Displaying publications 41 - 60 of 533 in total

Abstract:
Sort:
  1. Ali Q, Parveen S, Yaacob H, Zaini Z, Sarbini NA
    Environ Sci Pollut Res Int, 2021 Oct;28(40):56199-56218.
    PMID: 34050516 DOI: 10.1007/s11356-021-14612-z
    Despite a profound evidence of the human unsustainable behaviours' impact on the environment, stark disparities prevail on this narrative especially in the context of the current epidemiological situation ushered by the COVID-19. The ongoing pandemic is a global public health concern due to its sagacious impacts on environmental sustainability, social responsibility and people's quality of life. This study primarily focuses on analysing the impact of COVID-19 (COV) on the environmental awareness (EA), sustainable consumption (SC) and social responsibility (SR). Additionally, we aspire to investigate the impact of demographics of generations and religion on the proposed nexus in this study. The data was collected from 700 participants of different age groups and religious backgrounds in Malaysia, and structural equation modelling (SEM) was used to analyse this data and test the hypotheses. The findings indicate that COVID-19 has a significantly positive impact on EA, SC and SR, and the generations and religiosity moderate the relationship between COVID-19 and its impact on sustainable behaviours. This study contributes to analyse the difference in the perception of EA, SC and SR among the people that eventually will stimulate the scientific reasoning among the governments, policymakers and scientists to develop a holistic framework to combat unprecedented event such as COVID-19 and ensure the authentication of sustainable environment and exceptional quality of life. The policymakers in Malaysia may use the findings of this study to inspect the social and environmental aspects of the people during the transformation events.
    Matched MeSH terms: Environment
  2. Agbede EA, Bani Y, Azman-Saini WNW, Naseem NAM
    Environ Sci Pollut Res Int, 2021 Oct;28(38):54117-54136.
    PMID: 34043174 DOI: 10.1007/s11356-021-14407-2
    Rapid increases in energy consumption and economic growth over the past three decades are considered the driving force behind rising environmental degradation, which remain a threat to people and healthy environment. This study investigates the impact of energy consumption on environmental quality in the MINT countries using a panel PMG/ARDL modelling technique, and the Granger causality test spanning from 1971 to 2017. The empirical results confirm the existence of long-run nexus among the variables employed. The results also reveal that economic growth, energy consumption and bio-capacity have a positive and statistically significant effect on environmental degradation during the long run period. We find that a 1% increase in primary energy consumption leads to 0.4172% increase in environmental deterioration in the long-run period, but it is insignificant in the short run. This implies that energy consumption deteriorates environmental quality through a negative effect of ecological footprint. The result also suggests that as MINT countries increase the use of energy to accelerate pace of economic growth, environmental quality would deteriorate through increased ecological footprints. The coefficient of the error correction term (ect) is negative and significant (- 0.2306), suggesting that ecological footprint, a measure of environmental degradation would converge to its long-run equilibrium in the MINT region by 23.06% speed of adjustment every year due to contribution of economic growth, energy consumption, urbanization and biocapacity. The Granger non-causality test results reveal a unidirectional causal relationship from economic growth, energy consumption, and urbanization to ecological footprint and from economic growth to biocapacity. The results further show bi-directional causality between biocapacity and ecological footprint as well as between biocapacity and economic growth. Moreover, urbanization causes economic growth and biocapacity Granger-causes urbanization. Based on these findings, policy implications are adequately discussed.
    Matched MeSH terms: Environment
  3. Kua KP, Lee DSWH
    Rev Environ Health, 2021 Sep 27;36(3):297-307.
    PMID: 33544536 DOI: 10.1515/reveh-2020-0169
    OBJECTIVES: Poor housing conditions have been associated with increased risks of respiratory infections. This review aims to determine whether modifying the physical environment of the home has benefits in reducing respiratory infections.

    CONTENT: We performed a systematic review and meta-analysis of the effectiveness of home environmental interventions for preventing respiratory tract infections. Ten electronic databases were searched to identify randomized controlled trials published from inception to July 31, 2020. Random-effects meta-analyses were used to assess the study outcomes. Our search identified 14 eligible studies across 12 countries, which comprised 87,428 households in total. The type of interventions on home environment included kitchen appliance and design, water supply and sanitation, house insulation, and home heating. Meta-analysis indicated a potential benefit of home environmental interventions in preventing overall respiratory tract infections (Absolute RR=0.89, 95% CI=0.78-1.01, p=0.07; Pooled adjusted RR=0.72, 95% CI=0.63-0.84, p<0.0001). Subgroup analyses depicted that home environmental interventions had no significant impact on lower respiratory tract infections, pneumonia, and severe pneumonia. A protective effect against respiratory infections was observed in high income country setting (RR=0.82, 95% CI=0.78-0.87, p<0.00001).

