Displaying publications 41 - 60 of 74 in total

Abstract:
Sort:
  1. Ojukwu M, Ofoedu C, Seow EK, Easa AM
    J Sci Food Agric, 2021 Jul;101(9):3732-3741.
    PMID: 33301191 DOI: 10.1002/jsfa.11004
    BACKGROUND: Rice flour does not contain gluten and lacks cohesion and extensibility, which is responsible for the poor texture of rice noodles. Different technologies have been used to mitigate this challenge, including hydrothermal treatments of rice flour, direct addition of protein in noodles, use of additives such as hydrocolloids and alginates, and microbial transglutaminase (MTG). Recently, the inclusion of soy protein isolate (SPI), MTG, and glucono-δ-lactone (GDL) in the rice noodles system yielded rice noodles with improved texture and more compact microstructure, hence the need to optimize the addition of SPI, MTG, and GDL to make quality rice noodles.

    RESULTS: Numerical optimization showed that rice noodles prepared with SPI, 68.32 (g kg-1 of rice flour), MTG, 5.06 (g kg-1 of rice flour) and GDL, 5.0 (g kg-1 of rice flour) gave the best response variables; hardness (53.19 N), springiness (0.76), chewiness (20.28 J), tensile strength (60.35 kPa), and cooking time (5.15 min). The pH, sensory, and microstructure results showed that the optimized rice noodles had a more compact microstructure with fewer hollows, optimum pH for MTG action, and overall sensory panelists also showed the highest preference for the optimized formulation, compared to other samples selected from the numerical optimization and desirability tests.

    CONCLUSION: Optimization of the levels of SPI, MTG, and GDL yielded quality noodles with improved textural, mechanical, sensory, and microstructural properties. This was partly due to the favourable pH value of the optimized noodles that provided the most suitable conditions for MTG crosslinking and balanced electrostatic interaction of proteins. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Food Handling/methods*
  2. Sharifah Zahhura SA, Nilan P, Germov J
    Malays J Nutr, 2012 Aug;18(2):243-53.
    PMID: 24575670 MyJurnal
    INTRODUCTION: A qualitative comparative case study was conducted to compare and contrast food taboos and avoidance practices during pregnancy among Orang Asli or indigenous Temiar women in four distinct locations that represent different lifestyle experiences and cultural practices.
    METHODS: Through snowballing sampling, a total of 38 participants took part in five focus groups: one group each in Pos Simpor and Pos Tohoi in Kelantan state, one group in Batu 12, Gombak in Selangor state, and two groups in a regroupment scheme (RPSOA) in Kuala Betis, Kelantan. All the transcripts were coded, categorised and 'thematised' using the software package for handling qualitative data, NVivo 8.
    RESULTS: Variant food prohibitions were recorded among the Temiar women residing in different locations, which differ in food sources and ways of obtaining food. Consumption of seventeen types of food items was prohibited for a pregnant Temiar woman and her husband during the prenatal period. Fear of difficulties during labour and delivery, convulsions or sawan, harming the baby (such as foetal malformation), and twin pregnancy seemed to trigger many food proscriptions for the pregnant Temiar women, most of which have been passed on from generation to generation.
    CONCLUSION: The findings of this study confirm that beliefs about food restrictions are strong among those Temiar living a traditional lifestyle. However, those who have adopted a more modern lifestyle also preserve them to some extent.pregnancy among Orang Asli or indigenous Temiar women in four distinct locations that represent different lifestyle experiences and cultural practices.
    Matched MeSH terms: Food Handling/methods
  3. Md Zain SN, Bennett R, Flint S
    J Food Sci, 2017 Mar;82(3):751-756.
    PMID: 28135405 DOI: 10.1111/1750-3841.13633
    The objective of this study was to determine the possible source of predominant Bacillus licheniformis contamination in a whey protein concentrate (WPC) 80 manufacturing plant. Traditionally, microbial contaminants of WPC were believed to grow on the membrane surfaces of the ultrafiltration plant as this represents the largest surface area in the plant. Changes from hot to cold ultrafiltration have reduced the growth potential for bacteria on the membrane surfaces. Our recent studies of WPCs have shown the predominant microflora B. licheniformis would not grow in the membrane plant because of the low temperature (10 °C) and must be growing elsewhere. Contamination of dairy products is mostly due to bacteria being released from biofilm in the processing plant rather from the farm itself. Three different reconstituted WPC media at 1%, 5%, and 20% were used for biofilm growth and our results showed that B. licheniformis formed the best biofilm at 1% (low solids). Further investigations were done using 3 different media; tryptic soy broth, 1% reconstituted WPC80, and 1% reconstituted WPC80 enriched with lactose and minerals to examine biofilm growth of B. licheniformis on stainless steel. Thirty-three B. licheniformis isolates varied in their ability to form biofilm on stainless steel with stronger biofilm in the presence of minerals. The source of biofilms of thermo-resistant bacteria such as B. licheniformis is believed to be before the ultrafiltration zone represented by the 1% WPC with lactose and minerals where the whey protein concentration is about 0.6%.
