Displaying publications 41 - 60 of 212 in total

Abstract:
Sort:
  1. Shafiu Kamba A, Ismail M, Tengku Ibrahim TA, Zakaria ZA
    Biomed Res Int, 2013;2013:587451.
    PMID: 24324966 DOI: 10.1155/2013/587451
    The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO₃/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO₃/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO₃/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO₃ nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  2. Tiash S, Othman I, Rosli R, Chowdhury EH
    Curr Drug Deliv, 2014;11(2):214-22.
    PMID: 24328684
    Most of the classical drugs used today to destroy cancer cells lead to the development of acquired resistance in those cells by limiting cellular entry of the drugs or exporting them out by efflux pumps. As a result, higher doses of drugs are usually required to kill the cancer cells affecting normal cells and causing numerous side effects. Accumulation of the therapeutic level of drugs inside the cancer cells is thus required for an adequate period of time to get drugs' complete therapeutic efficacy minimizing the side effects on normal cells. In order to improve the efficacy of chemotherapeutic drugs, nanoparticles of carbonate apatite and its strontium (Sr(2+))-substituted derivative were used in this study to make complexes with three classical anticancer drugs, methotrexate, cyclophosphamide and 5-flurouracil. The binding affinities of these drugs to apatite were evaluated by absorbance and HPLC analysis and the therapeutic efficacy of drug-apatite complexes was determined by cell viability assay. Carbonate apatite demonstrated significant binding affinity towards methotrexate and cyclophosphamide leading to more cellular toxicity than free drugs in MCF-7 and 4T1 breast cancer cells. Moreover, Sr(2+) substitution in carbonate apatite with resulting tiny particles less than 100 nm in diameter further promoted binding of methotrexate to the nanocarriers indicating that Sr(2+)-substituted apatite nanoparticles have the high potential for loading substantial amount of anti-cancer drugs with eventual more therapeutic effectiveness.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  3. Fouz N, Amid A, Hashim YZ
    Asian Pac J Cancer Prev, 2014 Jan;14(11):6709-14.
    PMID: 24377593
    BACKGROUND: Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality.

    MATERIALS AND METHODS: This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells.

    RESULTS: Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with IC50 values of 5.13 μg/mL and 6.25 μg/mL, respectively, compared to taxol with an IC50 value of 0.063 μg/mL. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 h-1 to 0.0059 h-1 for commercial bromelain and to 0.0063 h-1 for recombinant bromelain.

    CONCLUSIONS: Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.

