Displaying publications 41 - 60 of 418 in total

Abstract:
Sort:
  1. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, et al.
    Crit Rev Biotechnol, 2016 Jun;36(3):553-65.
    PMID: 25641330 DOI: 10.3109/07388551.2014.993588
    Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
    Matched MeSH terms: Cell Differentiation
  2. Selvaratnam L, Abd Rahim S, Kamarul T, Chan KY, Sureshan S, Penafort R, et al.
    Med J Malaysia, 2005 Jul;60 Suppl C:49-52.
    PMID: 16381284
    In view of poor regeneration potential of the articular cartilage, in-vitro engineering of cartilage tissue offers a promising option for progressive joint disease. This study aims to develop a biologically engineered articular cartilage for autologous transplantation. The initial work involved determination of chondrocyte yield and viability, and morphological analysis. Cartilage was harvested from the knee, hip and shoulder joints of adult New Zealand white rabbits and chondrocytes were isolated by enzymatic digestion of the extra-cellular matrix before serial cultivation in DMEM/Ham's F12 media as monolayer cultures. No differences were noted in cell yield. Although chondrocytes viability was optimal (>93%) following harvest from native cartilage, their viability tended to be lowered on passaging. Chondrocytes aggregated in isogenous colonies comprising ovoid cells with intimate intracellular contacts and readily exhibited Safranin-O positive matrix; features typically associated with articular cartilage in-vivo. However, chondrocytes also existed concurrently in scattered bipolar/multipolar forms lacking Safranin-O expression. Therefore, early data demonstrated successful serial culture of adult chondrocytes with differentiated morphology seen in established chondrocyte colonies synthesizing matrix proteoglycans.
    Matched MeSH terms: Cell Differentiation
  3. Gravitt PE
    Open Virol J, 2012;6:198-203.
    PMID: 23341855 DOI: 10.2174/1874357901206010198
    At present, there is no consensus in the scientific community regarding the ability for human papillomavirus (HPV) infections to establish latency. Based on animal studies, a model of papillomavirus latency has been proposed in which papillomaviruses can be retained in the basal epithelial stem cell pool as latent infections and periodically induced to reactivate when the stem cell divides and one daughter cell is committed to terminal differentiation and induction of the viral life cycle. Tissue resident memory T-cells are hypothesized to control these periodic reactivation episodes and thus limit their duration. In this paper, evidence from human studies consistent with this model of papillomavirus latency is reviewed. Given the strong circumstantial evidence supporting a natural history of HPV infection which includes a immunologically controlled latent state, the longer term implications of HPV latency on a highly infected and aging population may warrant a more serious evaluation.
    Matched MeSH terms: Cell Differentiation
  4. Sivan PP, Syed S, Mok PL, Higuchi A, Murugan K, Alarfaj AA, et al.
    Stem Cells Int, 2016;2016:8304879.
    PMID: 27293447 DOI: 10.1155/2016/8304879
    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.
    Matched MeSH terms: Cell Differentiation
  5. Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, et al.
    PeerJ, 2016;4:e1536.
    PMID: 26788424 DOI: 10.7717/peerj.1536
    Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor's age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).
    Matched MeSH terms: Cell Differentiation
  6. Heng BC, Jiang S, Yi B, Gong T, Lim LW, Zhang C
    Arch Oral Biol, 2019 Jun;102:26-38.
    PMID: 30954806 DOI: 10.1016/j.archoralbio.2019.03.024
    OBJECTIVE: Dental-derived stem cells originate from the embryonic neural crest, and exhibit high neurogenic potential. This study aimed to investigate whether a cocktail of eight small molecules (Valproic acid, CHIR99021, Repsox, Forskolin, SP600125, GO6983, Y-27632 and Dorsomorphin) can enhance the in vitro neurogenic differentiation of dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAPs) and gingival mesenchymal stem cells (GMSCs), as a preliminary step towards clinical applications.

    MATERIALS AND METHODS: Neural induction was carried out with a small molecule cocktail based two-step culture protocol, over a total duration of 14 days. At the 8 and 14 day timepoints, the cells were analyzed for expression of neural markers with immunocytochemistry, qRT-PCR and Western Blot. The Fluo 4-AM calcium flux assay was also performed after a further 14 days of neural maturation.

    RESULTS: More pronounced morphological changes characteristic of the neural lineage (i.e. neuritogenesis) were observed in all three cell types treated with small molecules, as compared to the untreated controls. This was corroborated by the immunocytochemistry, qRT-PCR and western blot data, which showed upregulated expression of several early and mature neural markers in all three cell types treated with small molecules, versus the corresponding untreated controls. Finally, the Fluo-4 AM calcium flux assay showed consistently higher calcium transient (F/Fo) peaks for the small molecule-treated versus untreated control groups.

