Displaying publications 41 - 60 of 274 in total

Abstract:
Sort:
  1. Paterson RRM
    Environ Sci Pollut Res Int, 2021 May;28(17):21193-21203.
    PMID: 33410008 DOI: 10.1007/s11356-020-12072-5
    Palms are highly significant tropical plants. Oil palms produce palm oil, the basic commodity of a highly important industry. Climate change from greenhouse gasses is likely to decrease the ability of palms to survive, irrespective of them providing ecosystem services to communities. Little information about species survival in tropical regions under climate change is available and data on species migration under climate change is important. Palms are particularly significant in Africa: a palm oil industry already exists with Nigeria being the largest producer. Previous work using CLIMEX modelling indicated that Africa will have reduced suitable climate for oil palm in Africa. The current paper employs this modelling to assess how suitable climate for growing oil palm changed in Africa from current time to 2100. An increasing trend in suitable climate from west to east was observed indicating that refuges could be obtained along the African tropical belt. Most countries had reduced suitable climates but others had increased, with Uganda being particularly high. There may be a case for developing future oil palm plantations towards the east of Africa. The information may be usefully applied to other palms. However, it is crucial that any developments will fully adhere to environmental regulations. Future climate change will have severe consequences to oil palm cultivation but there may be scope for eastwards mitigation in Africa.
    Matched MeSH terms: Climate Change*
  2. Nawaz MA, Seshadri U, Kumar P, Aqdas R, Patwary AK, Riaz M
    Environ Sci Pollut Res Int, 2021 Feb;28(6):6504-6519.
    PMID: 32997248 DOI: 10.1007/s11356-020-10920-y
    Green finance is inextricably linked to investment risk, particularly in emerging and developing economies (EMDE). This study uses the difference in differences (DID) method to evaluate the mean causal effects of a treatment on an outcome of the determinants of scaling up green financing and climate change mitigation in the N-11 countries from 2005 to 2019. After analyzing with a dummy for the treated countries, it was confirmed that the outcome covariates: rescon (renewable energy sources consumption), population, FDI, CO2, inflation, technical corporation grants, domestic credit to the private sector, and research and development are very significant in promoting green financing and climate change mitigation in the study countries. The probit regression results give a different outcome, as rescon, FID, CO2, Human Development Index (HDI), and investment in the energy sector by the private sector that will likely have an impact on the green financing and climate change mitigation of the study countries. Furthermore, after matching the analysis through the nearest neighbor matching, kernel matching, and radius matching, it produced mixed results for both the treated and the untreated countries. Either group experienced an improvement in green financing and climate change mitigation or a decrease. Overall, the DID showed no significant difference among the countries.
    Matched MeSH terms: Climate Change*
  3. Shaffril HAM, Idris K, Sahharon H, Samah AA, Samah BA
    Environ Sci Pollut Res Int, 2020 Jul;27(20):25209-25219.
    PMID: 32347501 DOI: 10.1007/s11356-020-08987-8
    This study aims to gain more understanding on highland farmers' adaptation towards the impacts of climate change in Malaysia. Via a multi-stage cluster sampling, this quantitative study has surveyed a total of 400 highland farmers as respondents. The results indicated that the highest climate change-resilient farmers were from Kundasang, specifically among the females, Dusun ethnic group, and those who work side jobs to cover household expenses. Furthermore, recorded factors such as age and years of experience yielded significant negative relationship with adaptation whereas income yielded significant positive relationship with adaptation. The paper concludes with recommendations related to occupational diversification, consistent information disseminations, access to financial assistance, and the need to empower extension officers and local leaders in the hope that a comprehensive approach can help implement any community climate change-adaptation plan.
    Matched MeSH terms: Climate Change*
  4. Abu Samah A, Shaffril HAM
    Environ Sci Pollut Res Int, 2020 Apr;27(10):11277-11289.