    SUMMARY AND OUTLOOK: Home environmental interventions have the potential to reduce morbidity of respiratory tract infections. The lack of significant impact from stand-alone housing interventions suggests that multicomponent interventions should be implemented in tandem with high-quality health systems.

    Matched MeSH terms: Environment*
  4. Sarlaki E, Kermani AM, Kianmehr MH, Asefpour Vakilian K, Hosseinzadeh-Bandbafha H, Ma NL, et al.
    Environ Pollut, 2021 Sep 15;285:117412.
    PMID: 34051566 DOI: 10.1016/j.envpol.2021.117412
    The use of agro-biowaste compost fertilizers in agriculture is beneficial from technical, financial, and environmental perspectives. Nevertheless, the physical, mechanical, and agronomical attributes of agro-biowaste compost fertilizers should be engineered to reduce their storage, handling, and utilization costs and environmental impacts. Pelletizing and drying are promising techniques to achieve these goals. In the present work, the effects of process parameters, including compost particle size/moisture content, pelletizing compression ratio, and drying air temperature/velocity, were investigated on the density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet. The Taguchi technique was applied to understand the effects of independent parameters on the output responses, while the optimal pellet properties were found using the iterative thresholding method. The soil and plant (sweet basil) response to the optimal biocompost pellet was experimentally evaluated. The farm application of the optimal pellet was also compared with the untreated agro-biowaste compost using the life cycle assessment approach to investigate the potential environmental impact mitigation of the pelletizing and drying processes. Generally, the compost moisture content was the most influential factor on the density and specific crushing energy of the dried pellet, while the moisture diffusion of the wet pellet during the drying process was significantly influenced by the pelletizing compression ratio. The density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet at the optimal conditions were 1242.49 kg/m3, 0.5054 MJ/t, and 8.2 × 10-8 m2/s, respectively. The optimal biocompost pellet could release 80% of its nitrogen content evenly over 98 days, while this value was 28 days for the chemical urea fertilizer. Besides, the optimal pellet could significantly improve the agronomical attributes of the sweet basil plant compared with the untreated biocompost. The applied strategy could collectively mitigate the weighted environmental impact of farm application of the agro-biowaste compost by more than 63%. This reduction could be attributed to the fact that the pelletizing-drying processes could avoid methane emissions from the untreated agro-biowaste compost during the farm application. Overall, pelletizing-drying of the agro-biowaste compost could be regarded as a promising strategy to improve the environmental and agronomical performance of farm application of organic biofertilizers.
    Matched MeSH terms: Environment
  5. Abdullah HSTSH, Chia PW, Omar D, Chuah TS
    Sci Rep, 2021 07 09;11(1):14227.
    PMID: 34244589 DOI: 10.1038/s41598-021-93662-2
    Herbicide resistance is a worldwide problem in weed control. This prompts researchers to look for new modes of action to slow down the evolution of herbicide-resistant weeds. This research aims to determine the herbicidal action of thiazolo[3,2-a]pyrimidines derivatives, which are well known as antihypertensive drugs. The phytotoxic effects of ten compounds were investigated using leaf disc discoloration test and seed germination bioassay. At concentrations of 125 to 250 mg/L, the 5-(3-Fluoro-phenyl)-7-methyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester (c) was highly active against Oldenlandia verticillata and Eleusine indica. At application rates of 1.25 to 2.5 kg ai/ha, formulated c demonstrated selective post-emergence and pre-emergence herbicidal activity against O. verticillata, E. indica and Cyperus iria. In the crop tolerance test, formulated c outperformed the commercial herbicide diuron, with aerobic Oryza sativa being the most tolerant, followed by Zea mays, and Brassica rapa. The addition of calcium chloride partially nullified compound c's inhibitory effects on weed shoot growth, indicating that it has potential as a calcium channel blocker. Compound c acted by triggering electrolyte leakage without affecting photosystem II. These findings imply that c could be explored further as a template for developing new herbicides with novel modes of action.
