Displaying publications 41 - 60 of 152 in total

Abstract:
Sort:
  1. Jhatial AA, Goh WI, Mastoi AK, Traore AF, Oad M
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2985-3007.
    PMID: 34383212 DOI: 10.1007/s11356-021-15076-x
    Rapid urbanization and 'concretization' have increased the use of concrete as the preferred building material. However, the production of cement and other concrete-related activities, contribute significantly to both the carbon dioxide emissions and climate change. Agro-industrial wastes such as Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) have been utilized in concrete as supplementary cementitious materials, to reduce the cement content, in order to minimize the carbon footprint and the environmental pollution associated with the dumping of waste. Both POFA and ESP have been utilized in ternary binder foamed concrete; however, higher content of cement replacement tends to reduce the concrete's strength significantly. Therefore, this research was conducted to study the influence of ternary binder foamed concrete, incorporating 30% POFA and 5-15% ESP by weight of the total binder, when reinforced with polypropylene (PP) fibres. Based on the results, the ternary binder foamed concrete showed better strength than the control foamed concrete due to the pozzolanic reaction and the addition of PP fibres slightly improved the strength. Furthermore, ternary binder foamed concrete can reduce up to 33.79% of the total CO2 emissions. In terms of cost, all ternary binder foamed concrete mixes reduced the overall cost of the mix. The lowest cost per 1 MPa was achieved by ternary binder foamed concrete mix which incorporated 30% POFA, 5% ESP and 0.20% PP fibres. However, the optimum S5 ternary binder foamed concrete mix, which incorporated 30% POFA, 10% ESP and 0.20% PP fibres, exhibited a cost of $3.74 per 1 MPa strength, which was $1.1 lower than the control foamed concrete. PP reinforced ternary binder foamed concrete is an eco-efficient and cost-effective concrete that can be used in numerous civil engineering applications, mitigating the environmental and the emissions generated by agro-industrial waste.
    Matched MeSH terms: Construction Materials
  2. Channa SH, Mangi SA, Bheel N, Soomro FA, Khahro SH
    Environ Sci Pollut Res Int, 2022 Jan;29(3):3555-3564.
    PMID: 34387820 DOI: 10.1007/s11356-021-15877-0
    Globally, concrete is widely implemented as a construction material and is progressively being utilized because of growth in urbanization. However, limited resources and gradual depravity of the environment are forcing the research community to obtain alternative materials from large amounts of agro-industrial wastes as a partial replacement for ordinary cement. Cement is a main binding resource in concrete production. To reduce environmental problems associated with waste, this study considered the recycling of agro-industrial wastes, such as sugarcane bagasse ash (SCBA), rice husk ash (RHA), and others, into cement, and to finally bring sustainable and environmental-friendly concrete. This study considered 5%, 10%, and 15% of SBCA and RHA individually to replace ordinary Portland cement (OPC) by weight method then combined both ashes as 10%, 20%, and 30% to replace OPC to produce sustainable concrete. It was experimentally declared that the strength performance of concrete was reduced while utilizing SCBA and RHA individually and combined as supplementary cementitious material (SCM) at 7, 28, 56, and 90 days, respectively. Moreover, the initial and final setting time is increased as the quantity of replacement level of OPC with SCBA and RHA separates and together as SCM in the mixture. Based on experimental findings, it was concluded that the use of 5% of SCBA and 5% of RHA as cement replacement material individually or combined in concrete could provide appropriate results for structural applications in concrete.
    Matched MeSH terms: Construction Materials
  3. Bheel N, Ali MOA, Tafsirojjaman, Khahro SH, Keerio MA
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5224-5239.