    CONCLUSIONS: Small molecules can enhance the neurogenic differentiation of DPSCs, SCAPs and GMSCs, which offer much potential for therapeutic applications.

    Matched MeSH terms: Cell Differentiation
  7. Huang X, Shan L, Cheng K, Weng W
    ACS Biomater Sci Eng, 2017 Dec 11;3(12):3254-3260.
    PMID: 33445368 DOI: 10.1021/acsbiomaterials.7b00551
    The topography at the micro/nanoscale level for biomaterial surfaces has been thought to play vital roles in their interactions with cells. However, discovering the interdisciplinary mechanisms underlying how cells respond to micro-nanostructured topography features still remains a challenge. In this work, ∼37 μm 3D printing used titanium microspheres and their further hierarchical micro-nanostructured spheres through hydrothermal treatment were adopted to construct typical model surface topographies to study the preosteoblastic cell responses (adhesion, proliferation, and differentiation). We here demonstrated that not only the hierarchical micro-nanostructured surface topography but also their distribution density played critical role on cell cytocompatibility. The microstructured topography feature surface with middle-density distributed titanium microspheres showed significantly enhanced cell responses, which might be attributed to the better cellular interaction due to the cell aggregates. However, the hierarchical micro-nanostructured topography surface, regardless of the distribution density of titanium microspheres, improved the cell-surface interactions because of the enhanced initial protein adsorption, thereby reducing the cell aggregates and consequently their responses. This work, therefore, provides new insights into the fundamental understanding of cell-material interactions and will have a profound impact on further designing micro-nanostructured topography surfaces to control cell responses.
    Matched MeSH terms: Cell Differentiation
  8. Sung TC, Li HF, Higuchi A, Kumar SS, Ling QD, Wu YW, et al.
    Biomaterials, 2020 02;230:119638.
    PMID: 31810728 DOI: 10.1016/j.biomaterials.2019.119638
    Human induced pluripotent stem cells (hiPSCs) were generated on several biomaterials from human amniotic fluid in completely xeno-free and feeder-free conditions via the transfection of pluripotent genes using a nonintegrating RNA Sendai virus vector. The effect of xeno-free culture medium on the efficiency of the establishment of human amniotic fluid stem cells from amniotic fluid was evaluated. Subsequently, the effect of cell culture biomaterials on the reprogramming efficiency was investigated during the reprogramming of human amniotic fluid stem cells into hiPSCs. Cells cultured in laminin-511, laminin-521, and Synthemax II-coated dishes and hydrogels having optimal elasticity that were engrafted with specific oligopeptides derived from vitronectin could be reprogrammed into hiPSCs with high efficiency. The reprogrammed cells expressed pluripotency proteins and had the capability to differentiate into cells derived from all three germ layers in vitro and in vivo. Human iPSCs could be generated successfully and at high efficiency (0.15-0.25%) in completely xeno-free conditions from the selection of optimal cell culture biomaterials.
    Matched MeSH terms: Cell Differentiation
  9. Higuchi A, Hirad AH, Kumar SS, Munusamy MA, Alarfaj AA
    Acta Biomater, 2020 10 15;116:162-173.
    PMID: 32911107 DOI: 10.1016/j.actbio.2020.09.010
    Thermoresponsive surfaces enable the detachment of cells or cell sheets by decreasing the temperature of the surface when harvesting the cells. However, human pluripotent stem cells (hPSCs), such as embryonic stem cells and induced pluripotent stem cells, cannot be directly cultured on a thermoresponsive surface; hPSCs need a specific extracellular matrix to bind to the integrin receptors on their surfaces. We prepared a thermoresponsive surface by using poly(N-isopropylacrylamide-co-butylacrylate) and recombinant vitronectin to provide an optimal coating concentration for the hPSC culture. hPSCs can be cultured on the same thermoresponsive surface for 5 passages by partial detachment of the cells from the surface by decreasing the temperature for 30 min; then, the remaining hPSCs were subsequently cultured on the same dishes following the addition of new cultivation media. The detached cells, even after continual culture for five passages, showed high pluripotency, the ability to differentiate into cells derived from the 3 germ layers and the ability to undergo cardiac differentiation.
    Matched MeSH terms: Cell Differentiation
  10. Sung TC, Su HC, Ling QD, Kumar SS, Chang Y, Hsu ST, et al.
    Biomaterials, 2020 09;253:120060.
    PMID: 32450407 DOI: 10.1016/j.biomaterials.2020.120060