    Matched MeSH terms: Environment
  6. Cromwell EA, Osborne JCP, Unnasch TR, Basáñez MG, Gass KM, Barbre KA, et al.
    PLoS Negl Trop Dis, 2021 07;15(7):e0008824.
    PMID: 34319976 DOI: 10.1371/journal.pntd.0008824
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0·71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50·2% exceed this threshold for suitability in at least one 5 × 5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify.
    Matched MeSH terms: Environment
  7. Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al.
    Sci Rep, 2021 Jun 03;11(1):11810.
    PMID: 34083582 DOI: 10.1038/s41598-021-90893-1
    Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
    Matched MeSH terms: Environment*
  8. Ma X, Cai L, Chen L, Fei B, Lu J, Xia C, et al.
    J Environ Manage, 2021 May 15;286:112190.
    PMID: 33636623 DOI: 10.1016/j.jenvman.2021.112190
    As an abundant and fast-growing biomass, bamboo can be used as construction materials owing to its desirable physical and mechanical properties, environmentally friendly features, and alternative to replace toxic and hazardous wastes in industrial processing. In this study, grid material made from bamboo (termed 'bamboo grid') was developed and compared to commercially used polyvinyl chloride (PVC) as packing material in cooling towers; PVC packing has drawbacks such as fouling, deposit buildup, low durability, and is harmful to environments. The cooling capacity, energy efficiency and environmental impact of bamboo grid packing were evaluated via life cycle assessment (LCA), particularly the cumulative energy demand (CED) and the Building for Environmental and Economic Sustainability (BEES). Although the thermal performance of the PVC packing was found higher than that of the bamboo grid packing, the bamboo grid packing showed improved resistance characteristic, recording a total saving of 529.2 tons of standard coal during a six-month field test in a real thermal power generation plant. LCA results revealed that the utilization of bamboo-grid packing to replace PVC packing in cooling towers reduced total CED from 3420 MJ to 561 MJ per functional unit, achieving 6 times reduction. A desirable reduction ranging from 1.5 to 10.5 times was also recorded for the BEES indices. This LCA comparison analysis confirmed the improvement of energy efficiency and reduction of environmental impact by using the bamboo grid to replace PVC as packing material in cooling towers. The major environmental impact (BEES) indices (e.g., the total Global warming potential, Acidification, Eutrophication and Smog) were reduced by 1.5-10.5 times via the use of bamboo grid. The results demonstrate that bamboo grid packing is a good alternative to replace existing grid packing materials such as concrete and PVC that are harmful to human health and environments.
    Matched MeSH terms: Environment
  9. Lehtimaki S, Martic J, Wahl B, Foster KT, Schwalbe N
    JMIR Ment Health, 2021 Apr 29;8(4):e25847.
    PMID: 33913817 DOI: 10.2196/25847
    BACKGROUND: An estimated 1 in 5 adolescents experience a mental health disorder each year; yet because of barriers to accessing and seeking care, most remain undiagnosed and untreated. Furthermore, the early emergence of psychopathology contributes to a lifelong course of challenges across a broad set of functional domains, so addressing this early in the life course is essential. With increasing digital connectivity, including in low- and middle-income countries, digital health technologies are considered promising for addressing mental health among adolescents and young people. In recent years, a growing number of digital health interventions, including more than 2 million web-based mental health apps, have been developed to address a range of mental health issues.

