Displaying publications 41 - 60 of 226 in total

Abstract:
Sort:
  1. Cyranoski D
    Nature, 2003 Dec 11;426(6967):592.
    PMID: 14668824
    Matched MeSH terms: Ecology*
  2. Beaudrot L, Ahumada JA, O'Brien T, Alvarez-Loayza P, Boekee K, Campos-Arceiz A, et al.
    PLoS Biol, 2016 Jan;14(1):e1002357.
    PMID: 26785119 DOI: 10.1371/journal.pbio.1002357
    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse.
    Matched MeSH terms: Ecology/methods
  3. Tsuboi M, Lim AC, Ooi BL, Yip MY, Chong VC, Ahnesjö I, et al.
    J Evol Biol, 2017 Jan;30(1):150-160.
    PMID: 27748990 DOI: 10.1111/jeb.12995
    Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger.
    Matched MeSH terms: Ecology*
  4. Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, et al.
    Ecol Lett, 2013 Oct;16(10):1245-57.
    PMID: 23910579 DOI: 10.1111/ele.12162
    To manage and conserve biodiversity, one must know what is being lost, where, and why, as well as which remedies are likely to be most effective. Metabarcoding technology can characterise the species compositions of mass samples of eukaryotes or of environmental DNA. Here, we validate metabarcoding by testing it against three high-quality standard data sets that were collected in Malaysia (tropical), China (subtropical) and the United Kingdom (temperate) and that comprised 55,813 arthropod and bird specimens identified to species level with the expenditure of 2,505 person-hours of taxonomic expertise. The metabarcode and standard data sets exhibit statistically correlated alpha- and beta-diversities, and the two data sets produce similar policy conclusions for two conservation applications: restoration ecology and systematic conservation planning. Compared with standard biodiversity data sets, metabarcoded samples are taxonomically more comprehensive, many times quicker to produce, less reliant on taxonomic expertise and auditable by third parties, which is essential for dispute resolution.
    Matched MeSH terms: Ecology/methods*
  5. Muul I
    Science, 1970 Dec 18;170(3964):1275-9.
    PMID: 5479006
    Insufficient use has been made of ecological data concerning potential hosts in studies to determine the life cycles of zoonotic parasites and pathogens. Factors such as the geographical distribution of hosts, the altitudes at which they live, their affinities for specific habitats, their vertical distribution within the habitat, and the periodicity of their activities have bearing on the hosts' predisposition to involvement in disease cycles. Diets and feeding habits may determine the likelihood of acquiring infection. Reproductive characteristics determine whether a species is suitable as a reservoir or as an amplifying host. Behavioral factors, such as selection of a particular kind of nest site, may also predispose the involvement of the host with parasites and pathogens. Behavior patterns may determine the maximum population densities of hosts. Estimates of population sizes, of relative abundances of species, and of the involvement of species in disease cycles may be strongly influenced by the collecting and sampling methods that are used and also by the behavioral response of the mammals toward collecting devices, such as traps.
    Matched MeSH terms: Ecology*
  6. Macdonald WW, Smith CE, Dawson PS, Ganapathipillai A, Mahadevan S
    J Med Entomol, 1967 May;4(2):146-57.
    PMID: 4383192
    Matched MeSH terms: Ecology*
  7. Allotey P, Reidpath DD, Pokhrel S
    Health Res Policy Syst, 2010 Oct 21;8:32.
    PMID: 20961461 DOI: 10.1186/1478-4505-8-32
    Centuries of scientific advances and developments in biomedical sciences have brought us a long way to understanding and managing disease processes, by reducing them to simplified cause-effect models. For most of the infectious diseases known today, we have the methods and technology to identify the causative agent, understand the mechanism by which pathology is induced and develop the treatment (drugs, vaccines, medical or surgical procedures) to cure, manage or control.Disease, however, occurs within a context of lives fraught with complexity. For any given infectious disease, who gets it, when, why, the duration, the severity, the outcome, the sequelae, are bound by a complex interplay of factors related as much to the individual as it is to the physical, social, cultural, political and economic environments. Furthermore each of these factors is in a dynamic state of change, evolving over time as they interact with each other. Simple solutions to infectious diseases are therefore rarely sustainable solutions. Sustainability would require the development of interdisciplinary sciences that allow us to acknowledge, understand and address these complexities as they occur, rather than rely solely on a form of science based on reducing the management of disease to simple paradigms.In this review we examine the current global health responses to the 'neglected' tropical diseases, which have been prioritised on the basis of an acknowledgment of the complexity of the poverty-disease cycle. However research and interventions for neglected tropical diseases, largely neglect the social and ecological contextual, factors that make these diseases persist in the target populations, continuing instead to focus on the simple biomedical interventions. We highlight the gaps in the approaches and explore the potential of enhanced interdisciplinary work in the development of long term solutions to disease control.
