Displaying publications 41 - 60 of 124 in total

Abstract:
Sort:
  1. Zeng H, Wu M, Wang HQ, Zheng JC, Kang J
    Materials (Basel), 2020 Dec 12;13(24).
    PMID: 33322841 DOI: 10.3390/ma13245686
    The magnetic and electronic properties of boron-doped SrTiO3 have been studied by first-principles calculations. We found that the magnetic ground states of B-doped SrTiO3 strongly depended on the dopant-dopant separation distance. As the dopant-dopant distance varied, the magnetic ground states of B-doped SrTiO3 can have nonmagnetic, ferromagnetic or antiferromagnetic alignment. The structure with the smallest dopant-dopant separation exhibited the lowest total energy among all configurations considered and was characterized by dimer pairs due to strong attraction. Ferromagnetic coupling was observed to be stronger when the two adjacent B atoms aligned linearly along the B-Ti-B axis, which could be associated with their local bonding structures. Therefore, the symmetry of the local structure made an important contribution to the generation of a magnetic moment. Our study also demonstrated that the O-Ti-O unit was easier than the Ti-B-Ti unit to deform. The electronic properties of boron-doped SrTiO3 tended to show semiconducting or insulating features when the dopant-dopant distance was less than 5 Å, which changed to metallic properties when the dopant-dopant distance was beyond 5 Å. Our calculated results indicated that it is possible to manipulate the magnetism and band gap via different dopant-dopant separations.
    Matched MeSH terms: Electronics
  2. Aziz SB, Hassan AQ, Mohammed SJ, Karim WO, Kadir MFZ, Tajuddin HA, et al.
    Nanomaterials (Basel), 2019 Feb 06;9(2).
    PMID: 30736346 DOI: 10.3390/nano9020216
    : In this work the influence of carbon nano-dots (CNDs) on absorption of ultra violet (UV) spectra in hybrid PVA based composites was studied. The FTIR results reveal the complex formation between PVA and CNDs. The shifting was observed in XRD spectrum of PVA:CNDs composites compared to pure PVA. The Debye-Scherrer formula was used to calculate the crystallite size of CNDs and crystalline phases of pure PVA and PVA:CNDs composites. The FESEM images emphasized the presence and dispersion of C-dots on the surface of the composite samples. From the images, a strong and clear absorption was noticed in the spectra. The strong absorption that appeared peaks at 280 nm and 430 nm can be ascribed to the n-π* and π-π* transitions, respectively. The absorption edge shifted to lower photon energy sides with increasing CNDs. The luminescence behavior of PVA:CNDs composite was confirmed using digital and photo luminescence (PL) measurements. The optical dielectric constant which is related to the density of states was studied and the optical band gap was characterized accurately using optical dielectric loss parameter. The Taucs model was used to determine the type of electronic transition in the samples.
    Matched MeSH terms: Electronics
  3. Nik Md Noordin Kahar NNF, Osman AF, Alosime E, Arsat N, Mohammad Azman NA, Syamsir A, et al.
    Polymers (Basel), 2021 Apr 07;13(8).
    PMID: 33917177 DOI: 10.3390/polym13081194
    The versatility of polymeric materials as healing agents to prevent any structure failure and their ability to restore their initial mechanical properties has attracted interest from many researchers. Various applications of the self-healing polymeric materials are explored in this paper. The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites. This paper also presents the different types of self-healing polymeric materials applied in various applications, which include electronics, coating, aerospace, medicals, and construction fields. It is expected that this review gives a significantly broader idea of self-healing polymeric materials and their healing mechanisms in various types of applications.
    Matched MeSH terms: Electronics
  4. Affa Rozana Abdul Rashid, Nur Insyierah Md Sarif, Khadijah Ismail
    MyJurnal
    The consumption of low-power electronic devices has increased rapidly, where almost all applications use power electronic devices. Due to the increase in portable electronic devices’ energy consumption, the piezoelectric material is proposed as one of the alternatives of the significant alternative energy harvesters. This study aims to create a prototype of “Smart Shoes” that can generate electricity using three different designs embedded by piezoelectric materials: ceramic, polymer, and a combination of both piezoelectric materials. The basic principle for smart shoes’ prototype is based on the pressure produced from piezoelectric material converted from mechanical energy into electrical energy. The piezoelectric material was placed into the shoes’ sole, and the energy produced due to the pressure from walking, jogging, and jumping was measured. The energy generated was stored in a capacitor as piezoelectric material produced a small scale of energy harvesting. The highest energy generated was produced by ceramic piezoelectric material under jumping activity, which was 1.804 mJ. Polymer piezoelectric material produced very minimal energy, which was 55.618 mJ. The combination of both piezoelectric materials produced energy, which was 1.805 mJ from jumping activity.