    OBJECTIVE: This review aims to synthesize the current evidence on digital health interventions targeting adolescents and young people with mental health conditions, aged between 10-24 years, with a focus on effectiveness, cost-effectiveness, and generalizability to low-resource settings (eg, low- and middle-income countries).

    METHODS: We searched MEDLINE, PubMed, PsycINFO, and Cochrane databases between January 2010 and June 2020 for systematic reviews and meta-analyses on digital mental health interventions targeting adolescents and young people aged between 10-24 years. Two authors independently screened the studies, extracted data, and assessed the quality of the reviews.

    RESULTS: In this systematic overview, we included 18 systematic reviews and meta-analyses. We found evidence on the effectiveness of computerized cognitive behavioral therapy on anxiety and depression, whereas the effectiveness of other digital mental health interventions remains inconclusive. Interventions with an in-person element with a professional, peer, or parent were associated with greater effectiveness, adherence, and lower dropout than fully automatized or self-administered interventions. Despite the proposed utility of digital interventions for increasing accessibility of treatment across settings, no study has reported sample-specific metrics of social context (eg, socioeconomic background) or focused on low-resource settings.

    CONCLUSIONS: Although digital interventions for mental health can be effective for both supplementing and supplanting traditional mental health treatment, only a small proportion of existing digital platforms are evidence based. Furthermore, their cost-effectiveness and effectiveness, including in low- and middle-income countries, have been understudied. Widespread adoption and scale-up of digital mental health interventions, especially in settings with limited resources for health, will require more rigorous and consistent demonstrations of effectiveness and cost-effectiveness vis-à-vis the type of service provided, target population, and the current standard of care.

    Matched MeSH terms: Social Environment
  10. Collins J, Maughan RJ, Gleeson M, Bilsborough J, Jeukendrup A, Morton JP, et al.
    Br J Sports Med, 2021 Apr;55(8):416.
    PMID: 33097528 DOI: 10.1136/bjsports-2019-101961
    Football is a global game which is constantly evolving, showing substantial increases in physical and technical demands. Nutrition plays a valuable integrated role in optimising performance of elite players during training and match-play, and maintaining their overall health throughout the season. An evidence-based approach to nutrition emphasising, a 'food first' philosophy (ie, food over supplements), is fundamental to ensure effective player support. This requires relevant scientific evidence to be applied according to the constraints of what is practical and feasible in the football setting. The science underpinning sports nutrition is evolving fast, and practitioners must be alert to new developments. In response to these developments, the Union of European Football Associations (UEFA) has gathered experts in applied sports nutrition research as well as practitioners working with elite football clubs and national associations/federations to issue an expert statement on a range of topics relevant to elite football nutrition: (1) match day nutrition, (2) training day nutrition, (3) body composition, (4) stressful environments and travel, (5) cultural diversity and dietary considerations, (6) dietary supplements, (7) rehabilitation, (8) referees and (9) junior high-level players. The expert group provide a narrative synthesis of the scientific background relating to these topics based on their knowledge and experience of the scientific research literature, as well as practical experience of applying knowledge within an elite sports setting. Our intention is to provide readers with content to help drive their own practical recommendations. In addition, to provide guidance to applied researchers where to focus future efforts.
    Matched MeSH terms: Environment
  11. Balasbaneh AT, Yeoh D, Juki MI, Ibrahim MHW, Abidin ARZ
    PMID: 33712956 DOI: 10.1007/s11356-021-13190-4
    This research aims to assess the sustainability of the most common earth-retaining walls (Gravity Walls and Cantilever Walls) in terms of environmental impacts, economic issues, and their combination. Gravity walls observed in this study consist of Gabion Wall, Crib Wall, and Rubble Masonry Wall, while Cantilever Walls include Reinforced Concrete Wall. Six different criteria were taken into account, including global warming potential, fossil depletion potential, eutrophication potential, acidification potential, human toxicity potential, and cost. To achieve the aim of this study, life cycle assessments, life cycle costs, and multi-criteria decision-making methods were implemented. The results showed that the most environmental-friendly option among all alternatives was the Gabion Wall, followed by the Rubble Masonry Wall. However, in terms of economic aspects, the Cantilever Concrete Wall was the best option, costing about 17% less than the Gabion Wall. On the other hand, the results of multi-criteria decision-making showed that the Gabion Wall was the most sustainable choice. This study addressed the research gap by carrying out a sustainability assessment of different retaining walls while considering cost and environmental impacts at the same time.
    Matched MeSH terms: Environment
  12. Dousin O, Collins N, Bartram T, Stanton P
    J Adv Nurs, 2021 Mar;77(3):1478-1489.
    PMID: 33314305 DOI: 10.1111/jan.14724
    AIMS: To examine the mediating role of employee well-being on the relationship between work-life balance practices, the need for achievement and intention to leave among nurses in Malaysia.

    BACKGROUND: Work-life balance practices are associated with employee perceptions of the need for achievement and well-being which subsequently influence their intention to leave the organization. This study contributes new knowledge to nursing studies on work-life balance in an Asian and Islamic society where the expectations for women are to focus on family rather than career.

    DESIGN: A cross-sectional, explanatory mixed methodology.