    The current differentiation process of human pluripotent stem cells (hPSCs) into cardiomyocytes to enhance the purity of hPSC-derived cardiomyocytes requires some purification processes, which are laborious processes. We developed cell sorting plates, which are prepared from coating thermoresponsive poly(N-isopropylacrylamide) and extracellular matrix proteins. After hPSCs were induced into cardiomyocytes on the thermoresponsive surface coated with laminin-521 for 15 days, the temperature of the cell culture plates was decreased to 8-9 °C to detach the cells partially from the thermoresponsive surface. The detached cells exhibited a higher cardiomyocyte marker of cTnT than the remaining cells on the thermoresponsive surface as well as the cardiomyocytes after purification using conventional cell selection. The detached cells expressed several cardiomyocyte markers, such as α-actinin, MLC2a and NKX2.5. This study suggested that the purification of hPSC-derived cardiomyocytes using cell sorting plates with the thermoresponsive surface is a promising method for the purification of hPSC-derived cardiomyocytes without conventional laborious processes.
    Matched MeSH terms: Cell Differentiation
  11. Yusoff NH, Alshehadat SA, Azlina A, Kannan TP, Hamid SS
    Trop Life Sci Res, 2015 Apr;26(1):21-9.
    PMID: 26868590 MyJurnal
    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.
    Matched MeSH terms: Cell Differentiation
  12. Lim SS, Chai CY, Loh HS
    Mater Sci Eng C Mater Biol Appl, 2017 Jul 01;76:144-152.
    PMID: 28482510 DOI: 10.1016/j.msec.2017.03.075
    Hydrothermally synthesized TiO2nanotubes (TNTs) were first used as a filler for chitosan scaffold for reinforcement purpose. Chitosan-TNTs (CTNTs) scaffolds prepared via direct blending and freeze drying retained cylindrical structure and showed enhanced compressive modulus and reduced degradation rate compared to chitosan membrane which experienced severe shrinkage after rehydration with ethanol. Macroporous interconnectivity with pore size of 70-230μm and porosity of 88% were found in CTNTs scaffolds. Subsequently, the functionalization of CTNTs scaffolds with CaCl2solutions (0.5mM-40.5mM) was conducted at physiological pH. The adsorption isotherm of Ca2+ions onto CTNTs scaffolds fitted well with Freundlich isotherm. CTNTs scaffolds with Ca2+ions showed high biocompatibility by promoting adhesion, proliferation and early differentiation of MG63 in a non-dose dependent manner. CTNTs scaffolds with Ca2+ions can be an alternative for bone regeneration.
    Matched MeSH terms: Cell Differentiation
  13. Tay, L.X.
    JUMMEC, 2015;18(1):1-8.
    MyJurnal
    Osteoarthritis (OA) affects millions of people worldwide with its irreversible destruction of articular cartilage. Recently, the potential of using chondrogenic differentiated multipotent mesenchymal stromal cells (cMSCs) for OA treatment is being assessed. Preliminary clinical studies have been encouraging. However current studies have also demonstrated that cMSCs are not biochemically and biomechanically identical to native articular chondrocytes (ACs). Thus, there is an urgent need for the implementation of proteomic applications as proteomics involve protein identification, relative quantification of proteins and studies of post-translational modification which reveal novel regulating processes of complex mechanisms such as in chondrogenesis. A comprehensive understanding of chondrogenesis is essential for the establishment of an effective cMSC model to regenerate cartilage. In this article, we will review current proteomic studies on chondrogenesis, focusing on recent findings and the proteomic approaches utilised.
    Matched MeSH terms: Cell Differentiation
  14. Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, et al.
    Front Oncol, 2017;7:80.
    PMID: 28529925 DOI: 10.3389/fonc.2017.00080
    Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85-90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
    Matched MeSH terms: Cell Differentiation
  15. Venkateswaran SP, Nathan LE, Mutalik VS, Shamsuddin NH
    J Oral Maxillofac Pathol, 2016 Sep-Dec;20(3):427-435.
    PMID: 27721608
    Head and neck squamous cell carcinoma (HNSCC) consists of squamous cell carcinomas (SCCs) arising in the upper aerodigestive tract and accounts for 5% of cancers worldwide. In Malaysia, cancers of the nasopharynx, larynx, tongue and oral cavity are among the top twenty most common cancers in men. Argyrophilic nuclear organizer regions (AgNORs) are increased from normal mucosa to premalignant lesions to malignant lesions and have been associated with tumor grade and prognosis of patients. Although p73 is not mutated in human cancers, high levels of p73 expression have been associated with tumor differentiation status and patient prognosis.
    Matched MeSH terms: Cell Differentiation
  16. Yousuf R, Mustafa AN, Ho SL, Tang YL, Leong CF
    Asian J Transfus Sci, 2017 3 21;11(1):62-64.
    PMID: 28316444 DOI: 10.4103/0973-6247.200770