    Matched MeSH terms: Electronics
  5. Li Tsu Chong, Deena Clare Thomas, Renie Martha Joanes, Rose A Nain
    MyJurnal
    Introduction: Phlebitis may localise to the insertion site or travel along the vein. The risk of phlebitis is higher in children as they have thin and weak blood vessels and move continuously due to the pain associated with insertion. Therefore, regular assessment of the risk of developing phlebitis is crucial. This review aimed to identify infusion phlebitis assessment tool used in the paediatric setting. Methods: Electronic databases used were Scopus, ProQuest, ScienceDirect, and Google Scholar. A total of ten studies which assess the development of infusion phlebitis on hos- pitalised children included in this reviewed. Study findings were discussed and concluded with a recommendation for clinical practice and future studies. Results: Phlebitis development rate was the primary outcome measures in ten studies. Of ten studies, six provided no actual definition of phlebitis. Eight reported phlebitis incidence and/or severity, eight used a scale and two used a definition alone in assessing the development of phlebitis. This review identified five different phlebitis assessment scales. Conclusion: Although there are applicable phlebitis scales can be used for paediatric setting, Limited studies have been conducted on infusion phlebitis assessment method in chil- dren. Therefore, it is suggested that more studies and vigorous test needed to identify applicable assessment tools in paediatric setting.
    Matched MeSH terms: Electronics
  6. N. Sulaiman, B. Y. Majlis
    ASM Science Journal, 2013;7(1):27-36.
    MyJurnal
    Measurement of low magnetic field has played an important role in many electronics applications such as navigation, military, non-destructive test, traffic detection as well as medical diagnosis and treatment. The presence of magnetic field, particularly its strength and direction, can be measured using magnetometer. There are many types of magnetometers being investigated through the years and one of the prominent types is fluxgate magnetometer. The main components of fluxgate magnetometer consisting of driving coils, sensing coils and magnetic core are developed by MEMS silicon processing technology. In this paper, an investigation on physical characteristics of the three-dimensional coil structure for a micro-scaled fluxgate magnetometer is presented. The physical characteristics such as width of the coil, distance between successive coils, and gap between the top and bottom coils which would influence the magnetic energy in magnetometer is discussed. In this work, finite-element method simulations to investigate the physical characteristics of the sensing coils were carried out, where the parameter of interest is the coils’ inductance as well as the magnetic flux density. Based on the simulation results, the varying of physical characteristics of the coils had its effects particularly in coil inductance, magnetic flux density, and magnetic energy. It could also be seen that the simulated results agreed with the theoretical aspects of magnetism in a coil. From the investigations, suitable coil dimensions were proposed.
    Matched MeSH terms: Electronics
  7. Alam MJ, Ahamed E, Faruque MRI, Islam MT, Tamim AM
    PLoS One, 2019;14(11):e0224478.
    PMID: 31714917 DOI: 10.1371/journal.pone.0224478
    Interferences and accuracy problem are one of the most talked issues in today's world for sensor technology. To deal with this contention, a microstrip framework consisting of a dual mode double negative (DNG) metamaterial based bandpass filter is presented in this article. To obtain the ultimate noise reduction bandpass filter, the proposed structure has to go through a series of development process, where the characteristics of the structure are tested to the limit. This filter is built on Rogers RT-5880 substrate with a 50Ω microstrip line. To pursue the elementary mode of resonant frequency, the ground layer of the structure is kept partially filled and a gradual analysis is executed on the prospective metamaterial (resonator) unit cell. Depending on the developed unit cell, the filter is constructed and fabricated to verify the concept, concentrating on GPS (1.55GHz), Earth Exploration-Satellite (2.70GHz) and WiMAX (3.60GHz) bands of frequencies. Moreover, the structure is investigated using Nicolson-Ross-Weir (NRW) approach to justify the metamaterial characteristics, and also tested on S-parameters, current distribution, electric and magnetic fields and quality factor. Having a propitious architecture and DNG characteristics, the proposed structure is suitable for bandpass filter for GPS, Earth Exploration-Satellite and WiMAX frequency sensing applications.