    METHODS: This is a two-phase study conducted between 2015-2017 with 401 nurses in East Malaysia. In Phase 1, researchers surveyed 379 nurses to test eight hypotheses and in Phase 2 researchers interviewed 22 nurses to explore the results of Phase 1.

    RESULTS: Phase 1 revealed job satisfaction mediates the relationship between work-life balance practices (e.g. flexibility and choice in working hours, supportive supervision), financial success, and intention to leave. However, life satisfaction and money as a motivator did not mediate such relationships. Phase 2 identified four important factors that cast light on survey results: working conditions of Malaysian nurses; inadequate compensation in the public healthcare sector; team-based practices; and pressure on senior nurses in both administrative and clinical roles.

    CONCLUSION: This is one of the first studies to investigate work-life balance issues among nurses in Malaysia. Outcomes of this study extend the debates on work-life balance and employee well-being in an Asian Islamic social context.

    IMPACT: The use of flexible working arrangements and collectivist teamwork approaches, improving compensation and employment benefits and eliminating the 'time-based job promotion' policy may help to mitigate work-life balance issues and intention to leave among nurses in Malaysia.

    Matched MeSH terms: Social Environment
  13. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Environment
  14. Cain KL, Salmon J, Conway TL, Cerin E, Hinckson E, Mitáš J, et al.
    BMJ Open, 2021 01 18;11(1):e046636.
    PMID: 33462102 DOI: 10.1136/bmjopen-2020-046636
    INTRODUCTION: Only international studies can provide the full variability of built environments and accurately estimate effect sizes of relations between contrasting environments and health-related outcomes. The aims of the International Physical Activity and Environment Study of Adolescents (IPEN Adolescent) are to estimate the strength, shape and generalisability of associations of the community environment (geographic information systems (GIS)-based and self-reported) with physical activity and sedentary behaviour (accelerometer-measured and self-reported) and weight status (normal/overweight/obese).

    METHODS AND ANALYSIS: The IPEN Adolescent observational, cross-sectional, multicountry study involves recruiting adolescent participants (ages 11-19 years) and one parent/guardian from neighbourhoods selected to ensure wide variations in walkability and socioeconomic status using common protocols and measures. Fifteen geographically, economically and culturally diverse countries, from six continents, participated: Australia, Bangladesh, Belgium, Brazil, Czech Republic, Denmark, Hong Kong SAR, India, Israel, Malaysia, New Zealand, Nigeria, Portugal, Spain and USA. Countries provided survey and accelerometer data (15 countries), GIS data (11), global positioning system data (10), and pedestrian environment audit data (8). A sample of n=6950 (52.6% female; mean age=14.5, SD=1.7) adolescents provided survey data, n=4852 had 4 or more 8+ hours valid days of accelerometer data, and n=5473 had GIS measures. Physical activity and sedentary behaviour were measured by waist-worn ActiGraph accelerometers and self-reports, and body mass index was used to categorise weight status.

    ETHICS AND DISSEMINATION: Ethical approval was received from each study site's Institutional Review Board for their in-country studies. Informed assent by adolescents and consent by parents was obtained for all participants. No personally identifiable information was transferred to the IPEN coordinating centre for pooled datasets. Results will be communicated through standard scientific channels and findings used to advance the science of environmental correlates of physical activity, sedentary behaviour and weight status, with the ultimate goal to stimulate and guide actions to create more activity-supportive environments internationally.