    Matched MeSH terms: Food Handling/methods*
  4. Lau HLN, Tee YS, Chan MK, Teh SS
    J Oleo Sci, 2022;71(2):177-185.
    PMID: 35110462 DOI: 10.5650/jos.ess21256
    Phosphoric acid is used in the refining of palm oil for the removal of phosphatides. The high concentration of phosphorus in solvent extracted palm-pressed mesocarp fiber oil hinders palm oil mills to recover this phytonutrients-rich residual oil in pressed fiber which typically contains 0.1 to 0.2% of total oil yield. This study aimed to refine the palm-pressed mesocarp fiber oil and determine the optimum dosage of phosphoric acid for acid-degumming of palm-pressed mesocarp fiber oil while retaining its phytonutrients. The refining process was carried out with combination of wet degumming, acid degumming, neutralisation, bleaching and deodorization. The optimum dose of phosphoric acid was identified as 0.05 wt.% by incorporating the wet degumming process. The refined palm-pressed mesocarp fiber oil showed a reduction in phosphorus content by 97% (from 901 ppm to 20 ppm) and 97% free fatty acid content removal (from 6.36% to 0.17%), while the Deterioration of Bleachability Index increased from 1.76 to 2.48, which showed an increment of 41%. The refined oil retained the key phytonutrients such as carotenoids (1,150 ppm) and vitamin E (1,540 ppm) that can be further developed into high-value products. The oil meets the quality specification of refined, bleached, and deodorized palm oil while preserving the heat-sensitive phytonutrients, which in turn provides a new resource of nutritious oil.
    Matched MeSH terms: Food Handling/methods*
  5. Ramli NAS, Mohd Noor MA, Musa H, Ghazali R
    J Sci Food Agric, 2018 Jul;98(9):3351-3362.
    PMID: 29250790 DOI: 10.1002/jsfa.8839
    BACKGROUND: Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated.

    RESULTS: In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P  0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature.

    CONCLUSION: The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Food Handling/methods
  6. Cheong AM, Tan CP, Nyam KL
    Food Sci Technol Int, 2018 Jul;24(5):404-413.
    PMID: 29466882 DOI: 10.1177/1082013218760882
    Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p food and nutraceutical industries.
    Matched MeSH terms: Food Handling/methods
  7. Chong KY, Chin NL, Yusof YA
    Food Sci Technol Int, 2017 Oct;23(7):608-622.
    PMID: 28614964 DOI: 10.1177/1082013217713331
    The effects of thermosonication on the quality of a stingless bee honey, the Kelulut, were studied using processing temperature from 45 to 90 ℃ and processing time from 30 to 120 minutes. Physicochemical properties including water activity, moisture content, color intensity, viscosity, hydroxymethylfurfural content, total phenolic content, and radical scavenging activity were determined. Thermosonication reduced the water activity and moisture content by 7.9% and 16.6%, respectively, compared to 3.5% and 6.9% for conventional heating. For thermosonicated honey, color intensity increased by 68.2%, viscosity increased by 275.0%, total phenolic content increased by 58.1%, and radical scavenging activity increased by 63.0% when compared to its raw form. The increase of hydroxymethylfurfural to 62.46 mg/kg was still within the limits of international standards. Optimized thermosonication conditions using response surface methodology were predicted at 90 ℃ for 111 minutes. Thermosonication was revealed as an effective alternative technique for honey processing.
    Matched MeSH terms: Food Handling/methods*
  8. Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A
    Molecules, 2011 Feb 18;16(2):1710-38.
    PMID: 21336241 DOI: 10.3390/molecules16021710
    Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as 'functional food ingredients'. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.
    Matched MeSH terms: Food Handling/methods
  9. Bidawid S, Malik N, Adegbunrin O, Sattar SA, Farber JM
    J Food Prot, 2004 Jan;67(1):103-9.