    Matched MeSH terms: Ecology
  8. Pearce DA, Alekhina IA, Terauds A, Wilmotte A, Quesada A, Edwards A, et al.
    Front Microbiol, 2016;7:16.
    PMID: 26909068 DOI: 10.3389/fmicb.2016.00016
    The role of aerial dispersal in shaping patterns of biodiversity remains poorly understood, mainly due to a lack of coordinated efforts in gathering data at appropriate temporal and spatial scales. It has been long known that the rate of dispersal to an ecosystem can significantly influence ecosystem dynamics, and that aerial transport has been identified as an important source of biological input to remote locations. With the considerable effort devoted in recent decades to understanding atmospheric circulation in the south-polar region, a unique opportunity has emerged to investigate the atmospheric ecology of Antarctica, from regional to continental scales. This concept note identifies key questions in Antarctic microbial biogeography and the need for standardized sampling and analysis protocols to address such questions. A consortium of polar aerobiologists is established to bring together researchers with a common interest in the airborne dispersion of microbes and other propagules in the Antarctic, with opportunities for comparative studies in the Arctic.
    Matched MeSH terms: Ecology
  9. Grismer LL, Quah ES
    Zootaxa, 2015;3931(1):63-70.
    PMID: 25781814 DOI: 10.11646/zootaxa.3931.1.4
    The discovery of an additional specimen of Sphenomorphus malayanus Doria, 1888 from Gunung Brinchang, Cameron Highlands, Pahang in Peninsular Malaysia reveals that it is not conspecific with the type specimen from Gunung Singgalan, West Sumatra, 600 km to the south. The new specimen and an additional specimen previously collected from Gunung Gerah, Perak, Peninsular Malaysia, 56 km to the north, are described here as the new species S. senja sp. nov. and differ from S. malayanus by having a larger SVL (60.0-65 mm versus 53 mm); a deeply recessed as opposed to a shallow tympanum; 72 or 73 versus 76 paravertebral scales; eight or nine superciliary scales as opposed to 10; and the posteriormost superciliary scale being large as opposed to small. Cameron Highlands is unique among other upland areas in Peninsular Malaysia in that it harbors an unprecedented number of closely related ecological equivalents living in close sympatry or syntopy.
    Matched MeSH terms: Ecology
  10. Walsh RP, Newbery DM
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1869-83.
    PMID: 11605629
    Climatic records for Danum for 1985-1998, elsewhere in Sabah since 1879, and long monthly rainfall series from other rainforest locations are used to place the climate, and particularly the dry period climatology, of Danum into a world rainforest context. The magnitude frequency and seasonality of dry periods are shown to vary greatly within the world's rainforest zone. The climate of Danum, which is aseasonal but subject, as in 1997-1998, to occasional drought, is intermediate between less drought-prone north-western Borneo and the more drought-prone east coast. Changes through time in drought magnitude frequency in Sabah and rainforest locations elsewhere in South-East Asia and in the Neotropics are compared. The 1997-1998 ENSO-related drought event in Sabah is placed into a historical context. The effects of drought on tree growth and mortality in the tropics are assessed and a model relating intensity and frequency of drought disturbance to forest structure and composition is discussed.
    Matched MeSH terms: Ecology
  11. Sharifinia M, Afshari Bahmanbeigloo Z, Smith WO, Yap CK, Keshavarzifard M
    Glob Chang Biol, 2019 Dec;25(12):4022-4033.
