a different elevational range distribution across the island, yet results were uniform: little or no gene flow was detected in any pairwise comparisons. These results are congruent with an allopatric "species-pump" model for generation of species diversity and elevational parapatry of congeners on Borneo, rather than in situ generation of species by "ecological speciation" along an elevational gradient.
    Matched MeSH terms: Biological Evolution
  14. Yang L, Meng H, Wang J, Wu Y, Zhao Z
    PLoS One, 2024;19(4):e0299729.
    PMID: 38578727 DOI: 10.1371/journal.pone.0299729
    Urban agglomerations are sophisticated territorial systems at the mature stage of city development that are concentrated areas of production and economic activity. Therefore, the study of vulnerability from the perspective of production-living-ecological space is crucial for the sustainable development of the Yellow River Basin and global urban agglomerations. The relationship between productivity, living conditions, and ecological spatial quality is fully considered in this research. By constructing a vulnerability evaluation index system based on the perspectives of production, ecology, and living space, and adopting the entropy value method, comprehensive vulnerability index model, and obstacle factor diagnostic model, the study comprehensively assesses the vulnerability of the urban agglomerations along the Yellow River from 2001 to 2020. The results reveal that the spatial differentiation characteristics of urban agglomeration vulnerability are significant. A clear three-level gradient distribution of high, medium, and low degrees is seen in the overall vulnerability; these correspond to the lower, middle, and upper reaches of the Yellow River Basin, respectively. The percentage of cities with higher and moderate levels of vulnerability did not vary from 2001 to 2020, while the percentage of cities with high levels of vulnerability did. The four dimensions of economic development, leisure and tourism, resource availability, and ecological pressure are the primary determinants of the urban agglomeration's vulnerability along the Yellow River. And the vulnerability factors of various urban agglomerations showed a significant evolutionary trend; the obstacle degree values have declined, and the importance of tourism and leisure functions has gradually increased. Based on the above conclusions, we propose several suggestions to enhance the quality of urban development along the Yellow River urban agglomeration. Including formulating a three-level development strategy, paying attention to ecological and environmental protection, developing domestic and foreign trade, and properly planning and managing the tourism industry.
    Matched MeSH terms: Biological Evolution
  15. Win NN, Hanyuda T, Arai S, Uchimura M, Prathep A, Draisma SG, et al.
    J Phycol, 2011 Oct;47(5):1193-209.
    PMID: 27028247 DOI: 10.1111/j.1529-8817.2011.01054.x
    A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid-like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid-like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.
    Matched MeSH terms: Biological Evolution
  16. Bechteler J, Schäfer-Verwimp A, Lee GE, Feldberg K, Pérez-Escobar OA, Pócs T, et al.
    Ecol Evol, 2017 01;7(2):638-653.
    PMID: 28116059 DOI: 10.1002/ece3.2656
    The evolutionary history and classification of epiphyllous cryptogams are still poorly known. Leptolejeunea is a largely epiphyllous pantropical liverwort genus with about 25 species characterized by deeply bilobed underleaves, elliptic to narrowly obovate leaf lobes, the presence of ocelli, and vegetative reproduction by cladia. Sequences of three chloroplast regions (rbcL, trnL-F, psbA) and the nuclear ribosomal ITS region were obtained for 66 accessions of Leptolejeunea and six outgroup species to explore the phylogeny, divergence times, and ancestral areas of this genus. The phylogeny was estimated using maximum-likelihood and Bayesian inference approaches, and divergence times were estimated with a Bayesian relaxed clock method. Leptolejeunea likely originated in Asia or the Neotropics within a time interval from the Early Eocene to the Late Cretaceous (67.9 Ma, 95% highest posterior density [HPD]: 47.9-93.7). Diversification of the crown group initiated in the Eocene or early Oligocene (38.4 Ma, 95% HPD: 27.2-52.6). Most species clades were established in the Miocene. Leptolejeunea epiphylla and L. schiffneri originated in Asia and colonized African islands during the Plio-Pleistocene. Accessions of supposedly pantropical species are placed in different main clades. Several monophyletic morphospecies exhibit considerable sequence variation related to a geographical pattern. The clear geographic structure of the Leptolejeunea crown group points to evolutionary processes including rare long-distance dispersal and subsequent speciation. Leptolejeunea may have benefitted from the large-scale distribution of humid tropical angiosperm forests in the Eocene.