    PMID: 14717359
    While there is good epidemiological evidence for foods as vehicles for norovirus transmission, the precise means of spread and its control remain unknown. The feline calicivirus was used as a surrogate for noroviruses to study infectious virus transfer between hands and selected types of foods and environmental surfaces. Assessment of the potential of selected topicals in interrupting such virus transfer was also made. Ten microliters of inoculum of feline calicivirus deposited onto each fingerpad of adult subjects was allowed to air dry and the contaminated area on individual fingerpads was pressed (10 s at a pressure of 0.2 to 0.4 kg/cm2) onto 1-cm-diameter disks of ham, lettuce, or brushed stainless steel. The virus remaining on the donor and that transferred to the recipient surfaces was eluted and plaque assayed. Virus transfer to clean hands from experimentally contaminated disks of ham, lettuce, and stainless steel was also tested. Nearly 46 +/- 20.3, 18 +/- 5.7, and 13 +/- 3.6% of infectious virus was transferred from contaminated fingerpads to ham, lettuce, and metal disks, respectively. In contrast, approximately 6 +/- 1.8, 14 +/- 3.5, and 7 +/- 1.9% virus transfer occurred, respectively, from ham, lettuce, and metal disks to hands. One-way analysis of variance test showed that pretreatment (washing) of the fingerpads either with water or with both topical agent and water significantly (P < 0.05) reduced virus transfer to < or = 0.9%, as compared with < or = 2.3 and < or = 3.4% transfer following treatments with either 75% (vol/vol) ethanol or a commercial hand gel containing 62% ethanol, respectively. Despite wide variations in virus transfer among the targeted items used, intervention agents tested reduced virus transfer significantly (P < 0.05) when compared with that without such treatments (71 +/- 8.9%). These findings should help in a better assessment of the potential for cross-contamination of foods during handling and also assist in developing more effective approaches to foodborne spread of norovirus infections.
    Matched MeSH terms: Food Handling/methods*
  10. Tao Y, Li D, Siong Chai W, Show PL, Yang X, Manickam S, et al.
    Ultrason Sonochem, 2021 Apr;72:105410.
    PMID: 33341708 DOI: 10.1016/j.ultsonch.2020.105410
    This study aimed at investigating the performances of air drying of blackberries assisted by airborne ultrasound and contact ultrasound. The drying experiments were conducted in a self-designed dryer coupled with a 20-kHz ultrasound probe. A numerical model for unsteady heat and mass transfer considering temperature dependent diffusivity, shrinkage pattern and input ultrasonic energies were applied to explore the drying mechanism, while the energy consumption and quality were analyzed experimentally. Generally, both airborne ultrasound and contact ultrasound accelerated the drying process, reduced the energy consumption and enhanced the retentions of blackberry anthocyanins and organic acids in comparison to air drying alone. At the same input ultrasound intensity level, blackberries received more ultrasound energies under contact sonication (0.299 W) than airborne sonication (0.245 W), thus avoiding the attenuation of ultrasonic energies by air. The modeling results revealed that contact ultrasound was more capable than airborne ultrasound to intensify the inner moisture diffusion and heat conduction, as well as surface exchange of heat and moisture with air. During air drying, contact ultrasound treatment eliminated the gradients of temperature and moisture inside blackberry easier than airborne ultrasound, leading to more homogenous distributions. Moreover, the total energy consumption under air drying with contact ultrasound assistance was 27.0% lower than that with airborne ultrasound assistance. Besides, blackberries dehydrated by contact ultrasound contained more anthocyanins and organic acids than those dried by airborne ultrasound, implying a higher quality. Overall, direct contact sonication can well benefit blackberry drying in both energy and quality aspects.
    Matched MeSH terms: Food Handling/methods*
  11. Karthivashan G, Tangestani Fard M, Arulselvan P, Abas F, Fakurazi S
    J Food Sci, 2013 Sep;78(9):C1368-75.
    PMID: 24024688 DOI: 10.1111/1750-3841.12233
    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations.
    Matched MeSH terms: Food Handling/methods
  12. Pandiyan K, Tiwari R, Rana S, Arora A, Singh S, Saxena AK, et al.
    World J Microbiol Biotechnol, 2014 Jan;30(1):55-64.