    PMID: 31436851 DOI: 10.1111/gcb.14808
    Due to extremely high rates of evaporation and low precipitation in the Persian Gulf, discharges from desalination plants (DPs) can lead to ecological stresses by increasing water temperatures, salinities, and heavy metal concentrations, as well as decreasing dissolved oxygen levels. We discuss the potential ecological impacts of DPs on marine organisms and propose mitigating measures to reduce the problems induced by DPs discharges. The daily capacity of DPs in the Persian Gulf exceeds 11 million m3 per day, which is approximately half of global daily freshwater production; multistage flash distillation (MSF) is the dominant desalination process. Results from field and laboratory studies indicate that there are potentially serious and chronic threats to marine communities following exposure to DP discharges, especially within the zoobenthos, echinodermata, seagrasses, and coral reefs. DP discharges can lead to decreases in sensitive species, plankton abundance, hard substrate epifauna, and growth rates of seagrasses. However, the broad applicability of any one of these impacts is currently hard to scale because of the limited number of studies that have been conducted to assess the ecological impacts of DP discharge on Persian Gulf organisms. Even so, available data suggest that appropriately sited, designed, and operated DPs combined with current developments in impingement and entrainment reduction technology can mitigate many of the negative environmental impacts of DPs.
    Matched MeSH terms: Ecology
  12. Strain EMA, Alexander KA, Kienker S, Morris R, Jarvis R, Coleman R, et al.
    Sci Total Environ, 2019 Mar 25;658:1293-1305.
    PMID: 30677991 DOI: 10.1016/j.scitotenv.2018.12.285
    Marine harbours are the focus of a diverse range of activities and subject to multiple anthropogenically induced pressures. Support for environmental management options aimed at improving degraded harbours depends on understanding the factors which influence people's perceptions of harbour environments. We used an online survey, across 12 harbours, to assess sources of variation people's perceptions of harbour health and ecological engineering. We tested the hypotheses: 1) people living near impacted harbours would consider their environment to be more unhealthy and degraded, be more concerned about the environment and supportive of and willing to pay for ecological engineering relative to those living by less impacted harbours, and 2) people with greater connectedness to the harbour would be more concerned about and have greater perceived knowledge of the environment, and be more supportive of, knowledgeable about and willing to pay for ecological engineering, than those with less connectedness. Across twelve locations, the levels of degradation and modification by artificial structures were lower and the concern and knowledge about the environment and ecological engineering were greater in the six Australasian and American than the six European and Asian harbours surveyed. We found that people's perception of harbours as healthy or degraded, but not their concern for the environment, reflected the degree to which harbours were impacted. There was a positive relationship between the percentage of shoreline modified and the extent of support for and people's willingness to pay indirect costs for ecological engineering. At the individual level, measures of connectedness to the harbour environment were good predictors of concern for and perceived knowledge about the environment but not support for and perceived knowledge about ecological engineering. To make informed decisions, it is important that people are empowered with sufficient knowledge of the environmental issues facing their harbour and ecological engineering options.
    Matched MeSH terms: Ecology
  13. Lau JD
    Conserv Biol, 2020 12;34(6):1589-1591.
    PMID: 32104932 DOI: 10.1111/cobi.13487
    Amid a growing global agenda, biodiversity conservation has embraced gender equity as a pillar of equitable and effective practice. Gender equity has become enshrined in the global environment and development agenda through global commitments, policy and funding. However, for various reasons, conservation biodiversity often takes a simplistic view of gender as synonymous with women or as a dualism between women and men. This narrow view risks promoting inequitable processes and ineffective outcomes. Deeper engagement with feminist theory, and feminist political ecology in particular, could help advance biodiversity conservation's approach to how gender is understood, framed and integrated. Engaging with lessons from feminist political ecology can help advance gender equity in conservation through attention to power dynamics, intersectionality, and subjectivity.
    Matched MeSH terms: Ecology
  14. Fauzi, R., Salazar, D.M., Kadzim, R.M., Hussin, A., Burbano, L.
    ASM Science Journal, 2009;3(2):161-167.
    MyJurnal
    In this project, a Geographic Information System (GIS) was used to collect and compile various field data in the Pedro Vicente Maldonado Ecuadorian Scientific Station Antarctica Base area. The main source of data was obtained from a global positioning system (GPS) survey using kinematic GPS (GPS-RTK) which allowed continuous point mapping in the terrain. GPS units were utilized in the collection of spatial data for all field work. The co-ordinates obtained were used to produce a point map which was then exported into GIS software where the proximity of cartographic phenomena and boundaries were mapped. All the collected data were subsequently gathered to develop the GIS database which was then used to generate and compile different maps to test for spatial and temporal relationships. The output of the project comprises a GIS database, spatial maps and 3D terrain model of the area. The developed GIS database can be used with other ecological datasets to provide biogeographical information, potential range distribution and sampling adequacy. The database is also applicable to geographical management and multi-disciplinary research projects.