    Matched MeSH terms: Electronics
  8. Zhang X, Teng SY, Loy ACM, How BS, Leong WD, Tao X
    Nanomaterials (Basel), 2020 May 26;10(6).
    PMID: 32466377 DOI: 10.3390/nano10061012
    The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry.
    Matched MeSH terms: Electronics
  9. Mahmud I, Sultana S, Rahman A, Ramayah T, Cheng Ling T
    Waste Manag Res, 2020 Dec;38(12):1438-1449.
    PMID: 32364437 DOI: 10.1177/0734242X20914753
    Each year Bangladesh produces around 400,000 metric tonnes of e-waste. E-waste accumulation is expected to increase by 20% annually. In order to facilitate e-waste recycling, it is crucial to identify the factors. In this study, building on the stimulus-organism-response framework, we develop a research model to explore the effect of information publicity, ascription of responsibility and convenience of recycling on the recycling attitude, subjective norm, personal norm and perceived behaviour control which lead to recycling intention. Data were gathered from 127 small and medium electronics store managers. The structural equation modelling technique was used to test the paths. The result suggests a significant influence of the element of stimulus (S) on the element of organism (O). The relationship between the element of organism (O) and the element of response (R) is partial. This paper contributes to the body of work dedicated to helping us better understand the recycling behaviour from the stimulus-organism-response perspective. From the viewpoint of practice, this research sheds light on some of the challenges that the implementer might face when making strategy and policy for e-waste management in Bangladesh.
    Matched MeSH terms: Electronics
  10. Yusof MYPM, Teo CH, Ng CJ
    BMC Med Ethics, 2022 Nov 21;23(1):117.
    PMID: 36414962 DOI: 10.1186/s12910-022-00849-x
    BACKGROUND: The research shows a growing trend in using an electronic platform to supplement or replace traditional paper-based informed consent processes. Instead of the traditionally written informed consent document, electronic informed consent (eConsent) may be used to assess the research subject's comprehension of the information presented. By doing so, respect for persons as one of the research ethical principles can be upheld. Furthermore, these electronic methods may reduce potential airborne infection exposures, particularly during the pandemic, thereby adhering to the beneficence and nonmaleficence principle. This scoping review aims to identify the ethics related criteria that have been included in electronic informed consent processes and to synthesize and map these criteria to research ethics principles, in order to identify the gaps, if any, in current electronic informed consent processes.

    METHODS: The search was performed based on internet search and three main databases: PubMed, SCOPUS and EBSCO. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation guideline was used to report this work.

    RESULTS: Of 34 studies that met the inclusion criteria, 242 essential original constructs were collated, and 7 concepts were derived. Digital content showed the highest percentage of collated original constructs (27%, n = 65) followed by accessibility (24%, n = 56), comprehension engagement (18%, n = 43), autonomy (14%, n = 34), confidentiality (11%, n = 25), language (5%, n = 13), and parental consent (1%, n = 2). Twenty-five new items were synthesized for eConsent criteria which may provide guidance for ethical review of research involving eConsent.

    CONCLUSION: The current study adds significant value to the corpus of knowledge in research ethics by providing ethical criteria on electronic informed consent based on evidence-based data. The new synthesized items in the criteria can be readily used as an initial guide by the IRB/REC members during a review process on electronic informed consent and useful to the future preparation of a checklist.

    Matched MeSH terms: Electronics
  11. Leong YM, Haseeb ASMA
    Materials (Basel), 2016 Jun 28;9(7).
    PMID: 28773645 DOI: 10.3390/ma9070522
    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1-0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu₃Al₂. Cu₃Al₂ resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu₆Sn₅ intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu₆Sn₅ IMC but has no significant effect on the thickness of Cu₃Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.