    PMID: 31965496 DOI: 10.1007/s11356-019-07143-1
    The existing literature have demonstrated a considerable amount of existing studies that merely interest on scientific perspectives by examining the physical environmental changes rather than conducting social-based studies that allow for the comparison of adaptation ability between mainland and island small-scale fishermen. Therefore, the current research attempts to fill this gap by investigating the adaptation level of mainland and island small-scale fishermen towards climate changes for the purpose of further identifying any significant differences regarding their adaptation aspects. The primary aim of the current research is to conduct a comparative study with the purpose of assessing the environmental change adaptation ability between the mainland and the islander small-scale fishermen. In the context of the current research, a quantitative approach was employed by selecting a total of 600 samples through several levels of cluster sampling. The instrument for the study was developed based on the 16 adaptation variables that were suggested within the adaptation framework proposed by the International Union for Conservation of Nature and Natural Resources. The data were analysed using SPSS, whereby to achieve the study's main objective, inferential analysis which refers to the independent t test was performed to examine any possible significant difference that might exist. In regard to this matter, various significant differences between the islander and the mainland fishermen managed to be detected in 10 adaptation aspects out of the 16 adaptation variables which include the capacity to adapt to change (monetary and emotional adaptability); the level of interest in adapting to change; the ability to plan, learn, and reorganize; and attachment to occupation. Accordingly, a number of recommendations were discussed at the end of this study which is hoped to assist the involved and relevant parties in arranging better adjustment approaches for small-scale fishermen in Malaysia.
    Matched MeSH terms: Climate Change*
  5. Chandio AA, Shah MI, Sethi N, Mushtaq Z
    Environ Sci Pollut Res Int, 2022 Feb;29(9):13211-13225.
    PMID: 34585355 DOI: 10.1007/s11356-021-16670-9
    This paper examines the effect of climate change and financial development on agricultural production in ASEAN-4, namely Indonesia, Malaysia, the Philippines, and Thailand from 1990 to 2016. Further, we explore the role of renewable energy, institutional quality, and human capital on agricultural production. Since the shocks in one country affect another country, we use second-generation modeling techniques to find out the relationship among the variables. The Westerlund (2007) cointegration tests confirm long-run relationship among the variables. The results from cross-sectionally augmented autoregressive distributed lag (CS-ARDL) model reveal that climate change negatively affects agricultural production; on the other hand, renewable energy, human capital, and institutional quality affect positively agricultural production. Moreover, renewable energy utilization, human capital, and intuitional quality moderates the effect of carbon emission on agricultural production. In addition, a U-shaped relationship exists between financial development and agricultural production, suggesting that financial development improves agricultural production only after reaching a certain threshold. Hence, this study suggests that ASEAN-4 countries must adopt flexible financial and agricultural policies so that farmers would be benefitted and agricultural production can be increased.
    Matched MeSH terms: Climate Change*
  6. Hamed MM, Salehie O, Nashwan MS, Shahid S
    Environ Sci Pollut Res Int, 2023 Mar;30(13):38063-38075.
    PMID: 36576621 DOI: 10.1007/s11356-022-24985-4
    Global warming has amplified the frequency of temperature extremes, especially in hot dry countries, which could have serious consequences for the natural and built environments. Egypt is one of the hot desert climate regions that are more susceptible to climate change and associated hazards. This study attempted to project the changes in temperature extremes for three Shared Socioeconomic Pathways (SSPs), namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5 and two future periods (early future: 2020-2059 and late future: 2060-2099) by using daily maximum (Tmax) and minimum temperature (Tmin) of general circulation model (GCMs) of Coupled Model Inter-comparison Project phase 6 (CMIP6). The findings showed that most temperature extreme indices would increase especially by the end of the century. In the late future, the change in the mean Tmin (4.3 °C) was projected to be higher than the mean Tmax (3.7 °C). Annual maximum Tmax, temperature above 95th percentile of Tmax, and the number of hot days above 40 °C and 45 °C were projected to increase in the range 3.0‒5.4 °C, 1.5‒4.8 °C, 20‒95 days, and 10‒52 days, respectively. In contrast, the annual minimum of Tmin, temperature below the 5th percentile, and the annual percentage of cold nights were projected to change in the range of 2.95‒5.0 °C, 1.4‒3.6 °C, and - 0.1‒0.1%, respectively. In all the cases, the lowest changes would be for SSP1-2.6 in the early period and the greatest changes for SSP5-8.5 in the late period. The study indicates that the country is likely to experience a rise in hot extremes and a decline in cold extremes. Therefore, Egypt should take long-term adaptation plans to build social resiliency to rising hot extremes.