    PMID: 23824667 DOI: 10.1007/s11274-013-1422-1
    The potential of Parthenium sp. as a feedstock for enzymatic saccharification was investigated by using chemical and biological pretreatment methods. Mainly chemical pretreatments (acid and alkali) were compared with biological pretreatment with lignolytic fungi Marasmiellus palmivorus PK-27. Structural and chemical changes as well as crystallinity of cellulose were examined through scanning electron microscopy, fourier transform infra red and X-ray diffraction analysis, respectively after pretreatment. Total reducing sugar released during enzymatic saccharification of pretreated substrates was also evaluated. Among the pretreatment methods, alkali (1% NaOH) treated substrate showed high recovery of acid perceptible polymerised lignin (7.53 ± 0.5 mg/g) and significantly higher amount of reducing sugar (513.1 ± 41.0 mg/gds) compared to uninoculated Parthenium (163.4 ± 21.2) after 48 h of hydrolysis. This is the first report of lignolytic enzyme production from M. palmivorus, prevalent in oil palm plantations in Malaysia and its application in biological delignification of Parthenium sp. Alkali (1% NaOH) treatment proves to be the suitable method of pretreatment for lignin recovery and enhanced yield of reducing sugar which may be used for bioethanol production from Parthenium sp.
    Matched MeSH terms: Food Handling/methods*
  13. Jalili M, Jinap S
    PMID: 22971039 DOI: 10.1080/19440049.2012.719640
    A simple method for the reduction of aflatoxins B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁), G₂ (AFG₂) and ochratoxin A (OTA) in white pepper was studied. Response surface methodology (RSM) was applied to determine the effect of four variables, which included time (20-60 min), temperature (30-70°C), calcium hydroxide (Ca(OH)₂) (0-1%) and hydrogen peroxide (H₂O₂) (1-3%) during the washing step of white pepper. The efficacy of the method was evaluated by the determination of mycotoxins by HPLC with fluorescence detection (FD). Statistical analysis showed that the experimental data could be adequately fitted into a second-order polynomial model, with a multiple regression coefficient (R²) in the range of 0.805-0.907 for AFG₂ and AFG₁, respectively. The optimal condition was 57.8 min, 62.0°C, of 0.6% (w/v) and 2.8% (v/v) for time, temperature, Ca(OH)₂ and H₂O₂ respectively. By applying the optimum condition, the mycotoxins reduction was found to be in the range of 68.5-100% for AFB₂ and AFG₁ respectively.
    Matched MeSH terms: Food Handling/methods*
  14. Migeemanathan S, Bhat R, Min-Tze L, Wan-Abdullah WN
    Foodborne Pathog Dis, 2011 Nov;8(11):1235-40.
    PMID: 21819211 DOI: 10.1089/fpd.2011.0945
    The growth and survival of Salmonella typhimurium in goat milk samples at different shifting temperatures were evaluated. The growth of S. typhimurium at lower temperatures (5°C, 10°C, and 15°C) exhibited bacteriostatic effects in milk, whereas at ambient temperature (25°C) and at 45°C, this pathogen luxuriantly grew throughout the 12-h stationary phase. At 50°C this pathogen was found to be thermotolerant and could still thrive in the milk. Overall, shifting temperatures from 37°C to 55°C and 60°C clearly indicated S. typhimurium to have reached complete elimination. The results demonstrated that the adaptation and survival of this pathogen directly depend on temperature stress. It is expected that the results will be useful to dairy industries for implementation of good manufacturing practices with a better hazard analysis critical control point approach to predict the microbial risk assessment and also benefit the consumers.
    Matched MeSH terms: Food Handling/methods*
  15. Lasekan O, Salva JT, Abbas K
    J Sci Food Agric, 2010 Apr 15;90(5):850-60.
    PMID: 20355122 DOI: 10.1002/jsfa.3895
    Considering the importance of malting and roasting on the quality of 'acha' beverages, a study was conducted to find optimum conditions for malting and the production of a high-quality roasted extract that could be used for an 'acha' beverage.
    Matched MeSH terms: Food Handling/methods*
  16. Mohammed Shafit H, Williams SK
    Poult Sci, 2010 Mar;89(3):594-602.