    Matched MeSH terms: Electronics
  12. Whba R, Su'ait MS, Tian Khoon L, Ibrahim S, Mohamed NS, Ahmad A
    Polymers (Basel), 2021 Feb 23;13(4).
    PMID: 33672185 DOI: 10.3390/polym13040660
    The exploitation of epoxidized natural rubber (ENR) in electrochemical applications is approaching its limits because of its poor thermo-mechanical properties. These properties could be improved by chemical and/or physical modification, including grafting and/or crosslinking techniques. In this work, acrylonitrile (ACN) has been successfully grafted onto ENR- 25 by a radical photopolymerization technique. The effect of (ACN to ENR) mole ratios on chemical structure and interaction, thermo-mechanical behaviour and that related to the viscoelastic properties of the polymer was investigated. The existence of the -C≡N functional group at the end-product of ACN-g-ENR is confirmed by infrared (FT-IR) and nuclear magnetic resonance (NMR) analyses. An enhanced grafting efficiency (~57%) was obtained after ACN was grafted onto the isoprene unit of ENR- 25 and showing a significant improvement in thermal stability and dielectric properties. The viscoelastic behaviour of the sample analysis showed an increase of storage modulus up to 150 × 103 MPa and the temperature of glass transition (Tg) was between -40 and 10 °C. The loss modulus, relaxation process, and tan delta were also described. Overall, the ACN-g-ENR shows a distinctive improvement in characteristics compared to ENR and can be widely used in many applications where natural rubber is used but improved thermal and mechanical properties are required. Likewise, it may also be used in electronic applications, for example, as a polymer electrolyte in batteries or supercapacitor.
    Matched MeSH terms: Electronics
  13. Mohd Pisal MH, Osman AF, Jin TS, Rahman RA, Alrashdi AA, Masa A
    Polymers (Basel), 2021 Feb 17;13(4).
    PMID: 33671304 DOI: 10.3390/polym13040600
    Carbonized natural filler can offer the production of low cost composites with an eco-friendliness value. The evolving field of electronics encourages the exploration of more functions and potential for carbonized natural filler, such as by modifying its surface chemistry. In this work, we have performed surface modification on carbonized wood fiber (CWF) prior to it being used as filler in the ethylene vinyl acetate (EVA) composite system. Zinc chloride (ZnCl2) with various contents (2 to 8 wt%) was used to surface modify the CWF and the effects of ZnCl2 composition on the surface morphology and chemistry of the CWF filler were investigated. Furthermore, the absorptive, mechanical, thermal, and electrical properties of the EVA composites containing CWF-ZnCl2 were also analyzed. SEM images indicated changes in the morphology of the CWF while FTIR analysis proved the presence of ZnCl2 functional groups in the CWF. EVA composites incorporating the CWF-ZnCl2 showed superior mechanical, thermal and electrical properties compared to the ones containing the CWF. The optimum content of ZnCl2 was found to be 6 wt%. Surface modification raised the electrical conductivity of the EVA/CWF composite through the development of conductive deposits in the porous structure of the CWF as a channel for ionic and electronic transfer between the CWF and EVA matrix.
    Matched MeSH terms: Electronics
  14. Wan Faizatul Azirah Ismayatim, Nur Dalila Mohamad Nazri, Ramiaida Darmi, Nursyuhada’ Ab Wahab, Nur Adibah Zamri, Haliza Harun, et al.
    Jurnal Inovasi Malaysia, 2020;4(1):173-192.
    MyJurnal
    This paper presents an innovation of a revolutionized self-directed English learning module entitled My Electronic Visual and Audio (MyEVO), which is designed and developed to assist language learners to conveniently acquire the required listening skills through the combination of current and state-of-the-art technology - Augmented Reality (AR) and mobile applications. Using Video Media method introduced by Gruba (1997, 2004), all listening practices in this module are based on video recording. Feedbacks gained from the users of the module indicate that learners are very excited and happy to use technology assisted module in acquiring listening skills compared to the traditional module. Educators also believe that this module cater the needs of the 21st century learners and is suitable to be used inside the classroom or as a self-directed learning module. Another key feature of this smart module highlighted by the educators is the ability of the mobile application that allows learners to engage with the e-global community known as ‘MyEVO community, where all users can share their answers and exchange opinions regarding the given questions. In addition, listening activities that were designed in this module also cover the Higher Order Thinking Skills (HOTS) needed in learning. Educators also agreed that this interactive feature does not only encourage the learners to be active in their learning but it also helps to reduce their anxiety, learning process becomes more interesting and helps to aid their understanding of the topics covered.