    PMID: 34417691 DOI: 10.1007/s11356-021-15954-4
    In recent years, the research direction is shifted toward introducing new supplementary cementitious materials (SCM) in lieu of in place of Portland cement (PC) in concrete as its production emits a lot of toxic gases in the atmosphere which causes environmental pollution and greenhouse gases. SCM such as sugarcane bagasse ash (SCBA), metakaolin (MK), and millet husk ash (MHA) are available in abundant quantities and considered as waste products. The primary aim of this experimental study is to investigate the effect of SCBA, MK, and MHA on the fresh and mechanical properties of concrete mixed which contributes to sustainable development. A total of 228 concrete specimens were prepared with targeted strength of 25MPa at 0.52 water-cement ratio and cured at 28 days. It is found that the compressive strength and split tensile strength were enhanced by 17% and 14.28%, respectively, at SCBA4MK4MHA4 (88% PC, 4% SCBA, 4% MK, and 4% MHA) as ternary cementitious material (TCM) in concrete after 28 days. Moreover, the permeability and density of concrete are found to be reduced when SCBA, MK, and MHA are used separately and combined as TCM increases in concrete at 28 days, respectively. The results showed that the workability of the fresh concrete was decreased with the increase of the percentage of SCBA, MK, and MHA separately and together as TCM in concrete.
    Matched MeSH terms: Construction Materials
  4. Shar IA, Memon FA, Bheel N, Benjeddou O, Alwetaishi M
    Environ Sci Pollut Res Int, 2023 Jun;30(30):75879-75893.
    PMID: 37227640 DOI: 10.1007/s11356-023-27803-7
    Every day, more and more binding materials are being used in the construction industry all over the world. However, Portland cement (PC) is used as a binding material, and its production discharges a high amount of undesirable greenhouse gases into the environment. This research work is done to reduce the amount of greenhouse gases discharged during PC manufacturing and to reduce the cost and energy incurred in the cement manufacturing process by making effective consumption of industrial/agricultural wastes in the construction sector. Therefore, wheat straw ash (WSA) as an agricultural waste is utilized as cement replacement material, while used engine oil as an industrial waste is utilized as an air-entraining admixture in concrete. This study's main goal was to examine the cumulative impact of both waste materials on fresh (slump test) and hardened concrete (compressive strength, split tensile strength, water absorption, and dry density). The cement was replaced by up to 15% and used engine oil incorporated up to 0.75% by weight of cement. Moreover, the cubical samples were cast for determining the compressive strength, dry density, and water absorption, while the cylindrical specimen was cast for evaluating the splitting tensile strength of concrete. The results confirmed that compressive and tensile strengths augmented by 19.40% and 16.67%, at 10% cement replacement by wheat straw ash at 90 days, respectively. Besides, the workability, water absorption, dry density, and embodied carbon were decreased as the quantity of WSA increased with the mass of PC, and all of these properties are increased with the incorporation of used engine oil in concrete after 28 days, respectively.
    Matched MeSH terms: Construction Materials
  5. Negash YT, Hassan AM, Tseng ML, Ali MH, Lim MK
    Environ Sci Pollut Res Int, 2023 May;30(25):67303-67325.
    PMID: 37103710 DOI: 10.1007/s11356-023-27060-8
    This study contributes to develop a hierarchical framework for assessing the strategic effectiveness of waste management in the construction industry. This study identifies a valid set of strategic effectiveness attributes of sustainable waste management (SWM) in construction. Prior studies have neglected to develop a strategic effectiveness assessment framework for SWM to identify reduce, reuse, and recycle policy initiatives that ensure waste minimization and resource recovery programs. This study utilizes the fuzzy Delphi method to screen out nonessential attributes in qualitative information. This study initially proposes a set of 75 criteria; after two rounds of assessment, consensus regarding 28 criteria is achieved among experts, and the 28 criteria are validated. Fuzzy interpretive structural modeling divides the attributes into various elements. The modeling constructs a six-level model that depicts the interrelationships among the 28 validated criteria as a hierarchical framework, and it finds and ranks the optimal drivers for practical improvement. This study integrates the best-worst method to measure the weights of different criteria in the hierarchical strategic effectiveness framework. The findings reveal that waste management operational strategy, construction site waste management performance, and the mutual coordination level are the top aspects for assessing strategic effectiveness in the hierarchical framework. In practice, the waste reduction rate, the recycling rate, water and land usage, the reuse rate, and noise and air pollution levels are identified to assist policymakers in evaluation. The theoretical and managerial implications are discussed.