    Matched MeSH terms: Breast Neoplasms/drug therapy
  4. Chong HZ, Yeap SK, Rahmat A, Akim AM, Alitheen NB, Othman F, et al.
    PMID: 22909149 DOI: 10.1186/1472-6882-12-134
    Our previous study had shown that P. amaryllifolius was able to selectively inhibit cell proliferation of hormone independent breast cancer cell line MDA-MB-231. To understand the mode of killing and mechanism of action for P. amaryllifolius, the ethanol extract was evaluated for their alteration of cell cycle progression, PS externalization, DNA fragmentation and expression of anti/pro-apoptotic related protein.
    Matched MeSH terms: Breast Neoplasms/drug therapy
  5. Loch A, Singh RV, Abidin IZ, Han CK, Ahmad WA
    J Thorac Oncol, 2011 Jul;6(7):1292.
    PMID: 21847043 DOI: 10.1097/JTO.0b013e31821f9771
    Matched MeSH terms: Breast Neoplasms/drug therapy
  6. Lei CP, Har YC, Abdullah KL
    Asian Pac J Cancer Prev, 2011;12(3):797-802.
    PMID: 21627386
    BACKGROUND: Cancer and chemotherapy are sources of anxiety and worry for cancer patients. Information provision is therefore very important to empower them to overcome and adjust to the stressful experience. Thus, nurses should be aware of the informational needs of the patients throughout the course of their care.
    PURPOSE: The purpose of the study was to identify the important information required by breast cancer patients during the first and fourth cycles of chemotherapy from both the patients' and nurses' perceptions.
    METHODOLOGY: This is a longitudinal study used a questionnaire adapted from the Toronto Informational Needs Questionnaires-Breast Cancer (TINQ-BC). Some modifications were made to meet the specific objectives of the study. The study was conducted in the Chemotherapy Day Care at the University of Malaya Medical Centre (UMMC), Malaysia. A total of 169 breast cancer patients who met the inclusion criteria, and 39 nurses who were involved in their care were recruited into the study.
    RESULTS: The overall mean scores at first and fourth cycle of chemotherapy were 3.91 and 3.85 respectively: i.e., between 3 (or important) and 4 (or very important), which indicated a high level of informational needs. There was no significant difference in information needed by the breast cancer patients between the two cycles of chemotherapy (p=0.402). The most important information was from the subscale of disease, followed closely by treatment, physical care, investigative tests and psychosocial needs. Nurses had different views on the important information needed by breast cancer patients at both time points (p = 0.023).
    CONCLUSIONS: Breast cancer patients on chemotherapy have high levels of informational needs with no significant differences in information needed at first cycle as opposed to fourth cycle. There were differences between the perceptions of the breast cancer patients and the nurses on important information needed. A paradigm shift, with an emphasis on patients as the central focus, is needed to enhance the information giving sessions conducted by nurses based on the perceptions of the patients themselves.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  7. Nor Aina E
    Med J Malaysia, 2008 Sep;63 Suppl C:72-3.
    PMID: 19227677
    Breast cancer is the most common cancer in most part of the world and it is the most common cancer among Malaysian women. In order to estimate the overall survival and prognosis, it was decided that a National Cancer Patient Registry-Breast cancer be set up. It would be a tracking system form for breast cancer patients in Malaysia to help treatment outcomes. There would be useful for evaluating clinical management.
    Matched MeSH terms: Breast Neoplasms/drug therapy
  8. Tee TT, Cheah YH, Hawariah LP
    Anticancer Res, 2007 Sep-Oct;27(5A):3425-30.
    PMID: 17970090
    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  9. Wijayahadi N, Haron MR, Stanslas J, Yusuf Z
    J Chemother, 2007 Dec;19(6):716-23.
    PMID: 18230556
    Anthracyclines are the most widely used anticancer agents for breast cancer, of which doxorubicin and epirubicin have been reported to have equal efficacy. Unfortunately, the integrity of the immune system of breast cancer patients is severely affected by chemotherapy. This study compared the effect of combination chemotherapy with epirubicin (5-fluorouracil, epirubicin, cyclophosphamide (FEC)) and doxorubicin (5-fluorouracil, doxorubicin, cyclophosphamide (FDC)) regimens on subsets of the immune cells of patients with primary malignant breast tumors. Our aim was to determine the best regimen that produces the least degree of myelosuppression. Blood from 80 breast cancer patients undergoing chemotherapy (40 FEC and 40 FDC) was taken before chemotherapy and after every cycle (3 weeks) for 6 cycles. Blood was also taken from 40 normal healthy donors who served as normal control. Subsets of lymphocytes T-helper cells (CD3(+)CD4(+)), T-cytotoxic cells (CD3(+) CD8(+)), B-cells (CD19(+) CD20(+)) and NK cells (CD16(+)/CD56(+)CD3(-)) were analyzed by flow cytometry (FacsCalibur, BD) using monoclonal antibodies (Multitest, BD). All patients in the FEC and FDC groups suffered from myelosuppressive side effects. Both regimens led to an increase in the counts of monocytes but decreased polymorphonuclear cells (PMNs) and lymphocytes. Percentages of T-cytotoxic cells and NK cells were increased, but the percentage of B-cells was dramatically decreased. The phagocytic and intracellular killing ability of PMNs were also suppressed (p<0.01). No significant difference was found between the epirubicin-based regimen and doxorubicin-based regimen with regard to numbers of immune cells, percentages of lymphocytes subsets, Th/CTL ratio, engulfment and killing abilities of PMNs. In conclusion, we found that the epirubicin-based regimen is not superior to the doxorubicin-based regimen with respect to their toxicity of the immune cells, Th/CTL ratio and PMN count and functions. Moreover, both FEC and FDC regimens appear to conserve the cell-mediated immunity response needed for fighting against cancer cells.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  10. Biswal BM, Sulaiman SA, Ismail HC, Zakaria H, Musa KI