    PMID: 20181879 DOI: 10.3382/ps.2009-00412
    Research was conducted to manufacture and evaluate a restructured turkey breast product using the Fibrimex cold-set binding system, sodium diacetate (NaD), and sodium lactate (NaL) and to ascertain effects of the treatments on proximate composition, pH, psychrotrophic organisms, water activity, onset of rancidity (TBA), thaw loss, cooking yields, and objective color, and sensory characteristics. Whole turkey breasts were cut into 5-cm-thick strips; treated with either water only (control), 1.5% NaL, 2.0% NaL, 0.1% NaD, 1.5% NaL + 0.1% NaD, or 2.0% NaL + 0.1% NaD; blended with Fibrimex ingredients; stuffed into casings; and stored at -30 degrees C for 0, 1, 2, and 3 mo. After each storage period, frozen chubs were tempered at 4 degrees C, sliced into 1-cm-thick steaks, packaged in retail trays, stored at 0 degrees C to simulate retail storage, and analyzed after 0, 2, 4, 6, 8, and 10 d. Sodium diacetate used alone or in combination with NaL reduced (P < 0.05) growth of psychrotrophic organisms and had no adverse effects on water activity, pH, cooking yield, fat, moisture, protein, objective color, onset of rancidity, and sensory characteristics (juiciness, turkey flavor intensity, and tenderness). Panelists reported slight off-flavor in all steaks treated with NaL. Treating steaks with NaL alone or in combination with NaD resulted in increased (P < 0.05) ash content. Sodium lactate also functioned to minimize thaw loss in the frozen restructured turkey product.
    Matched MeSH terms: Food Handling/methods*
  17. Wan Rosli WI, Babji AS, Aminah A, Foo SP, Abd Malik O
    Int J Food Sci Nutr, 2010 Aug;61(5):519-35.
    PMID: 20166846 DOI: 10.3109/09637481003591582
    The effect of retorting and oven cooking on the nutritional properties of beef frankfurters blended with palm oil (PO), red PO35 and red PO48 were compared against the control beef fat treatment. Red PO oven-cooked beef frankfurters resulted in a significant loss of vitamin E from 538.5 to 287.5 microg after 6 months. Oven cooked sausages stored at -18 degrees C and retorted sausages stored for the 6 months of shelf studies resulted in more than 90% loss of alpha-carotene and beta-carotene in red PO beef frankfurters. Cholesterol was reduced at the range of 29.0-32.2 mg/100 g when beef fat was substituted with palm-based oils, in beef frankfurters. Differences of heat treatments did not significantly change THE cholesterol content, within all treatments. This study showed the potential of utilizing red palm oils as animal fat analogues in improving vitamin E, reducing cholesterol but not carotenes in beef frankfurters.
    Matched MeSH terms: Food Handling/methods
  18. Marina AM, Man YB, Nazimah SA, Amin I
    Int J Food Sci Nutr, 2009;60 Suppl 2:114-23.
    PMID: 19115123 DOI: 10.1080/09637480802549127
    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
    Matched MeSH terms: Food Handling/methods
  19. Ramli MR, Tarmizi AHA, Hammid ANA, Razak RAA, Kuntom A, Lin SW, et al.
    J Oleo Sci, 2020 Aug 06;69(8):815-824.
    PMID: 32641608 DOI: 10.5650/jos.ess20021
    Approximately 900 tonne of crude palm oil (CPO) underwent washing using 5 to 10% hot water (90 to 95°C) at a palm oil mill. The aim of the CPO washing was to eliminate and/or reduce total chlorine content present in the conventional CPO, as it is known as the main precursor for the formation of 3-monochloropropane-1, 2-diol esters (3-MCPDE). By a simple hot water washing, more than 85% of the total chlorine was removed. However, washing did not have significant (p > 0.05) effect on other oil quality parameters such as the deterioration of bleachability index (DOBI), free fatty acid (FFA) content and diacylglycerol (DAG) content of the oil. The latter has been established as the main precursor for glycidyl esters (GE) formation. The treated CPO was then transported using tankers and further refined at a commercial refinery. Refining of washed CPO resulted in significantly (p < 0.05) lower formation of 3-MCPDE, but GE content remained slightly high. Post-treatment of refined oil significantly reduced the GE content (p < 0.05) to an acceptable level whilst almost maintaining the low 3-MCPDE level. The study has proven that water washing of CPO prior to refining and subsequent post-refining is so far the most effective way to produce good quality refined oil with considerably low 3-MCPDE and GE contents. Dry fractionation of refined palm oil showed these contaminants partitioned more into the liquid olein fraction compared to the stearin fraction.
    Matched MeSH terms: Food Handling/methods*
  20. Asing, Ali ME, Abd Hamid SB, Hossain MA, Mustafa S, Kader MA, et al.
    PLoS One, 2016;11(10):e0163436.
    PMID: 27716792 DOI: 10.1371/journal.pone.0163436
    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition.
    Matched MeSH terms: Food Handling/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links