    Matched MeSH terms: Construction Materials
  6. Sirimewan D, Bazli M, Raman S, Mohandes SR, Kineber AF, Arashpour M
    J Environ Manage, 2024 Feb;351:119908.
    PMID: 38169254 DOI: 10.1016/j.jenvman.2023.119908
    The construction industry generates a substantial volume of solid waste, often destinated for landfills, causing significant environmental pollution. Waste recycling is decisive in managing waste yet challenging due to labor-intensive sorting processes and the diverse forms of waste. Deep learning (DL) models have made remarkable strides in automating domestic waste recognition and sorting. However, the application of DL models to recognize the waste derived from construction, renovation, and demolition (CRD) activities remains limited due to the context-specific studies conducted in previous research. This paper aims to realistically capture the complexity of waste streams in the CRD context. The study encompasses collecting and annotating CRD waste images in real-world, uncontrolled environments. It then evaluates the performance of state-of-the-art DL models for automatically recognizing CRD waste in-the-wild. Several pre-trained networks are utilized to perform effectual feature extraction and transfer learning during DL model training. The results demonstrated that DL models, whether integrated with larger or lightweight backbone networks can recognize the composition of CRD waste streams in-the-wild which is useful for automated waste sorting. The outcome of the study emphasized the applicability of DL models in recognizing and sorting solid waste across various industrial domains, thereby contributing to resource recovery and encouraging environmental management efforts.
    Matched MeSH terms: Construction Materials
  7. Yeo JS, Koting S, Onn CC, Mo KH
    Environ Sci Pollut Res Int, 2021 Jun;28(23):29009-29036.
    PMID: 33881693 DOI: 10.1007/s11356-021-13836-3
    Paving block is a widely used pavement material due to its long service life, fast and easy production and easily replaced for maintenance purpose. The huge production volume of paving blocks consumes large amount of natural aggregates such as sand and granite. Therefore, there is a necessity to review the utilization of alternative materials as the aggregate replacement to cut down both the consumption of natural resources and disposal of various waste. This paper thus analyses published works and provides a summary of knowledge on the effect of utilizing selected waste materials such as soda-lime glass, cathode ray tube (CRT) glass, recycled concrete waste, marble waste, crumb rubber (CR) waste and waste foundry sand (WFS) as aggregate replacement in concrete paving blocks fabrication. The influence of each waste material on the properties of paving block is discussed and highlighted in this paper. The adherence of the waste material paving block to the standard requirements is also presented to provide a clear direction on the utilization of these materials for practical application. Soda-lime glass, CRT glass, pre-treated RCA and calcined WFS have the potential to be utilized in high quantities (30-100%), normal RCA and marble waste can be incorporated in moderate amount (30%) while CR waste and WFS is limited to low amount (6-10%). In overall, the usage of waste materials as aggregate replacement has good potential for producing eco-friendly concrete paving block towards the sustainable development of construction material.
    Matched MeSH terms: Construction Materials
  8. Akeiber HJ, Wahid MA, Hussen HM, Mohammad AT
    ScientificWorldJournal, 2014;2014:391690.
    PMID: 25313367 DOI: 10.1155/2014/391690
    The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.
    Matched MeSH terms: Construction Materials/analysis*
  9. Bagherifaez M, Behnia A, Majeed AA, Hwa Kian C
    ScientificWorldJournal, 2014;2014:567619.
    PMID: 25180203 DOI: 10.1155/2014/567619
    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis.
    Matched MeSH terms: Construction Materials/standards*
  10. Akib S, Liana Mamat N, Basser H, Jahangirzadeh A
    ScientificWorldJournal, 2014;2014:128635.
    PMID: 25247201 DOI: 10.1155/2014/128635
    The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles.
    Matched MeSH terms: Construction Materials/standards*
  11. Panjehpour M, Chai HK, Voo YL
    ScientificWorldJournal, 2014;2014:265879.