    Integr Cancer Ther, 2013 Jul;12(4):312-22.
    PMID: 23142798 DOI: 10.1177/1534735412464551
    Hypothesis. Withania somnifera is an herb with antioxidant, anti-inflammatory, anticancer, antistress, and adaptogenic properties. Previous studies have shown its antistress effects in animals. Traditional Indian medicine has used it for centuries to alleviate fatigue and improve general well-being.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  11. Radwan EM, Abdullah R, Al-Qubaisi MS, El Zowalaty ME, Naadja SE, Alitheen NB, et al.
    Mol Med Rep, 2016 May;13(5):3945-52.
    PMID: 26987078 DOI: 10.3892/mmr.2016.4989
    Patients with cancer often exhibit signs of anemia as the result of the disease. Thus, cancer chemotherapies often include erythropoietin (EPO) in the regime to improve the survival rate of these patients. The aim of the present study was to determine the effect of EPO on doxorubicin-treated breast cancer cells. The cytotoxicity of doxorubicin alone or in combination with EPO against the MCF-7 and MDA-MB‑231 human breast cancer cells were determined using an MTT cell viability assay, neutral red (NR) uptake assay and lactate dehydrogenase (LDH) assay. The estimated half maximal inhibitory concentration values for doxorubicin and the combination of doxorubicin with EPO were between 0.140 and 0.260 µg/ml for all cells treated for 72 h. Treatment with doxorubicin in combination with EPO led to no notable difference in cytotoxicity, compared with treatment with doxorubicin alone. The antiproliferative effect of doxorubicin at a concentration of 1 µg/ml on the MDA‑MB‑231 cells was demonstrated by the decrease in viable cells from 3.6x10(5) at 24 h to 2.1x10(5) at 72 h of treatment. In order to confirm apoptosis in the doxorubicin-treated cells, the activities of caspases-3/7 and ‑9 were determined using a TBE assay. The results indicated that the activities of caspases-3/7 and ‑9 were significantly elevated in the doxorubicin-treated MDA-MB-231 cells by 571 and 645%, respectively, and in the MCF 7 cells by 471 and 345%, respectively, compared with the control cells. EPO did not modify the effect of doxorubicin on these cell lines. The results of the present study suggested that EPO was safe for use in combination with doxorubicin in the treatment of patients with breast cancer and concurrent anemia.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  12. Romli F, Abu N, Khorshid FA, Syed Najmuddin SUF, Keong YS, Mohamad NE, et al.
    Integr Cancer Ther, 2017 12;16(4):540-555.
    PMID: 27338742 DOI: 10.1177/1534735416656051
    Although it may sound unpleasant, camel urine has been consumed extensively for years in the Middle East as it is believed to be able to treat a wide range of diseases such as fever, cold, or even cancer. People usually take it by mixing small drops with camel milk or take it directly. The project aims to study the effects of camel urine in inhibiting the growth potential and metastatic ability of 4T1 cancer cell line in vitro and in vivo. Based on the MTT result, the cytotoxicity of camel urine against 4T1 cell was established, and it was dose-dependent. Additionally, the antimetastatic potential of camel urine was tested by running several assays such as scratch assay, migration and invasion assay, and mouse aortic ring assay with promising results in the ability of camel urine to inhibit metastatic process of the 4T1 cells. In order to fully establish camel urine's potential, an in vivo study was carried out by treating mice inoculated with 4T1 cells with 2 different doses of camel urine. By the end of the treatment period, the tumor in both treated groups had reduced in size as compared to the control group. Additional assays such as the TUNEL assay, immunophenotyping, cytokine level detection assay, clonogenic assay, and proteome profiler demonstrated the capability of camel urine to reduce and inhibit the metastatic potential of 4T1 cells in vivo. To sum up, further study of anticancer properties of camel urine is justified, as evidenced through the in vitro and in vivo studies carried out. Better results were obtained at higher concentration of camel urine used in vivo. Apart from that, this project has laid out the mechanisms employed by the substance to inhibit the growth and the metastatic process of the 4T1 cell.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  13. Nesaretnam K, Selvaduray KR, Abdul Razak G, Veerasenan SD, Gomez PA
    Breast Cancer Res, 2010;12(5):R81.
    PMID: 20929592 DOI: 10.1186/bcr2726
    Basic research has indicated that tocotrienols have potent antiproliferative and proapoptotic effects that would be expected to reduce the effect of breast cancer.