    Matched MeSH terms: Climate Change*
  7. Deivanayagam TA, Selvarajah S, Hickel J, Guinto RR, de Morais Sato P, Bonifacio J, et al.
    Lancet, 2023 Jan 07;401(10370):5-7.
    PMID: 36343651 DOI: 10.1016/S0140-6736(22)02182-1
    Matched MeSH terms: Climate Change*
  8. Zhou J, Wu C, Yeh PJ, Ju J, Zhong L, Wang S, et al.
    Sci Total Environ, 2023 Sep 01;889:164274.
    PMID: 37209749 DOI: 10.1016/j.scitotenv.2023.164274
    The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.
    Matched MeSH terms: Climate Change*
  9. Azmi MA, Mokhtar K, Osnin NA, Razali Chan S, Albasher G, Ali A, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117074.
    PMID: 37678506 DOI: 10.1016/j.envres.2023.117074
    Coastal ecosystems play an important part in mitigating the effects of climate change. Coastal ecosystems are becoming more susceptible to climate change impacts due to human activities and maritime accidents. The global shipping industry, especially in Southeast Asia, has witnessed numerous accidents, particularly involving passenger ferries, resulting in injuries and fatalities in recent years. In order to mitigate the impact of climate change on coastal ecosystems, this study aimed to evaluate the relationship between employees' perceptions of safety criteria and their own safety behaviour on Langkawi Island, Malaysia. A straightforward random sampling technique was employed to collect data from 112 ferry employees aboard Malaysian-registered passenger boats by administering questionnaires. The findings shed light on the strong connection between providing safety instructions for passengers and safety behaviour among ferry workers. Safety instructions should contain climate-related information to successfully address the effects of climate change. The instructions might include guidance on responding to extreme weather events and understanding the potential consequences of sea-level rise on coastal communities. The ferry company staff should also expand their safe behaviour concept to include training and preparation for climate-related incidents. The need to recognise the interconnectedness between climate change, ferry safety and the protection of coastal ecosystems is emphasised in this study. The findings can be utilised by policymakers, regulatory agencies and ferry operators to design holistic policies that improve safety behaviour, minimise maritime mishaps and preserve the long-term sustainability of coastal ecosystems in the face of difficulties posed by climate change.
    Matched MeSH terms: Climate Change*
  10. Ueda T, Li JW, Ho SH, Singh R, Uedo N
    J Gastroenterol Hepatol, 2024 Jan;39(1):18-27.
    PMID: 37881033 DOI: 10.1111/jgh.16383
    Global warming caused by increased greenhouse gas (GHG) emissions has a direct impact on human health. Gastrointestinal (GI) endoscopy contributes significantly to GHG emissions due to energy consumption, reprocessing of endoscopes and accessories, production of equipment, safe disposal of biohazardous waste, and travel by patients. Moreover, GHGs are also generated in histopathology through tissue processing and the production of biopsy specimen bottles. The reduction in unnecessary surveillance endoscopies and biopsies is a practical approach to decrease GHG emissions without affecting disease outcomes. This narrative review explores the role of precision medicine in GI endoscopy, such as image-enhanced endoscopy and artificial intelligence, with a focus on decreasing unnecessary endoscopic procedures and biopsies in the surveillance and diagnosis of premalignant lesions in the esophagus, stomach, and colon. This review offers strategies to minimize unnecessary endoscopic procedures and biopsies, decrease GHG emissions, and maintain high-quality patient care, thereby contributing to sustainable healthcare practices.
    Matched MeSH terms: Climate Change*
  11. Pant P, Rajawat AS, Goyal SB, Chakrabarti P, Bedi P, Salau AO
    Environ Sci Pollut Res Int, 2023 Dec;30(60):125176-125187.