    Matched MeSH terms: Electronics
  15. Hassan H, Jin B, Dai S
    Environ Technol, 2021 Apr 01.
    PMID: 33749543 DOI: 10.1080/09593330.2021.1907451
    The interactions within microbial, chemical and electronic elements in microbial fuel cell (MFC) system can be crucial for its bio-electrochemical activities and overall performance. Therefore, this study explored polynomial models by response surface methodology (RSM) to better understand interactions among anode pH, cathode pH and inoculum size for optimising MFC system for generation of electricity and degradation of 2,4-dichlorophenol. A statistical central composite design by RSM was used to develop the quadratic model designs. The optimised parameters were determined and evaluated by statistical results and the best MFC systematic outcomes in terms of current generation and chlorophenol degradation. Statistical results revealed that the optimum current density of 106 mA/m2 could be achieved at anode pH 7.5, cathode pH 6.3-6.6 and 21-28% for inoculum size. Anode-cathode pHs interaction was found to positively influence the current generation through extracellular electron transfer mechanism. The phenolic degradation was found to have lower response using these three parameter interactions. Only inoculum size-cathode pH interaction appeared to be significant where the optimum predicted phenolic degradation could be attained at pH 7.6 for cathode pH and 29.6% for inoculum size.
    Matched MeSH terms: Electronics
  16. Sundararaju U, Mohammad Haniff MAS, Ker PJ, Menon PS
    Materials (Basel), 2021 Mar 29;14(7).
    PMID: 33805402 DOI: 10.3390/ma14071672
    A photodetector converts optical signals to detectable electrical signals. Lately, self-powered photodetectors have been widely studied because of their advantages in device miniaturization and low power consumption, which make them preferable in various applications, especially those related to green technology and flexible electronics. Since self-powered photodetectors do not have an external power supply at zero bias, it is important to ensure that the built-in potential in the device produces a sufficiently thick depletion region that efficiently sweeps the carriers across the junction, resulting in detectable electrical signals even at very low-optical power signals. Therefore, two-dimensional (2D) materials are explored as an alternative to silicon-based active regions in the photodetector. In addition, plasmonic effects coupled with self-powered photodetectors will further enhance light absorption and scattering, which contribute to the improvement of the device's photocurrent generation. Hence, this review focuses on the employment of 2D materials such as graphene and molybdenum disulfide (MoS2) with the insertion of hexagonal boron nitride (h-BN) and plasmonic nanoparticles. All these approaches have shown performance improvement of photodetectors for self-powering applications. A comprehensive analysis encompassing 2D material characterization, theoretical and numerical modelling, device physics, fabrication and characterization of photodetectors with graphene/MoS2 and graphene/h-BN/MoS2 heterostructures with plasmonic effect is presented with potential leads to new research opportunities.
    Matched MeSH terms: Electronics
  17. Uzir MUH, Jerin I, Al Halbusi H, Hamid ABA, Latiff ASA
    Heliyon, 2020 Dec;6(12):e05710.
    PMID: 33367128 DOI: 10.1016/j.heliyon.2020.e05710
    Customer is considered as the king in the world of business. The issue of customer satisfaction in electronics home appliances has received greater attention from academics and practitioners. In other words, customer satisfaction is a vital consideration in marketing. With the development of technology, new and innovative electronic home appliances are available in the market. Customers purchase and use the costly electronic home appliances where the satisfaction issue is an important concern. In Bangladesh, working families find the electronic home appliance very necessary. Companies offer state-of- the-art appliances for customers' household works. Therefore, the study intends to investigate the effect of product quality (PQ), quality of service (SQ) and perceived value on customer satisfaction (CS). In addition, this study also seeks this relationship shaped by customer's perceived value (CPV) as a key mechanism and interacted by social media usage. A total of 300 households were selected on a judgmental basis from Dhaka city in Bangladesh using a structured questionnaire. Collected data were CB-SEM (AMOS-v24) and SPSS. The findings showed PQ and SQ have positive effects on CS; SQ affects, but PQ does not affect CPV. CPV has a mixing mediating effect on SQ and CS relationship and PQ and CS relationship. Importantly, the positive impact of PQ, SQ and CPV is greater on customers who exhibit higher social media use. The conceptual framework was buttressed by EDT theory. The study contributed to contextual and theoretical knowledge in regards to home appliances. The practicing managers can collect an insight of customer satisfaction for their business.