    Study site: Hospital Kuala Lumpur
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  14. Hasanpourghadi M, Majid NA, Mustafa MR
    Biochem Pharmacol, 2018 06;152:174-186.
    PMID: 29608909 DOI: 10.1016/j.bcp.2018.03.030
    We recently reported that methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) is a microtubule targeting agent (MTA) with multiple mechanisms of action including apoptosis in two human breast cancer cell-lines MCF-7 and MDA-MB-231. In the present study, investigation of early molecular events following MBIC treatment demonstrated the induction of autophagy. This early (<24 h) response to MBIC was characterized by accumulation of autophagy markers; LC3-II, Beclin1, autophagic proteins (ATGs) and collection of autophagosomes but with different variations in the two cell-lines. MBIC-induced autophagy was associated with generation of reactive oxygen species (ROS). In parallel, an increased activation of SAPK/JNK pathway was detected, as an intersection of ROS production and induction of autophagy. The cytotoxic effect of MBIC was enhanced by inhibition of autophagy through blockage of SAPK/JNK signaling, suggesting that MBIC-induced autophagy, is a possible cellular self-defense mechanism against toxicity of this agent in both breast cancer cell-lines. The present findings suggest that inhibition of autophagy eliminates the cytoprotective activity of MDA-MB-231 and MCF-7 cells, and sensitizes both the aggressive and non-aggressive human breast cancer cell-lines to the cytotoxic effects of MBIC.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  15. Lee JJ, Saiful Yazan L, Kassim NK, Che Abdullah CA, Esa N, Lim PC, et al.
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512700 DOI: 10.3390/molecules25112610
    Christia vespertilionis, commonly known as 'Daun Rerama', has recently garnered attention from numerous sources in Malaysia as an alternative treatment. Its herbal decoction was believed to show anti-inflammatory and anti-cancer effects. The present study investigated the cytotoxicity of the extract of root and leaf of C. vespertilionis. The plant parts were successively extracted using the solvent maceration method. The most active extract was further fractionated to afford F1-F8. The cytotoxic effects were determined using MTT assay against human breast carcinoma cell lines (MCF-7 and MDA-MB-231). The total phenolic content (TPC) of the extracts were determined. The antioxidant properties of the extract were also studied using DPPH and β-carotene bleaching assays. The ethyl acetate root extract demonstrated selective cytotoxicity especially against MDA-MB-231 with the highest TPC and antioxidant properties compared to others (p < 0.05). The TPC and antioxidant results suggest the contribution of phenolic compounds toward its antioxidant strength leading to significant cytotoxicity. F3 showed potent cytotoxic effects while F4 showed better antioxidative strength compared to others (p < 0.05). Qualitative phytochemical screening of the most active fraction, F3, suggested the presence of flavonoids, coumarins and quinones to be responsible toward the cytotoxicity. The study showed the root extracts of C. vespertilionis to possess notable anti-breast cancer effects.
    Matched MeSH terms: Breast Neoplasms/drug therapy
  16. Abubakar MB, Wei K, Gan SH
    Pharmacogenet Genomics, 2014 Dec;24(12):575-81.
    PMID: 25203739 DOI: 10.1097/FPC.0000000000000092
    Breast cancer is a common cause of cancer mortality among women. Several genetic factors have been implicated in its development. Current treatment guidelines for estrogen receptor-positive breast cancer recommend that anastrozole [or any of the other two aromatase inhibitors (letrozole and exemestane)] is used as an alternative to tamoxifen or following several years of tamoxifen treatment. Nevertheless, this approach is still associated with many challenges, ranging from the recurrence of breast cancer to considerable interindividual variability in the tolerability of anastrozole, which may cause adverse effects, such as musculoskeletal symptoms, and lead to the withdrawal of many patients from treatment. Variabilities in the genes encoding the drug target (aromatase) or its metabolizing enzymes (CYP3A and UGT1A) contribute toward the interindividual variability in anastrozole's pharmacokinetics and/or pharmacodynamics. This paper reviews the role of genetic polymorphisms of CYP19A1, CYP3A4, and UGT1A4 in the responses of female hormone receptor-positive postmenopausal breast cancer patients to anastrozole. Many reviews in the literature have suggested that the study of functional polymorphisms and investigation of relevant genetic markers may provide valuable information in predicting responses to anastrozole in terms of its therapeutic and adverse effects. Nevertheless, more studies are required before the knowledge of its pharmacogenomics can be applied to the individualization of treatment to ensure that patients receive the maximum benefits. Therefore, future analyses, including but not limited to genome-wide association studies, are encouraged to address some of the gray areas in the pharmacogenomics of anastrozole therapy in postmenopausal breast cancer cases; this will help in providing guidance for future pharmacogenomics protocols when anastrozole is utilized in patients' management.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  17. Ahmad R, Kaus NHM, Hamid S
    Adv Exp Med Biol, 2020;1292:65-82.
    PMID: 30560443 DOI: 10.1007/5584_2018_302
    INTRODUCTION: Drug resistance has been a continuous challenge in cancer treatment. The use of nanotechnology in the development of new cancer drugs has potential. One of the extensively studied compounds is thymoquinone (TQ), and this work aims to compare two types of TQ-nanoformulation and its cytotoxicity toward resistant breast cancer cells.