    PMID: 37402910 DOI: 10.1007/s11356-023-28466-0
    The fate of humankind and all other life forms on earth is threatened by a foe, known as climate change. All parts of the world are affected directly or indirectly by this phenomenon. The rivers are drying up in some places and in other places, it is flooding. The global temperature is rising every year and the heat waves are taking many souls. The cloud of "extinction" is upon the majority of flora and fauna; even humans are prone to various fatal and life-shortening diseases from pollution. This is all caused by us. The so-called "development" by deforestation, releasing toxic chemicals into air and water, burning of fossil fuels in the name of industrialisation, and many others have made an irreversible cut in the heart of the environment. However, it is not too late; all of this could be healed back with the help of technology and our efforts together. As per the international climate reports, the average global temperature has increased by a little more than 1 °C since 1880s. The research is primarily focused on the use of machine learning and its algorithm to train a model that predicts the ice meltdown of a glacier, given the features using the Multivariate Linear Regression. The research strongly encourages the use of features by manipulating them to determine the feature with a major impact on the cause. The burning of coal and fossil fuels is the main source of pollution as per the study. The research focuses on the challenges to gather data that would be faced by the researchers and the requirement of the system for the development of the model. The study is aimed to spread awareness in society about the destruction we have caused and urges everyone to come forward and save the planet.
    Matched MeSH terms: Climate Change*
  12. Ahmad T, Kumar N, Kumar A, Mubashir M, Bokhari A, Paswan BK, et al.
    Environ Res, 2024 Mar 15;245:117960.
    PMID: 38135098 DOI: 10.1016/j.envres.2023.117960
    Carbon capture technologies are becoming increasingly crucial in addressing global climate change issues by lowering CO2 emissions from industrial and power generation activities. Post-combustion carbon capture, which uses membranes instead of adsorbents, has emerged as one of promising and environmentally friendly approaches among these technologies. The operation of membrane technology is based on the premise of selectively separating CO2 from flue gas emissions. This provides a number of different benefits, including improved energy efficiency and decreased costs of operation. Because of its adaptability to changing conditions and its low impact on the surrounding ecosystem, it is an appealing choice for a diverse array of uses. However, there are still issues to be resolved, such as those pertaining to establishing a high selectivity, membrane degradation, and the costs of the necessary materials. In this article, we evaluate and explore the prospective applications and roles of membrane technologies to control climate change by post-combustion carbon capturing. The primary proposition suggests that the utilization of membrane-based carbon capture has the potential to make a substantial impact in mitigating CO2 emissions originating from industrial and power production activities. This is due to its heightened ability to selectively absorb carbon, better efficiency in energy consumption, and its flexibility to various applications. The forthcoming challenges and potential associated with the application of membranes in post-carbon capture are also discussed.
    Matched MeSH terms: Climate Change*
  13. Brodie JF, Watson JEM
    Proc Natl Acad Sci U S A, 2023 Feb 21;120(8):e2205512120.
    PMID: 36791106 DOI: 10.1073/pnas.2205512120
    Matched MeSH terms: Climate Change*
  14. Brodie JF, Strimas-Mackey M, Mohd-Azlan J, Granados A, Bernard H, Giordano AJ, et al.
    Proc Biol Sci, 2017 01 25;284(1847).
    PMID: 28100818 DOI: 10.1098/rspb.2016.2335
    The responses of lowland tropical communities to climate change will critically influence global biodiversity but remain poorly understood. If species in these systems are unable to tolerate warming, the communities-currently the most diverse on Earth-may become depauperate ('biotic attrition'). In response to temperature changes, animals can adjust their distribution in space or their activity in time, but these two components of the niche are seldom considered together. We assessed the spatio-temporal niches of rainforest mammal species in Borneo across gradients in elevation and temperature. Most species are not predicted to experience changes in spatio-temporal niche availability, even under pessimistic warming scenarios. Responses to temperature are not predictable by phylogeny but do appear to be trait-based, being much more variable in smaller-bodied taxa. General circulation models and weather station data suggest unprecedentedly high midday temperatures later in the century; predicted responses to this warming among small-bodied species range from 9% losses to 6% gains in spatio-temporal niche availability, while larger species have close to 0% predicted change. Body mass may therefore be a key ecological trait influencing the identity of climate change winners and losers. Mammal species composition will probably change in some areas as temperatures rise, but full-scale biotic attrition this century appears unlikely.
    Matched MeSH terms: Climate Change*
  15. Serrano O, Lovelock CE, B Atwood T, Macreadie PI, Canto R, Phinn S, et al.
    Nat Commun, 2019 10 02;10(1):4313.