    Matched MeSH terms: Electronics
  18. Ooi PC, Mohammad Haniff MAS, Mohd Razip Wee MF, Goh BT, Dee CF, Mohamed MA, et al.
    Sci Rep, 2019 May 01;9(1):6761.
    PMID: 31043694 DOI: 10.1038/s41598-019-43279-3
    In the interest of the trend towards miniaturization of electronic gadgets, this study demonstrates a high-density data storage device with a very simple three-stacking layer consisting of only one charge trapping layer. A simple solution-processed technique has been used to fabricate the tristable non-volatile memory. The three-stacking layer was constructed in between two metals to form a two-terminal metal-insulator-metal structure. The fabricated device showed a large multilevel memory hysteresis window with a measured ON/OFF current ratio of 107 that might be attributed to the high charge trapped in molybdenum disulphide (MoS2) flakes-graphene quantum dots (GQDs) heterostructure. Transmission electron microscopy was performed to examine the orientation of MoS2-GQD and mixture dispersion preparation method. The obtained electrical data was used further to speculate the possible transport mechanisms through the fabricated device by a curve fitting technique. Also, endurance cycle and retention tests were performed at room temperature to investigate the stability of the device.
    Matched MeSH terms: Electronics
  19. Mohanan M, Go YI
    Glob Chall, 2020 Apr;4(4):1900093.
    PMID: 32257382 DOI: 10.1002/gch2.201900093
    A large-scale solar photovoltaic system (LSS PV) aims to reduce the gap as Malaysia plans to shift electricity generation from conventional sources like fossil fuels to renewable energy sources. The government plans to increase renewable energy to 20% of the generation mix by 2025. The first and second round of Malaysia's LSS programme has 958 MW of PV projects to be realized by 2020. The third round of the LSS program goes for an aggregate capacity of 500 MW. Being an intermittent source of energy, the major complication is with grid integration of the LSS PV system into the national power grid. This research aims to identify an optimum power system management scheme for LSS in Malaysia to stabilize voltage fluctuations by utilizing IEEE bus configuration. The simulation and planning of network type is based on PSS/E and PVSyst. The expected outcome of this research is to develop a solution for LSS grid integration with minimal loss in the system and in accordance with electricity standards as per Malaysian grid code. Additionally, the harmony of incorporating power electronic devices for reactive power compensation is tested. This work can be stated as a reference model for utility provider in other countries having similar network and grid configuration.
    Matched MeSH terms: Electronics
  20. Chan KG, Pawi S, Ong MF, Kowitlawakul Y, Goy SC
    Nurse Educ Pract, 2020 Oct;48:102864.
    PMID: 32920369 DOI: 10.1016/j.nepr.2020.102864
    The aim of this study was to investigate factors influencing nursing students' intention to use a simulated web-application 'Integrated Nursing Education System' for practicing electronic health documentation. The cross-sectional study was conducted at a Malaysian University that provides undergraduate nursing degree program. A total of 133 undergraduate nursing students in their year 2 to year 4 of the program were recruited. They had accessed the simulated web-application as part of the teaching-learning activities during the academic year 2016/2017. Technology Acceptance Model was used to guide the study. Validated questionnaires were used to measure the students' perceived ease of use, perceived usefulness, attitudes and intention to use the application. Data collection was done at the end of the semester. Data analysis was done using SPSS (19.0) and AMOS (23.0). Perceived usefulness was the most influential factor of the students' intention to use the simulated web-application. Perceived ease of use influenced their perceived usefulness significantly. Nurse educators should explain the usefulness of the simulated web-application before assigning students to access it to practice electronic health documentation. The availability of a stable internet access and IT support is important to influence students' perceived ease of use and intention to use the application.
    Matched MeSH terms: Electronics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links