    Matched MeSH terms: Environment Design
  15. Irfan M, Ahmad M, Fareed Z, Iqbal N, Sharif A, Wu H
    PMID: 33448868 DOI: 10.1080/09603123.2021.1874888
    The aim of this study is to identify and highlight the positive and negative indirect environmental impacts of COVID-19, with a particular focus on the most affected economies (USA, China, Spain, and Italy). In this respect, the empirical and theoretical dimensions of the contents of those impacts are analyzed. Research findings reveal a significant relationship between contingency actions and positive indirect impacts such as air quality improvements, clean beaches, and the decline in environmental noise. Besides, negative indirect impacts also exist, such as the rise in waste level and curtailment in recycling, further threatening the physical spaces (land and water), besides air. It is expected that global businesses will revive in the near future (though slowly), but the reduction in greenhouse gas emissions during this short time span is not a sustainable way of environmental mitigation. Thus, long-term mitigation policies should be strengthened to cope with the undesirable deterioration of the environment. Research findings provide an up-to-date glimpse of the pandemic from the perspectives of current and future indirect environmental impacts and the post-pandemic situation. Finally, it is suggested to invent and prepare action plans to induce a sustainable economic and environmental future in the post-pandemic world scenario.
    Matched MeSH terms: Environment
  16. Sanusi MSM, Ramli AT, Hashim S, Lee MH
    Ecotoxicol Environ Saf, 2021 Jan 15;208:111727.
    PMID: 33396058 DOI: 10.1016/j.ecoenv.2020.111727
    Continuous depletion in tin productions has led to a newly emerging industry that is a tin by-product (amang) processing industry to harness mega tons of tin by-products produced in the past. Amang composed of profitable multi-heavy minerals and rare-earth elements. With poorly established safety and health practices in operating plant, amang poses extremely high radioactivity problem associated with high occupational ionizing radiation exposures to workers and continuously impacting the local environment with radioactive contamination from industrial effluent and solid waste into lithosphere and water bodies. The radioactivity level of 238U and 232Th series in the mineral varies from few hundreds up to ~200,000 and ~400,000 Bq kg-1 respectively and are potential to yield more than ~ 30,000 nGy h-1 of gamma (γ) radiation exposure to plant workers. The study found out that for 8 h of work time, a worker is estimated to receive an average effective dose of 0.1 mSv per day from external γ radiation source with a maximum up to 2 mSv per day for extreme exposure situation. Interferences of different exposure routes for examples inhalation of equivalent equilibrium concentration (ECC) of 222Rn and 220Rn progenies and airborne long-lived α particles from the dusty working environment could pose a higher total effective dose as much as 5 mSv per day and 115 mSv per year. The value is 5 times higher than the annual dose limit for designated radiation worker (20 mSv) in Peninsular Malaysia. The study found that 41% of the total received an effective dose received by a worker is contributed by 222Rn, 32% of airborne particulates and dust, 23% from external γ exposure and 4% from 220Rn. Based on radioecological risk assessment, the study found out that the aquatic environment is the highly exposed group to ionizing radiation from industrial effluent discharge and sand residues. With the impotent establishment of radiation protection in the industry, plus the country newly introduced long-term plan to revive tin mining as well as its accessory amang mineral, it is necessary for the government to harmonize current regulation to improve the worker safety and health as well as sustaining local environment.
    Matched MeSH terms: Environment
  17. Ramakreshnan L, Aghamohammadi N, Fong CS, Sulaiman NM
    Environ Sci Pollut Res Int, 2021 Jan;28(2):1357-1369.
    PMID: 33094458 DOI: 10.1007/s11356-020-11305-x
    This study quantitatively investigated the scientific progress of walkability research landscape and its future prospects using bibliometric indicators to highlight the research hotspots. The results accentuated multifaceted nature of walkability research landscape with a strong association towards public health disciplines. Keyword co-occurrence analysis emphasized that majority of the walkability studies centred on the interactions between walking and other three main factors such as built environment attributes, transportation and obesity. Based on the identified research hotspots, a brief state-of-the-art review of walkability studies was presented. Future prospects based on the unexplored research gaps within the hotspots were also discussed. High correlation (r = 0.99, p 
    Matched MeSH terms: Environment Design*
  18. Zheyuan C, Rahman MA, Tao H, Liu Y, Pengxuan D, Yaseen ZM
    Work, 2021;68(3):825-834.
    PMID: 33612525 DOI: 10.3233/WOR-203416
    BACKGROUND: The increasing use of robotics in the work of co-workers poses some new problems in terms of occupational safety and health. In the workplace, industrial robots are being used increasingly. During operations such as repairs, unmanageable, adjustment, and set-up, robots can cause serious and fatal injuries to workers. Collaborative robotics recently plays a rising role in the manufacturing filed, warehouses, mining agriculture, and much more in modern industrial environments. This development advances with many benefits, like higher efficiency, increased productivity, and new challenges like new hazards and risks from the elimination of human and robotic barriers.

    OBJECTIVES: In this paper, the Advanced Human-Robot Collaboration Model (AHRCM) approach is to enhance the risk assessment and to make the workplace involving security robots. The robots use perception cameras and generate scene diagrams for semantic depictions of their environment. Furthermore, Artificial Intelligence (AI) and Information and Communication Technology (ICT) have utilized to develop a highly protected security robot based risk management system in the workplace.