    Matched MeSH terms: Biological Evolution
  17. Hashimoto Y, Endo T, Yamasaki T, Hyodo F, Itioka T
    Sci Rep, 2020 10 26;10(1):18279.
    PMID: 33106531 DOI: 10.1038/s41598-020-75010-y
    Accurate morphological ant mimicry by Myrmarachne jumping spiders confers strong protective benefits against predators. However, it has been hypothesized that the slender and constricted ant-like appearance imposes costs on the hunting ability because their jumping power to capture prey is obtained from hydraulic pressure in their bodies. This hypothesis remains to be sufficiently investigated. We compared the jumping and prey-capture abilities of seven Myrmarachne species and non-myrmecomorphic salticids collected from tropical forests in Malaysian Borneo and northeastern Thailand. We found that the mimics had significantly reduced abilities compared with the non-mimics. The analysis using geometric morphometric techniques revealed that the reduced abilities were strongly associated with the morphological traits for ant mimicry and relatively lower abilities were found in Myrmarachne species with a more narrowed form. These results support the hypothesis that the jumping ability to capture prey is constrained by the morphological mimicry and provide a new insight into understanding the evolutionary costs of accurate mimicry.
    Matched MeSH terms: Biological Evolution
  18. Ord TJ, Klomp DA, Summers TC, Diesmos A, Ahmad N, Das I
    Ecol Lett, 2021 Sep;24(9):1750-1761.
    PMID: 34196091 DOI: 10.1111/ele.13773
    Convergence in communication appears rare compared with other forms of adaptation. This is puzzling, given communication is acutely dependent on the environment and expected to converge in form when animals communicate in similar habitats. We uncover deep-time convergence in territorial communication between two groups of tropical lizards separated by over 140 million years of evolution: the Southeast Asian Draco and Caribbean Anolis. These groups have repeatedly converged in multiple aspects of display along common environmental gradients. Robot playbacks to free-ranging lizards confirmed that the most prominent convergence in display is adaptive, as it improves signal detection. We then provide evidence from a sample of the literature to further show that convergent adaptation among highly divergent animal groups is almost certainly widespread in nature. Signal evolution is therefore curbed towards the same set of adaptive solutions, especially when animals are challenged with the problem of communicating effectively in noisy environments.
    Matched MeSH terms: Biological Evolution
  19. Fadzly N, Burns KC, Zuharah WF
    Trop Life Sci Res, 2013 Dec;24(2):31-50.
    PMID: 24575247 MyJurnal
    Fruit phenotypes are often hypothesised to be affected by selection by frugivores. Here, we tested two hypotheses concerning frugivore-fruit interactions from the perspective of fruit colours. We measured the spectral properties of 26 fruits and the associated leaves of plants from 2 islands in New Zealand. Visual observations were also performed to record the birds that fed on the fruits. First, we tested the fruit-foliage hypothesis, where fruit colours are assumed to be evolutionarily constrained by their own leaf colour to maximise colour contrast and fruit conspicuousness. We ran a null model analysis comparing fruit colour contrast using an avian eye model. Second, we tested the frugivore specificity hypothesis, where specific fruit colours are thought to be connected with a specific bird frugivore. We performed a regression on the number of bird visits against the fruit colour in tetrahedral colour space based on an avian eye calculation using Mantel's test. The results show that fruit colours are not constrained by their own leaf colours. There is also no relationship or pattern suggesting a link between a specific fruit colour and specific bird visitors. We suggest that although fruit colour is one of the most highly discussed components, it is not the most important single deciding factor in frugivore fruit selection.
    Matched MeSH terms: Biological Evolution
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links