    PMID: 25197698 DOI: 10.1155/2014/265879
    Strut-and-tie model (STM) method evolved as one of the most useful designs for shear critical structures and discontinuity regions (D-regions). It provides widespread applications in the design of deep beams as recommended by many codes. The estimation of bottle-shaped strut dimensions, as a main constituent of STM, is essential in design calculations. The application of carbon fibre reinforced polymer (CFRP) as lightweight material with high tensile strength for strengthening D-regions is currently on the increase. However, the CFRP-strengthening of deep beam complicates the dimensions estimation of bottle-shaped strut. Therefore, this research aimed to investigate the effect of CFRP-strengthening on the deformation of RC strut in the design of deep beams. Two groups of specimens comprising six unstrengthened and six CFRP-strengthened RC deep beams with the shear span to the effective depth ratios (a/d) of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 were constructed in this research. These beams were tested under four-point bending configuration. The deformation of struts was experimentally evaluated using the values of strain along and perpendicular to the strut centreline. The evaluation was made by the comparisons between unstrengthened and CFRP-strengthened struts regarding the widening and shortening. The key variables were a/d ratio and applied load level.
    Matched MeSH terms: Construction Materials/analysis*
  12. Mehmannavaz T, Ismail M, Radin Sumadi S, Rafique Bhutta MA, Samadi M, Sajjadi SM
    ScientificWorldJournal, 2014;2014:461241.
    PMID: 24696646 DOI: 10.1155/2014/461241
    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.
    Matched MeSH terms: Construction Materials/analysis*
  13. Aggelis DG, Alver N, Chai HK
    ScientificWorldJournal, 2014;2014:435238.
    PMID: 24701167 DOI: 10.1155/2014/435238
    Matched MeSH terms: Construction Materials/standards*
  14. Liu KF, Chai HK, Mehrabi N, Yoshikazu K, Shiotani T
    ScientificWorldJournal, 2014;2014:194295.
    PMID: 24737961 DOI: 10.1155/2014/194295
    Imaging techniques are high in demand for modern nondestructive evaluation of large-scale concrete structures. The travel-time tomography (TTT) technique, which is based on the principle of mapping the change of propagation velocity of transient elastic waves in a measured object, has found increasing application for assessing in situ concrete structures. The primary aim of this technique is to detect defects that exist in a structure. The TTT technique can offer an effective means for assessing tendon duct filling of prestressed concrete (PC) elements. This study is aimed at clarifying some of the issues pertaining to the reliability of the technique for this purpose, such as sensor arrangement, model, meshing, type of tendon sheath, thickness of sheath, and material type as well as the scale of inhomogeneity. The work involved 2D simulations of wave motions, signal processing to extract travel time of waves, and tomography reconstruction computation for velocity mapping of defect in tendon duct.
    Matched MeSH terms: Construction Materials/analysis*
  15. Talebi E, Tahir MM, Zahmatkesh F, Yasreen A, Mirza J
    ScientificWorldJournal, 2014;2014:672629.
    PMID: 24526915 DOI: 10.1155/2014/672629
    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.
    Matched MeSH terms: Construction Materials/standards*
  16. Putra A, Saari NF, Bakri H, Ramlan R, Dan RM
    ScientificWorldJournal, 2013;2013:742853.
    PMID: 24324380 DOI: 10.1155/2013/742853
    A laboratory-based experiment procedure of reception plate method for structure-borne sound source characterisation is reported in this paper. The method uses the assumption that the input power from the source installed on the plate is equal to the power dissipated by the plate. In this experiment, rectangular plates having high and low mobility relative to that of the source were used as the reception plates and a small electric fan motor was acting as the structure-borne source. The data representing the source characteristics, namely, the free velocity and the source mobility, were obtained and compared with those from direct measurement. Assumptions and constraints employing this method are discussed.
    Matched MeSH terms: Construction Materials/analysis*
  17. Vakili AH, Selamat MR, Moayedi H
    ScientificWorldJournal, 2013;2013:547615.
    PMID: 23864828 DOI: 10.1155/2013/547615
    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.
    Matched MeSH terms: Construction Materials*
  18. Begum RA, Siwar C, Pereira JJ, Jaafar AH
    Waste Manag, 2007;27(12):1902-9.