    METHOD: TQ-nanoparticles were prepared and optimized by using two different formulations with different drugs to PLGA-PEG ratio (1:20 and 1:7) and different PLGA-PEG to Pluronic F68 ratio (10:1 and 2:1). The morphology and size were determined using TEM and DLS. Characterization of particles was done using UV-VIS, ATR-IR, entrapment efficiency, and drug release. The effects of drug, polymer, and surfactants were compared between the two formulations. Cytotoxicity assay was performed using MTS assay.

    RESULTS: TEM finding showed 96% of particles produced with 1:7 drug to PLGA-PEG were less than 90 nm in size and spherical in shape. This was confirmed with DLS which showed smaller particle size than those formed with 1:20 drug to PLGA-PEG ratio. Further analysis showed zeta potential was negatively charged which could facilitate cellular uptake as reported previously. In addition, PDI value was less than 0.1 in both formulations indicating monodispersed and less broad in size distribution. The absorption peak of PLGA-PEG-TQ-Nps was at 255 nm. The 1:7 drug to polymer formulation was selected for further analysis where the entrapment efficiency was 79.9% and in vitro drug release showed a maximum release of TQ of 50%. Cytotoxicity result showed IC50 of TQ-nanoparticle at 20.05 μM and free TQ was 8.25 μM.

    CONCLUSION: This study showed that nanoparticle synthesized with 1:7 drug to PLGA-PEG ratio and 2:1 PLGA-PEG to Pluronic F68 formed nanoparticles with less than 100 nm and had spherical shape as confirmed with DLS. This could facilitate its transportation and absorption to reach its target. There was conserved TQ stability as exhibited slow release of this volatile oil. The TQ-nanoparticles showed selective cytotoxic effect toward UACC 732 cells compared to MCF-7 breast cancer cells.

    Matched MeSH terms: Breast Neoplasms/drug therapy*
  18. Voon SH, Kue CS, Imae T, Saw WS, Lee HB, Kiew LV, et al.
    Int J Pharm, 2017 Dec 20;534(1-2):136-143.
    PMID: 29031979 DOI: 10.1016/j.ijpharm.2017.10.023
    Previously reported amphiphilic diblock copolymer with pendant dendron moieties (P71D3) has been further evaluated in tumor-bearing mice as a potential drug carrier. This P71D3-based micelle of an average diameter of 100nm was found to be biocompatible, non-toxic and physically stable in colloidal system up to 15days. It enhanced the in vitro potency of doxorubicin (DOX) in 4T1 breast tumor cells by increasing its uptake, by 3-fold, compared to free DOX. In 4T1 tumor-bearing mice, the tumor growth rate of P71D3/DOX (2mg/kg DOX equivalent) treated group was significantly delayed and their tumor volume was significantly reduced by 1.5-fold compared to those treated with free DOX. The biodistribution studies indicated that P71D3/DOX enhanced accumulation of DOX in tumor by 5- and 2-fold higher than free DOX treated mice at 15min and 1h post-administration, respectively. These results suggest that P71D3 micelle is a promising nanocarrier for chemotherapeutic agents.
    Matched MeSH terms: Breast Neoplasms/drug therapy
  19. Aggarwal T, Wadhwa R, Gupta R, Paudel KR, Collet T, Chellappan DK, et al.
    PMID: 32342824 DOI: 10.2174/1871530320666200428113051
    Regardless of advances in detection and treatment, breast cancer affects about 1.5 million women all over the world. Since the last decade, genome-wide association studies (GWAS) have been extensively conducted for breast cancer to define the role of miRNA as a tool for diagnosis, prognosis and therapeutics. MicroRNAs are small, non-coding RNAs that are associated with the regulation of key cellular processes such as cell multiplication, differentiation, and death. They cause a disturbance in the cell physiology by interfering directly with the translation and stability of a targeted gene transcript. MicroRNAs (miRNAs) constitute a large family of non-coding RNAs, which regulate target gene expression and protein levels that affect several human diseases and are suggested as the novel markers or therapeutic targets, including breast cancer. MicroRNA (miRNA) alterations are not only associated with metastasis, tumor genesis but also used as biomarkers for breast cancer diagnosis or prognosis. These are explained in detail in the following review. This review will also provide an impetus to study the role of microRNAs in breast cancer.
    Matched MeSH terms: Breast Neoplasms/drug therapy
  20. Adebayo IA, Arsad H, Samian MR
    PMID: 28573245 DOI: 10.21010/ajtcam.v14i2.30
    BACKGROUND: Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed.
    MATERIALS AND METHODS: Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A.
    RESULTS: Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC50 > 400μg/ml).
    CONCLUSION: Moringa oleifera seed has antiproliferative effect on MCF7.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links