    RESULTS: The experimental results show that the proposed AHRCM method achieves high performance in human-robot mutual adaption and reduce the risk.

    CONCLUSION: Through an experiment in the field of human subjects, demonstrated that policies based on the proposed model improved the efficiency of the human-robot team significantly compared with policies assuming complete human-robot adaptation.

    Matched MeSH terms: Social Environment
  19. WAN NAQIYAH WAN ABDUL MAJID, ROHANA AHMAD
    MyJurnal
    Keusahawanan sering dianggap sebagai subjek yang lebih cenderung kepada pelajar dalam bidang perniagaan tetapi tidak untuk pelajar yang mempunyai pelbagai kemahiran yang terlibat dalam bidang teknikal. Namun, ini adalah satu tanggapan yang tidak seharusnya wujud kerana Malaysia seharusnya perlu mengenal pasti kesedaran keusahawanan dalam bidang teknikal. Pada masa kini, kesedaran keusahawanan dalam bidang teknikal tertentu adalah kurang lantaran program keusahawanan lazimnya lebih tertumpu kepada pelajar InstitusiPengajian Tinggi (IPT). Misalnya, Pembangunan Keusahawanan Bumiputera adalah lebih tertumpu kepada golongan siswazah IPT, belia dan wanita. Dasar Pembangunan Keusahawanan IPT juga diperkenalkan agar modal insan dengan daya pemikiran, atribut dan nilai keusahawanan dalam kalangan IPT tempatan dapat dilahirkan. Tujuan kajian ini dijalankan adalah untuk mengenal pasti tahap kesedaran keusahawanan dalam kalangan pelajar Institut Latihan Perindustrian (ILP) di Terengganu berhubung dengan faktor keusahawanan dari aspek individu usahawan yang berbeza serta struktur dan persekitaran perniagaan. Seterusnya, mengkaji hubungan antara kesedaran keusahawanan dengan pembolehubah tidak bersandar lain yang berkait dengan kajian seperti ciri keusahawanan dan cabaran keusahawanan. Kaedah kuantitatif telah digunakan dan borang soal selidik diedarkan kepada 280 orang pelajar. Hasil analisis regresi berganda menunjukkan bahawa cabaran keusahawanan merangkumi sikap dan minat, kemahiran keusahawanan serta pendidikan dan pengetahuan keusahawanan merupakan elemen paling signifikan yang mempengaruhi kesedaran keusahawanan dalam kalangan pelajar berkemahiran diILP untuk menjadi seorang usahawan. Oleh itu, adalah sangat penting bagi kerajaan Malaysiauntuk memberi perhatian terhadap cabaran yang dihadapi oleh para pelajar ini dan mengambil tindakan terhadap segala kemungkinan yang boleh mempengaruhi atau memberi kesan kepada minat pelajar terhadap keusahawanan pada masa akan datang.
    Matched MeSH terms: Environment
  20. Ramakreshnan L, Fong CS, Sulaiman NM, Aghamohammadi N
    Sci Total Environ, 2020 Dec 20;749:141457.
    PMID: 33370890 DOI: 10.1016/j.scitotenv.2020.141457
    Recognizing and mainstreaming pertinent walkability elements into the university campus planning is crucial to materialise green mandates of the campus, while enhancing social and economic sustainability. In one of such attempts, this transverse study investigated the walking motivations, built environment factors associated with campus walkability and the relative importance of the studied built environment factors in reference to the sociodemographic attributes from the viewpoint of the campus community in a tropical university campus in Kuala Lumpur, Malaysia. An online survey using a structured questionnaire was conducted between May and September 2019. The built environment factors associated with campus walkability were expressed and ranked as adjusted scores (AS). Meanwhile, multivariable logistic regression was deployed to examine the relative importance of the studied built environment factors in reference to the sociodemographic attributes of the campus community. Among 504 total responses acquired, proximity between complementary land uses (90.7%) was reported as the main motivation for walking. On the other hand, street connectivity and accessibility (AS: 97.62%) was described as the most opted built environment factor, followed by land use (AS: 96.76%), pedestrian infrastructure (AS: 94.25%), walking experience (AS: 87.07%), traffic safety (AS: 85.28%) and campus neighbourhood (AS: 59.62%), respectively. Among the sociodemographic attributes, no regular monthly income (OR = 3.162; 95% CI = 1.165-8.379; p 
    Matched MeSH terms: Environment Design
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links