    PMID: 17110094
    Malaysia is facing an increase in the generation of waste and of accompanying problems with the disposal of this waste. In the last two decades, extensive building and infrastructure development projects have led to an increase in the generation of construction waste material. The construction industry has a substantial impact on the environment, and its environmental effects are in direct relation to the quality and quantity of the waste it generates. This paper discusses general characteristics of the construction contractors, the contractors' willingness to pay (WTP) for improved construction waste management, determining factors which affect the amount of their willingness to pay, and suggestions and policy implications in the perspective of construction waste management in Malaysia. The data in this study is based on contractors registered with the construction industry development board (CIDB) of Malaysia. Employing the open ended contingent valuation method, the study assessed the contractors' average maximum WTP for improved construction waste management to be RM69.88 (1US$=3.6 RM) per tonne of waste. The result shows that the average maximum WTP is higher for large contractors than for medium and small contractors. The highest average maximum WTP value is RM88.00 for Group A (large contractors) RM78.25 for Group B (medium-size contractors) and RM55.80 for Group C (small contractors). One of the contributions of this study is to highlight the difference of CIDB registration grade in the WTP for improved construction waste management. It is found that contractors' WTP for improved waste collection and disposal services increases with the increase in contractors' current paid up capital. The identified factors and determinants of the WTP will assist the formulation of appropriate policies in addressing the construction waste problem in Malaysia and indirectly improve the quality of construction in the country.
    Matched MeSH terms: Construction Materials*
  19. Panjehpour M, Chai HK, Voo YL
    PLoS One, 2015;10(6):e0130734.
    PMID: 26110268 DOI: 10.1371/journal.pone.0130734
    Deep beams are commonly used in tall buildings, offshore structures, and foundations. According to many codes and standards, strut-and-tie model (STM) is recommended as a rational approach for deep beam analyses. This research focuses on the STM recommended by ACI 318-11 and AASHTO LRFD and uses experimental results to modify the strut effectiveness factor in STM for reinforced concrete (RC) deep beams. This study aims to refine STM through the strut effectiveness factor and increase result accuracy. Six RC deep beams with different shear span to effective-depth ratios (a/d) of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 were experimentally tested under a four-point bending set-up. The ultimate shear strength of deep beams obtained from non-linear finite element modeling and STM recommended by ACI 318-11 as well as AASHTO LRFD (2012) were compared with the experimental results. An empirical equation was proposed to modify the principal tensile strain value in the bottle-shaped strut of deep beams. The equation of the strut effectiveness factor from AASHTTO LRFD was then modified through the aforementioned empirical equation. An investigation on the failure mode and crack propagation in RC deep beams subjected to load was also conducted.
    Matched MeSH terms: Construction Materials*
  20. Nadesan K
    Med Sci Law, 2000 Jan;40(1):83-7.
    PMID: 10689867
    An 18-year-old construction worker suddenly collapsed while handling a power-actuated nail gun and died shortly after. A neat, almost circular puncture wound was found on the front of his left chest. No fire-arm residues were detected on the surrounding skin. The police stated that it was an accidental injury, at a construction site, where a nail fired from a nail gun by the deceased had deflected off the wall and struck him on the front of the chest. Since the entry wound appeared to be a neat hole, and that too on the front of the left chest overlying the heart area, there was reluctance on the part of the pathologist to accept it as an accidental injury due to a ricochet. A visit to the scene, interrogation of witnesses, examination of the alleged tool and post-mortem X-ray of the deceased were undertaken prior to autopsy. A bent nail was found in the heart. The scene visit and the subsequent autopsy revealed that the nail took a roughly circular flightpath after it had struck the wall, all the while travelling with its pointed end directed forward. Within the body too, the nail maintained the same path. Various medicolegal issues are discussed pertaining to nail-gun injuries. The importance of a visit to the scene, examination of the alleged tool, interrogation of witnesses and the X-ray of the body, all prior to autopsy, are emphasized. The conclusion was: accidental death due to the unusual ricochet of a nail.
    Matched MeSH terms: Construction Materials/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links