    The G antigen of Rh blood group system is present in almost all D-positive or C-positive red cells but absent from red cells lacking D and C antigens. The differentiation of anti-D and anti-C from anti-G is not necessary for routine transfusion; however, during pregnancy, it is important because anti-G can masquerade as anti-D and anti-C with initial antibody testing. The false presence of anti-D will exclude the patient from receiving anti-D immunoglobulin (RhIG) when the patient actually is a candidate for RhIG prophylaxis. Moreover, patients with positive anti-D or anti-G are at risk of developing hemolytic disease of the fetus and newborn and need close monitoring. Thus, proper identification allows the clinicians to manage patients properly. This case report highlights a rare case of anti-G together with anti-D and anti-C in a pregnant woman. This report disseminates knowledge on identification of anti-G and its importance in pregnant women.
    Matched MeSH terms: Cell Differentiation
  17. Tan TT, Demura T, Ohtani M
    Plant Biotechnol (Tokyo), 2019;36(1):1-6.
    PMID: 31275042 DOI: 10.5511/plantbiotechnology.18.1119b
    Xylem is an essential conductive tissue in vascular plants, and secondary cell wall polymers found in xylem vessel elements, such as cellulose, hemicellulose, and lignin, are promising sustainable bioresources. Thus, understanding the molecular mechanisms underlying xylem vessel element differentiation is an important step towards increasing woody biomass and crop yields. Establishing in vitro induction systems, in which vessel element differentiation is induced by phytohormonal stimuli or by overexpression of specific transcription factors, has been vital to this research. In this review, we present an overview of these in vitro induction systems, and describe two recently developed in vitro induction systems, VISUAL (Vascular cell Induction culture System Using Arabidopsis Leaves) and the KDB system. Furthermore, we discuss the potentials and limitations of each of these new in vitro induction systems for advancing our understanding of the molecular mechanisms driving xylem vessel element differentiation.
    Matched MeSH terms: Cell Differentiation
  18. Lee SH, Looi CY, Chong PP, Foo JB, Looi QH, Ng CX, et al.
    Curr Stem Cell Res Ther, 2021;16(5):551-562.
    PMID: 32988356 DOI: 10.2174/1574888X15666200928110923
    Mesenchymal Stem Cells (MSCs) are adult stem cells that are gaining worldwide attention for their multi-potential use in tissue engineering-based regenerative medicine. They can be obtained from numerous sources and one of the excellent sources is the dental tissue, such as Stem cells that are extracted from the Human Exfoliated Deciduous teeth (SHED). SHED are considered ideal due to their inherent characteristics, including the capability to proliferate quickly with minimal oncogenesis risk, multipotency capacity and their ability to suppress the immune system. On top of these positive cell traits, SHED are easily accessible with the patient's safety assured, posing less ethical issues and could also provide a sufficient number of cells for prospective clinical uses. This is primarily attributed to their ability to differentiate into multiple cell linages, including osteoblasts, odontoblasts, neuronal cells, adipocytes, as well as endothelial cells. Albeit SHED having a bright future, there still remains an obstacle to develop reliable experimental techniques to retain the long-term regeneration potential of the stem cells for prospective research and clinical applications. Therefore, this review aims to describe the various isolation, expansion and cryopreservation techniques used by researchers in this stem cell field. Optimization of these techniques is crucial to obtain distinct SHED culture with preserved stem cell properties, which enable more reproducible results that will be the key for further stem cell therapy development.
    Matched MeSH terms: Cell Differentiation
  19. Yusof MFH, Zahari W, Hashim SNM, Osman ZF, Chandra H, Kannan TP, et al.
    J Oral Biol Craniofac Res, 2017 10 19;8(1):48-53.
    PMID: 29556464 DOI: 10.1016/j.jobcr.2017.10.003
    Manipulation of dental stem cells (DSCs) using current technologies in tissue engineering unveil promising prospect in regenerative medicine. DSCs have shown to possess angiogenic and osteogenic potential in both in vivo and in vitro. Neural crest derived DSCs can successfully be isolated from various dental tissues, exploiting their intrinsic great differentiation potential. In this article, researcher team intent to review the characteristics of DSCs, with focus on their angiogenic and osteogenic differentiation lineage. Clinical data on DSCs are still lacking to prove their restorative abilities despite extensive contemporary literature, warranting research to further validate their application for bone tissue engineering.
    Matched MeSH terms: Cell Differentiation
  20. Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F
    PeerJ, 2022;10:e13356.
    PMID: 35529494 DOI: 10.7717/peerj.13356
    BACKGROUND: The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration.

    METHOD: In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation.

    RESULTS: MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p 

    Matched MeSH terms: Cell Differentiation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links