    Matched MeSH terms: Ecology
  15. Moyle RG, Manthey JD, Hosner PA, Rahman M, Lakim M, Sheldon FH
    PeerJ, 2017;5:e3335.
    PMID: 28533979 DOI: 10.7717/peerj.3335
    Topographically complex regions often contain the close juxtaposition of closely related species along elevational gradients. The evolutionary causes of these elevational replacements, and thus the origin and maintenance of a large portion of species diversity along elevational gradients, are usually unclear because ecological differentiation along a gradient or secondary contact following allopatric diversification can produce the same pattern. We used reduced representation genomic sequencing to assess genetic relationships and gene flow between three parapatric pairs of closely related songbird taxa (Arachnothera spiderhunters, Chloropsis leafbirds, and Enicurus forktails) along an elevational gradient in Borneo. Each taxon pair presents a different elevational range distribution across the island, yet results were uniform: little or no gene flow was detected in any pairwise comparisons. These results are congruent with an allopatric "species-pump" model for generation of species diversity and elevational parapatry of congeners on Borneo, rather than in situ generation of species by "ecological speciation" along an elevational gradient.
    Matched MeSH terms: Ecology
  16. Meng XF, Zhen Li, Wu XJ, Wang YJ, Li QY
    Sains Malaysiana, 2014;43:1821-1826.
    A reciprocal transplant-replant experiment was carried out to investigate the clonal plasticity and local specialization of OAFE population (O type) and BF population (U type) of a clonal rhizome herb Iris japonica in contrasting reciprocal heterogeneous habitats on Jinyun Mountain. U Population had better performance of plant size and clonal propagation (including allocation to clonal propagation, daughter ramet and fine rhizome) in different reciprocal heterogeneous habitats than O population. Both the population origin and reciprocal spatial heterogeneous habitat had effects on clonal ramets and biomass of clonal components of experimental plants. The plasticity of clonal growth had difference in clonal components to balance High light-Low soil resources (water) (HL) or Low light-High soil resources (LH) due to the ecological isolation of the two I. japonica populations. Our findings indicated that two major types of patterns of spatial covariance of resources can have different effects on the growth and local variation of clonal plants.
    Matched MeSH terms: Ecology
  17. Adole, Adole Michael, Jamaludin Mohamad Yatim, Suhaimi Abubakar Ramli, Athirah Othman, Norazura Azzmi Mizal
    MyJurnal
    (Kenaf fibre is a good reinforcement in fibre polymer composites due to its high strength
    and elastic modulus, high stiffness, low density, low cost and eco-efficient, less health
    hazards, renewability, good mechanical and thermal properties, and biodegradability. It is
    traditionally used for rope, twine, fish net and sacking materials. Recently, it was observed
    that kenaf fibre had huge potentials to replacing synthetic fibre in composites due to the
    rising environmental and ecological issues, thus this awareness has motivated efforts for
    the advancement of new innovative bio-based composites incorporating kenaf fibre for
    various end-use structural applications. This paper presents an overview of the development
    made so far in the area of kenaf fibre and its composites in terms of chemical and microstructural
    properties, mechanical properties, dimensional stability, thermal stability, product
    development and application. Some fundamental issues and suggestions for further research
    in this area are also discussed.
    Matched MeSH terms: Ecology
  18. Jianguang Bai, Jianjun Wang, Yule Zhang, Xiaodong Ji, Nan Wen
    Sains Malaysiana, 2017;46:2075-2081.
    The serious deterioration of the ecological environment comes from a large number of geological disasters. These disasters were caused by a number of engineering activities. Ecological restoration is an important measure to reduce geological disasters and protect the ecological environment. On the basis of the introduction of cast-in-situ grids technology, external-soil spray seeding technology and vegetation bag technology, according to the ecological restoration experiment of the road slope attach to the Three Gorges Pumped-Storage Power Station in Hohhot, decision analysis of slope ecological restoration is done with AHP. It is shown that in arid and semi-arid area, selection of slope ecological restoration scheme mainly needs considering the ecological effect and stability. The major factor of ecological effects is survival rate of vegetation. The major factor of stability is the stability in a whole. Cast-in-situ grids technology will be the first choice for ecological restoration of road slope in arid and semi-arid area. This study provides reference for decision of the slope ecological restoration in arid and semi-arid region.
    Matched MeSH terms: Ecology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links