    PMID: 31575872 DOI: 10.1038/s41467-019-12176-8
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
    Matched MeSH terms: Climate Change*
  16. Wong LP, Alias H, Aghamohammadi N, Aghazadeh S, Nik Sulaiman NM
    Biomed Environ Sci, 2018 Jul;31(7):545-550.
    PMID: 30145991 DOI: 10.3967/bes2018.074
    Matched MeSH terms: Climate Change*
  17. Stankovic M, Ambo-Rappe R, Carly F, Dangan-Galon F, Fortes MD, Hossain MS, et al.
    Sci Total Environ, 2021 Aug 20;783:146858.
    PMID: 34088119 DOI: 10.1016/j.scitotenv.2021.146858
    Seagrasses have the ability to contribute towards climate change mitigation, through large organic carbon (Corg) sinks within their ecosystems. Although the importance of blue carbon within these ecosystems has been addressed in some countries of Southeast Asia, the regional and national inventories with the application of nature-based solutions are lacking. In this study, we aim to estimate national coastal blue carbon stocks in the seagrass ecosystems in the countries of Southeast Asia including the Andaman and Nicobar Islands of India. This study further assesses the potential of conservation and restoration practices and highlights the seagrass meadows as nature-based solution for climate change mitigation. The average value of the total carbon storage within seagrass meadows of this region is 121.95 ± 76.11 Mg ha-1 (average ± SD) and the total Corg stock of the seagrass meadows of this region was 429.11 ± 111.88 Tg, with the highest Corg stock in the Philippines (78%). The seagrass meadows of this region have the capacity to accumulate 5.85-6.80 Tg C year-1, which accounts for $214.6-249.4 million USD. Under the current rate of decline of 2.82%, the seagrass meadows are emitting 1.65-2.08 Tg of CO2 year-1 and the economic value of these losses accounts for $21.42-24.96 million USD. The potential of the seagrass meadows to the offset current CO2 emissions varies across the region, with the highest contribution to offset is in the seagrass meadows of the Philippines (11.71%). Current national policies and commitments of nationally determined contributions do not include blue carbon ecosystems as climate mitigation measures, even though these ecosystems can contribute up to 7.03% of the countries' reduction goal of CO2 emissions by 2030. The results of this study highlight and promote the potential of the southeast Asian seagrass meadows to national and international agencies as a practical scheme for nature-based solutions for climate change mitigation.
    Matched MeSH terms: Climate Change*
  18. Mustaffa NIH, Latif MT, Wurl O
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299033 DOI: 10.3390/ijms22147413
    Climate change has been predicted to influence the marine phytoplankton community and its carbon acquisition strategy. Extracellular carbonic anhydrase (eCA) is a zinc metalloenzyme that catalyses the relatively slow interconversion between HCO3- and CO2. Early results indicated that sub-nanomolar levels of eCA at the sea surface were sufficient to enhance the oceanic uptake rate of CO2 on a global scale by 15%, an addition of 0.37 Pg C year-1. Despite its central role in the marine carbon cycle, only in recent years have new analytical techniques allowed the first quantifications of eCA and its activity in the oceans. This opens up new research areas in the field of marine biogeochemistry and climate change. Light and suitable pH conditions, as well as growth stage, are crucial factors in eCA expression. Previous studies showed that phytoplankton eCA activity and concentrations are affected by environmental stressors such as ocean acidification and UV radiation as well as changing light conditions. For this reason, eCA is suggested as a biochemical indicator in biomonitoring programmes and could be used for future response prediction studies in changing oceans. This review aims to identify the current knowledge and gaps where new research efforts should be focused to better determine the potential feedback of phytoplankton via eCA in the marine carbon cycle in changing oceans.
    Matched MeSH terms: Climate Change*
  19. Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, et al.
    Ecol Lett, 2016 11;19(11):1372-1385.
    PMID: 27667778 DOI: 10.1111/ele.12686
    Thermal performance curves (TPCs), which quantify how an ectotherm's body temperature (Tb ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced Tb. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions underlying the integration of TPCs with Tb , to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change.
    Matched MeSH terms: Climate Change*
  20. O'Brien MJ, Ong R, Reynolds G
    Glob Chang Biol, 2017 10;23(10):4235-4244.
    PMID: 28192618 DOI: 10.1111/gcb.13658
    Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra-annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.
    Matched MeSH terms: Climate Change*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links